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Nonorthogonality constraints in open quantum and wave systems
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It is known that the squared modulus of the overlap (scalar product) of two energy eigenstates in a decaying
quantum system is bounded from above by a function of the energy detuning and the individual decay rates.
This is usually traced back to the positive definiteness of an appropriately defined decay operator. Here, we
show that the weaker and more realistic condition of positive semidefiniteness is sufficient. We prove also that
the bound becomes an equality for the case of single-channel decay. However, we show that the condition
of positive semidefiniteness can be spoiled by quantum backflow. Hence, the overlap of quasibound quantum
states subjected to outgoing-wave conditions can be larger than expected from the bound. A modified and less
stringent bound, however, can be introduced. For electromagnetic systems, it turns out that a modification of the
bound is not necessary due to the linear free-space dispersion relation. Finally, a geometric interpretation of the
nonorthogonality bound is given which reveals that in this context the complex energy space can be seen as a
surface of constant negative curvature.
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I. INTRODUCTION

Any realistic quantum or wave system is an open system
because it can never be perfectly isolated from its envi-
ronment. The current strong interest in open systems arises
from the new fields of non-Hermitian physics and parity-
time (PT) symmetry [1–3]. In this context open systems are
often described by a non-Hermitian effective Hamiltonian
Ĥ [4,5], e.g., microwave cavities [6], ultracold atoms in
optical lattices [7,8], low-dimensional nanostructures [9], PT-
symmetric electronics [10], nuclear physics [11], optical mi-
crocavities [12,13], and coupled cavity arrays [14]. The non-
Hermiticity or non-self-adjointness Ĥ �= Ĥ† (see Ref. [15] for
a rare case where a distinction of these two concepts is rele-
vant in physics) implies that its eigenvalues Ej are complex-
valued with the imaginary part determining a decay rate.
If additionally the Hamiltonian is non-normal, [Ĥ, Ĥ†] �=0,
then its eigenstates are in general mutually nonorthogonal.
The nonorthogonality is extreme near non-Hermitian de-
generacies in parameter space, so-called exceptional points
[16–20], where at least two eigenstates become collinear. At
such points it is not possible to expand all states in terms of
the eigenstates of Ĥ .

It is a common point of view that the nonorthogonality
is just an inconvenience that can be brushed aside by using
a proper biorthogonal basis. For time (T)-invariant systems
this requires the use of a bilinear form instead of the con-
ventional scalar product [21]. An alternative point of view
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is that nonorthogonality signals or even represents interesting
physics. For instance, nonorthogonality has been used to test
the fundamental charge-parity-time (CPT) and T invariance
of K0 mesons [22–25]. Moreover, it has been shown that
nonorthogonality can lead to nonexponential transient decay
[26–28], chirality in perturbed whispering-gallery microcavi-
ties [29,30], power oscillations in optical waveguides [31,32],
sensitivity of resonance widths under perturbation [33], limi-
tation of mode selectivity [34], interesting transport properties
[35,36], and quantum excess noise in lasers [37–40].

It has been known for a long time that in decaying quantum
systems there is an upper bound for the squared modulus of
the overlap of two normalized energy eigenstates |ψl〉 and
|ψ j〉

|〈ψl |ψ j〉|2 � γlγ j

�2
l j + (γl + γ j )2/4

, (1)

with the conventional scalar product 〈·|·〉, the energy de-
tuning �l j = Re El − Re Ej , and the individual decay rates
γ j = −2 Im Ej � 0. In particular, the inequality restricts the
nonorthogonality to pairs of states which are “spectrally
close.” Inequality (1) was first published by Lee, Oehme,
and Yang in 1957 [22] and later used among others by Lee
and Wolfenstein [23]. It is therefore sometimes called the
Lee-Wolfenstein inequality or bound. Often it is considered as
part of the well-known Bell-Steinberger relations [24], which
is an equation for the overlap where the right-hand side is
system dependent but is bounded by the right-hand side of
inequality (1).

Non-Hermitian Hamiltonians are commonly introduced in
a phenomenological manner. Rarely, such a Hamiltonian is
introduced from first principles, e.g., in Ref. [13]. Instead
of using an effective non-Hermitian Hamiltonian one fre-
quently has to solve a wave equation with absorption or
gain and outgoing-wave conditions. The solutions of such an
equation correspond to the energy eigenstates and are called
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quasibound states, (quasi-normal) modes, or resonant states
[41,42]. Inequality (1) has not been proven directly for this
case. In particular, it is not a priori clear how the normaliza-
tion can be done as the quasibound states diverge in the far
field, see, e.g., [43]. There are many attempts to tackle the
problem of normalization by using biorthogonality in terms
of bilinear forms including surface integration terms instead
of conventional scalar products based on volume integration,
see, e.g., [44–48].

The present paper adds a number of interesting and im-
portant results related to the Lee-Wolfenstein inequality. We
clarify the requirements and demonstrate that for a certain
kind of system the nonorthogonality becomes maximum in
the sense that the inequality turns into an equality. Moreover,
we show that the Lee-Wolfenstein inequality can fail for
quasibound states based on wave equations with outgoing-
wave conditions. Finally, we interpret the nonorthogonality
constraint geometrically as an inequality between distances in
Hilbert space and complex energy space.

The paper is organized as follows. Section II presents
a derivation of the Lee-Wolfenstein inequality for systems
described by an effective Hamiltonian. It is revealed for which
systems the inequality becomes an equality. Moreover, we
show how the inequality can be reformulated for biorthog-
onal basis sets. Section III deals with wave systems with
absorption and outgoing-wave conditions, including quantum
and electromagnetic systems. Section IV provides a geometric
interpretation. A discussion is presented in Sec. V.

II. SYSTEMS WITH EFFECTIVE HAMILTONIAN

A. Derivation of the Lee-Wolfenstein inequality

In this section we present an elegant derivation of inequal-
ity (1) for open systems which are described by an effective
non-Hermitian Hamiltonian Ĥ . This derivation is inspired by
Ref. [49] but it more explicitly and more correctly addresses
the assumptions about Ĥ .

We consider an N-dimensional Hilbert space H. The dy-
namics of any state vector |ψ〉 ∈ H is determined by the
Schrödinger equation

ih̄
d

dt
|ψ〉 = Ĥ |ψ〉 (2)

with the reduced Planck’s constant h̄. Starting from the eigen-
problem of Ĥ

Ĥ |ψ j〉 = Ej |ψ j〉 (3)

with the eigenstates |ψ j〉 and the complex eigenvalues Ej it is
straightforward to show that

−i(E∗
l − Ej )〈ψl |ψ j〉 = 〈ψl |�̂|ψ j〉, (4)

where the raised asterisk denotes complex conjugation and �̂

is the Hermitian decay matrix

�̂ = i(Ĥ − Ĥ†). (5)

The mapping

(φ,ψ ) = 〈φ|�̂|ψ〉 (6)

is a so-called Hermitian form (or symmetric sesquilinear
form) [50] because it is (i) linear in one argument (here

the second, according to the standard physics notation for
the scalar product) and (ii) symmetric under exchange of
arguments and complex conjugation, i.e., (φ,ψ ) = (ψ, φ)∗.

The assumption needed to prove the Lee-Wolfenstein
inequality is that the total probability 〈ψ |ψ〉 decays
monotonously, i.e.,

h̄
d

dt
〈ψ |ψ〉 = −〈ψ |�̂|ψ〉 = −(ψ,ψ ) � 0 (7)

for all |ψ〉 ∈ H. Hence, �̂ is a positive semidefinite opera-
tor and (·, ·) is a positive semidefinite Hermitian form. The
stronger condition of strictly monotonously decaying proba-
bility would imply that (ψ,ψ ) > 0 for all |ψ〉 ∈ H. In this
case, (·, ·) is a positive-definite Hermitian form or, in other
words, a scalar product. However, positive definiteness as it is
used for �̂ in Refs. [22,49] is not justified in general because
a decaying quantum system can have nondecaying subspaces.

For a positive-semidefinite Hermitian form, the Cauchy-
Schwarz inequality holds, see, e.g., [50],

|(φ,ψ )|2 � (φ, φ)(ψ,ψ ) (8)

for all |φ〉, |ψ〉 ∈ H. Applying the Cauchy-Schwarz inequal-
ity (8) to Eq. (4) using Eq. (6) we find[

�2
l j + (γl + γ j )

2
/

4
]|〈ψl |ψ j〉|2 � (ψl , ψl )(ψ j, ψ j ) (9)

with the detuning �l j = Re El − Re Ej and the decay rates
γ j = −2 Im Ej . The latter are non-negative numbers as fol-
lows from Eqs. (4) and (6):

(ψ j, ψ j ) = γ j, (10)

where we have used the normalization 〈ψ j |ψ j〉 = 1. From
Eqs. (9) and (10) directly follows the Lee-Wolfenstein in-
equality (1).

The basic ingredient for the derivation is the positive
semidefiniteness of the Hermitian form (·, ·). This require-
ment is stronger than requiring only γ j � 0. In Ref. [51] it
was discussed that certain classes of decaying systems may
only fulfill the latter condition (γ j � 0). For such systems
inequality (1) does not hold. We come back to this point in
greater detail in Sec. III.

It is an easy exercise for the reader to verify that the
Lee-Wolfenstein inequality also holds for a decay matrix
that is negative semidefinite. This applies to a monotonically
increasing total probability in systems with gain but without
loss. However, the Lee-Wolfenstein inequality is in general
not valid for systems with gain and loss. An example may
be a PT-symmetric system with balanced loss and gain at an
exceptional point. Here, the two coalescing energy eigenstates
|ψl〉 and |ψ j〉 give |〈ψl |ψ j〉|2 → 1 and γl = 0 = γ j which is
clearly not consistent with inequality (1).

B. Dependence on the number of decay channels

Are there systems for which inequality (1) is an equality
for all energy eigenstates |ψ j〉? According to the derivation in
the previous section this question can be cast as the question
of whether

|(ψl , ψ j )|2 = (ψl , ψl )(ψ j, ψ j ) (11)
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is valid for all energy eigenstates. Equation (11) holds trivially
if |ψ j〉 is in the kernel of the decay matrix �̂. In the comple-
mentary situation when |ψ j〉 is in the span of �̂ then Eq. (11)
holds in general only if the span of �̂ is one dimensional. We
conclude that inequality (1) turns into an equality when the
rank of �̂, which can be interpreted as the number of available
decay channels, is unity. In this case the nonorthogonality
is maximal for given detuning and decay rates. Examples of
single-channel systems are tight-binding chains with a single
lossy site [28] and doorway states in nuclear physics [52]. In
the context of random-matrix theory it was already noticed by
Fyodorov and Mehlig [53] that in the single-channel case the
overlap of two energy eigenstates depends only on the com-
plex eigenenergies, but the connection to the Lee-Wolfenstein
inequality had not been established.

To obtain insight into the case of rank �̂ �= 1 we rewrite the
Lee-Wolfenstein inequality (1) as

ξl j � 1 (12)

for all l and j by introducing the normalized bound ξl j � 0
such that

|〈ψl |ψ j〉|2 = ξl j
γlγ j

�2
l j + (γl + γ j )2/4

. (13)

Next we consider the average

〈ξ 〉 = 2

N (N − 1)

∑
l> j

ξl j (14)

as a measure of the non-normality of the given system. The
maximum value of 1 is achieved for rank �̂ = 1. To get a
rough estimate of what is happening for higher rank, we first
remark that

ξl j = |(ψl , ψ j )|2
(ψl , ψl )(ψ j, ψ j )

, (15)

assuming (ψl , ψl ) �= 0 �= (ψ j, ψ j ). The only contributions
come from the components in the span of �̂ where the
Hermitian form (·, ·) is positive definite. Restricted to the span
of the decay operator it therefore is a scalar product. Next we
assume that the eigenstates behave in an ergodic manner in
Hilbert space. It is well known that for scalar products and
ergodically distributed states the right-hand side of Eq. (15) is
in average 1/M where M is the dimension of the vector space.
Here, M = rank �̂ and therefore

〈ξ 〉 ≈ 1

rank �̂
. (16)

Figure 1 shows a comparison of the prediction (16) with
numerical results using MATLAB for two different systems.
In both cases we construct a 20×20 Hamiltonian matrix in
the eigenbasis of the decay matrix �̂. For the first system
(circles) we choose uniformly random numbers ∈ [0, 1] in
dimensionless units for the matrix elements of the Hermitian
part of the Hamiltonian (describing the closed system dynam-
ics). For the second system (pluses), we use a more structured
Hermitian part: a linear tight-binding chain with uniform
nearest-neighbor coupling of unity. For the non-Hermitian
part (describing the losses) we use in both cases for the first
M diagonal elements random numbers picked uniformly from

5 10 15 20
0

0.2

0.4

0.6

0.8

1

FIG. 1. Average of the normalized bound 〈ξ〉 [dimensionless, see
Eqs. (13) and (14)] as a function of the rank of the decay matrix �̂.
The curve (actually points connected by a curve as a guide to the
eye) is the prediction in Eq. (16) and the circle (plus) symbols mark
the numerical results for a random (structured) Hermitian part of the
Hamiltonian, see text for details.

the interval (0,2]. For the first system, Fig. 1 demonstrates a
very good agreement of the numerical data and the prediction
in Eq. (16). For the second system, clear deviation can be
observed but still the prediction (16) qualitatively describes
the behavior. Calculations on larger matrices (not shown)
confirm this result.

C. Biorthogonal basis

As nowadays biorthogonal bases are commonly used, we
reformulate the Lee-Wolfenstein inequality (1) in terms of the
biorthogonal basis of the Hamiltonian

Ĥ |Rj〉 = Ej |Rj〉 and 〈Lj |Ĥ = Ej〈Lj | (17)

with the right eigenvectors |Rj〉 = |ψ j〉 and the left eigen-
vectors |Lj〉. With this definition we can always choose
〈Ll |Rj〉 = 0 if l �= j, which superficially solves the problem
of nonorthogonality. However, it reappears when considering
the overlap matrix [54]

Ol j = 〈Rj |Rl〉〈Ll |Lj〉
〈Rj |Lj〉〈Ll |Rl〉 . (18)

Note that in Ref. [54] the transposed matrix is used and in
Refs. [53,55] the denominator is missing due to the normal-
ization 〈Lj |Rj〉 = 1 for all j. As the choice of normalization
is irrelevant for the result of this section we use here for
convenience as before 〈Rj |Rj〉 = 1 and 〈Lj |Lj〉 = 1 for all j
and derive from Eq. (18)

|Ol j |√
OllOj j

= |〈Rl |Rj〉||〈Ll |Lj〉|. (19)

Using inequality (1) for |〈Rl |Rj〉| and also for |〈Ll |Lj〉| (with
negative-semidefinite decay matrix) we conclude

|Ol j |√
OllOj j

� γlγ j

�2
l j + (γl + γ j )2/4

. (20)

Equation (20) is the reformulation of the Lee-Wolfenstein
inequality for a biorthogonal basis. As 1/|〈Lj |Rj〉| is a mea-
sure of sensitivity of the corresponding eigenvalue under
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perturbation, see, e.g., [56], we can consider Eq. (20) as a
bound for certain sensitivity measures. We expect that this
might be relevant for response theory [57].

III. WAVE SYSTEMS WITH ABSORPTION
AND RADIATION

This section deals with quantum and electromagnetic sys-
tems described not by an effective Hamiltonian but by a wave
equation subjected to outgoing-wave conditions.

A. Quantum systems

We consider the stationary Schrödinger equation for a
spinless particle of mass m

(
− h̄2

2m
∇2 + V (
x)

)
ψ j (
x) = Ejψ j (
x). (21)

For notational convenience we suppress in the following the
dependence on the spatial coordinates 
x. The potential V is
assumed to be of finite support (nonzero over a finite region),
or at least of short range. We allow the potential V to be
complex valued. For example, for ultracold atoms in optical
lattices it is possible to design complex optical potentials V ,
where ImV < 0 describes an incoherent loss of atoms [7].
Moreover, losses can occur due to radiation. This is described
in n spatial dimensions asymptotically by the outgoing-wave
condition

ψ = eikr

r
n−1

2

ζ (22)

with radial coordinate r and wave number k = √
2mE/h̄. For

bound states, the energy E is negative and the square root
has to be chosen such that ik < 0. For quasibound states,
the energy is complex and the square root has to be chosen
such that the real part of k is positive. In one dimension the
amplitude ζ is a constant, in two dimensions ζ = ζ (ϕ) with
azimuthal angle ϕ, and in three dimensions ζ = ζ (θ, ϕ) with
polar angle θ .

From Eq. (21) it is straightforward to obtain

−i(E∗
l − Ej )ψ

∗
l ψ j = ih̄2

2m
∇(ψ j∇ψ∗

l − ψ∗
l ∇ψ j )

− 2 Im(V )ψ∗
l ψ j . (23)

Integrating this equation over a finite region �, see Fig. 2, and
applying Gauss’ theorem we get

−i(E∗
l − Ej )〈ψl |ψ j〉 = (ψl , ψ j ) (24)

with the scalar product

〈φ|ψ〉 =
∫

�

dnx φ∗ψ (25)

and the Hermitian form

(φ,ψ ) = h̄
∫

∂�

dA 
n · ih̄

2m
(ψ∇φ∗ − φ∗∇ψ )

− 2
∫

�

dnx Im(V )φ∗ψ. (26)

FIG. 2. Sketch of the region with nonvanishing potential (gray
shading) and the volume of integration �. 
n is the local normal vector
on the surface ∂�.


n is the local unit normal vector on the surface ∂� pointing
outwards, see Fig. 2.

For the special case φ = ψ we can interpret the Hermitian
form in Eq. (26) as follows. The first term on the right-hand
side is the flow of the probability current


j = ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ ) (27)

through ∂� to the exterior region. The second term in Eq. (26)
describes the change of probability due to absorption or gain.

Under what conditions is the Hermitian form (26) positive
semidefinite, i.e., (ψ,ψ ) � 0 for all wave functions ψ? As the
two decay processes of radiation and absorption or gain are in-
dependent we have to require both terms in Eq. (26) to be pos-
itive semidefinite. For the second term this implies ImV �0
for all 
x, i.e., there is no gain. If in addition there is also no
radiation, i.e., the first term is zero for all states for example
for a system with Dirichlet boundary conditions on a surface
∂�, the Hermitian form (26) is positive semidefinite. From
this and the Cauchy-Schwarz inequality (8) follows directly
the Lee-Wolfenstein inequality (1).

If the first term is nonzero then the reasoning is much more
subtle. At first glance it appears to be enough to require that
the region � is convex, including the region with V �= 0, and
is sufficiently large. The outgoing-wave condition (22) then
give for all energy eigenstates ψ j always a current pointing
outward �, i.e., 
n · 
j � 0, and therefore (ψ j, ψ j ) � 0. Un-
fortunately, from this we cannot conclude that the Hermitian
form (26) is positive semidefinite, as there is the possibility
that superpositions of energy eigenstates, such as ψ = ψ j +
αψl , exhibit 
n · 
j < 0 at certain positions on the surface ∂�.
This can indeed happen due to quantum backflow [58,59],
the remarkable effect in which a wave packet flows in the
direction opposite to its momentum. To illustrate this effect,
consider the one-dimensional example of a free particle with
wave function

ψ (x) = eik j x + αeikl x. (28)

A short calculation gives for the corresponding current

jx = h̄

m
{k j + α2kl + α(k j + kl ) cos [(k j − kl )x]}, (29)
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where, for simplicity, we have assumed kl , k j, α ∈ R. The
third term in Eq. (29) is an interference term originating
from the fact that the current (27) is a quadratic function of
the wave function. Due to the interference the current can
be negative for certain intervals in space even if both wave
numbers kl and k j—and the corresponding momenta h̄kl and
h̄k j—are positive. For example, choose x = π/|k j − kl |, kl

small and α large enough. The quantum backflow has here
two related consequences: (i) the probability inside � can
temporarily increase, and (ii) the Hermitian form (26) is not
positive semidefinite. The nonorthogonality of quasibound
states is therefore not constrained by the Lee-Wolfenstein
inequality!

This conclusion seems to be in contradiction with a con-
siderable amount of literature (see [11] for a review) where
open systems, including systems studied in this section [60],
are modeled with an effective Hamiltonian where the decay
operator is deduced to be of the form

�̂ = ŴŴ † (30)

with the N×M matrix Ŵ and M = rank �̂ � N . Clearly, �̂ is
positive semidefinite is this case, and therefore quantum back-
flow should be ruled out. The apparent contradiction resolves
itself if we take note of the fact that the decay operator in
Eq. (30) is only locally defined. In general, �̂ in Eq. (30) is
energy dependent, see also the discussion in Ref. [60]. Even a
weak energy dependence allows for quantum backflow as the
interference of a superposition of two eigenstates (eigenstates
of formally two different Hamiltonians) is modified which
can lead to a temporarily increasing probability. Another
possible pitfall is that the effective Hamiltonian is given in
a nonorthogonal basis if considered from the real-space repre-
sentation. This is, for instance, the case in the perturbation
theory in Ref. [13]. The transformation between this basis
and the real-space representation is non-unitary and there-
fore does not preserve the positive semidefiniteness of the
Hamiltonian.

In the presence of radiation, can a modified version of
the Lee-Wolfenstein inequality be derived? One possibility
seems to spatially average over the extent of the region �,
thereby smearing out the effect of quantum backflow. This is
problematic for a number of reasons: (i) This average should
be chosen to be state independent. However, Eq. (29) tells us
that even in the simple one-dimensional example the region in
which the current is negative depends on the states via k j − kl .
(ii) The averaging has to be done also for the normalization
〈ψ j |ψ j〉 = 1. (iii) The interpretation of the scalar product is
no longer obvious.

In the following we describe a much better way to derive a
modified version of the Lee-Wolfenstein inequality. To do so,
we choose the region � to be a sphere of radius R containing
the region with V �= 0. For one-dimensional systems (n = 1)
the wave function outside � is described by the outgoing-
wave condition (22). For n > 1 this is true asymptotically for
large enough R. In this regime,

∂ψ

∂r
= ikψ. (31)

Plugging this and Eq. (22) into Eq. (26) gives

(ψl , ψ j ) = h̄2

2m
(k∗

l + k j )e
−ik∗

l Reik j R〈ζl |ζ j〉ff

− 2
∫

�

dnx Im(V )ψ∗
l ψ j (32)

with the scalar product

〈ζ |ξ 〉ff =
∫

∂�

dA

Rn−1
ζ ∗ξ . (33)

This scalar product does not depend on R and contains only
far-field data (hence the subscript “ff”). In the special case
〈ζl |ζ j〉ff = 0, the quantity |(ψl , ψ j )| is independent of R be-
cause the only contribution in the second term of Eq. (32)
comes from the region with V �= 0, which is always enclosed
by the sphere � according to the requirement. In the generic
case 〈ζl |ζ j〉ff �= 0 the first term of Eq. (32) dominates for
quasibound states when R is sufficiently large. In this case we
get with Eq. (24)

〈ψl |ψ j〉 = i

k∗
l − k j

e−ik∗
l Reik j R〈ζl |ζ j〉ff. (34)

Applying the Cauchy-Schwarz inequality to the scalar product
〈·|·〉ff we obtain

|〈ψl |ψ j〉|2
〈ψl |ψl〉〈ψ j |ψ j〉 � γlγ j

�2
l j + (γl + γ j )2/4

(35)

with �l j = Re kl − Re k j and γ j = −2 Im k j � 0. This is very
similar to inequality (1) except for the explicit normalization
on the left-hand side to compensate for the R dependence
(and therefore for the divergence of the quasibound states in
the limit R → ∞) and the appearance of the wave number
k instead of the energy E . The latter modification makes
a difference because of the nonlinear free-space dispersion
relation E = h̄2k2/(2m). Interestingly, the right-hand side of
inequality (35) is larger than the right-hand side of inequality
(1). However, the difference is small in the case of long-lived
energy eigenstates with |Im Ej | 
 |Re Ej |.

For one-dimensional systems 〈ζl |ζ j〉ff = ζ ∗
l ζ j and there-

fore |〈ζl |ζ j〉ff|2 = 〈ζl |ζl〉ff〈ζ j |ζ j〉ff. Hence, inequality (35) is
an equality for n = 1 similar to the case of rank-1 losses in
Sec. II B. Remarkably, this particular case breaks the bound
in the original inequality (1). Note that for one-dimensional
systems without absorption there is no need to consider large
R in Eq. (35) because the outgoing-wave condition (22) is
exact for any R.

It should be emphasized that rescuing the Lee-Wolfenstein
inequality by its modified version (35) comes at a price. The
region � is a large sphere and therefore the scalar product is
dominated by the behavior of the quasibound states far away
from the physical interesting region V �= 0. Depending on the
situation it might be more reasonable to choose the region �

close to the region V �= 0. The Lee-Wolfenstein inequality is
then not valid but this can be seen as an advantage if one is
interested in strong nonorthogonality and large non-Hermitian
effects.
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B. Electromagnetic systems

Here we consider electromagnetic (quasinormal) modes as
the (damped) time-harmonic solutions of Maxwell’s equations

∇ × 
E = − ∂

∂t

B and ∇ × 
H = ∂

∂t

D, (36)

assuming that no free currents are present. We use the consti-
tutive relations


D = ε0ε 
E and 
B = μ0μ 
H (37)

and restrict ourselves to isotropic and nondispersive media,
i.e., μ and ε are scalars and frequency independent. We
assume that ε − 1 and μ − 1 are of finite support in three-
dimensional space. We allow ε to be complex valued in order
to describe gain and loss. With the identity

∇ · (
a × 
b) = 
b · (∇ × 
a) − 
a · (∇ × 
b) (38)

for any vectors 
a, 
b ∈ C3 and Maxwell’s equations (36) we
derive

∇ · ( 
E∗
l × 
Hj ) = 
Hj ·

(
− ∂

∂t

B∗

l

)
− 
E∗

l · ∂

∂t

Dj, (39)

∇ · ( 
Ej × 
H∗
l ) = 
H∗

l ·
(

− ∂

∂t

Bj

)
− 
Ej · ∂

∂t

D∗

l . (40)

Adding Eqs. (39) and (40) and integrating over the finite
region �, we arrive at

−i(ω∗
l − ω j )〈ψl |ψ j〉 = (ψl , ψ j ) (41)

with the complex eigenfrequencies ωl and ω j having a posi-
tive real part, the six-dimensional vectors

ψ =
( 
Eψ


Hψ

)
, φ =

( 
Eφ


Hφ

)
, (42)

the scalar product

〈φ|ψ〉 =
∫

�

d3x
1

4
(μ0μ 
H∗

φ · 
Hψ + ε0Re(ε) 
E∗
φ · 
Eψ ), (43)

and the Hermitian form

(φ,ψ ) =
∫

∂�

dA 
n · 1

4
( 
E∗

φ × 
Hψ + 
Eψ × 
H∗
φ )

+
∫

�

d3x
1

4
ε0Im(ε)i

(

E∗
φ · ∂ 
Eψ

∂t
− 
Eψ · ∂ 
E∗

φ

∂t

)
.

(44)

The interpretation of the scalar product and the Hermitian
form is straightforward for the special case φ = ψ and time-
periodic fields with real-valued frequency ω. The scalar prod-
uct (43) coincides with the total electromagnetic energy in a
finite region � averaged over one temporal period 2π/ω. The
Hermitian form (44) reduces to

(ψ,ψ ) =
∫

∂�

dA 
n · 
S +
∫

�

ω

2
ε0Im(ε)| 
E |2, (45)

where


S = 1
2 Re( 
E × 
H∗) (46)

coincides with the time-averaged Poynting vector for time-
periodic fields.

For the question of whether the Hermitian form (44) is
positive semidefinite we again consider the two processes of
radiation and absorption or gain independently. The second
term is positive semidefinite if Im ε � 0 for all 
x, so again
we require that there is no gain. As in the previous section
the second term is more subtle. For a sufficiently large and
convex region � the outgoing-wave conditions lead to an
outward-pointing 
S for individual modes. However, linear
combinations allow optical backflow, the analog of quantum
backflow. Optical backflow has been known for a long time,
see, e.g., Ref. [61]; some modern aspects are discussed in
Refs. [62,63]. Analog to the quantum case in the previous
section, the backflow forbids us to conclude that the Hermitian
form (44) is positive semidefinite. This implies that the matrix
Sl j = (ψl , ψ j ) is not positive semidefinite (even though S j j�0
for all j). Note that a similar but not exactly the same matrix
(if we ignore dispersion and the regularization of the far-field
divergence) has been used for a second quantization scheme
of modes in open photonic systems in Ref. [64].

In the presence of absorption only, the Hermitian form
(44) is positive semidefinite. From Eq. (41) and the Cauchy-
Schwarz inequality (8) follows directly the Lee-Wolfenstein
inequality (1) with

�l j = Re ωl − Re ω j and γ j = −2 Im ω j . (47)

As in the previous section we ask if in the presence of
radiation an alternative nonorthogonality constraint can be
found for a large region �. Again, � shall be a sphere of radius
R containing the region with ε �= 1 and μ �= 1. For large R we
consider the Silver-Müller boundary conditions [65]

√
μ0 
H × 
x

|
x| = √
ε0 
E and

√
ε0 
E × 
x

|
x| = −√
μ0 
H ,

(48)
where μ = 1 = ε in the far-field region and


E = eikr

r

ζ (49)

with k = ω/c and 
ζ depending only on the angles θ and ϕ.
Inserting these boundary conditions into Eq. (44) gives

(ψl , ψ j ) = 1

2

√
ε0

μ0
e−ik∗

l Reik j R〈
ζl |
ζ j〉ff

+
∫

�

d3x
1

4
ε0Im(ε)i

(

E∗

l · ∂ 
Ej

∂t
− 
Ej · ∂ 
E∗

l

∂t

)

(50)

with the scalar product

〈
ζ |
ξ〉ff =
∫

∂�

dA

R2

ζ ∗ · 
ξ . (51)

In the generic case 〈
ζl |
ζ j〉ff �= 0 the first term of Eq. (50)
dominates for quasibound states when R is sufficiently large.
In this case we get with Eq. (41)

〈ψl |ψ j〉 = i

ω∗
l − ω j

1

2

√
ε0

μ0
e−ik∗

l Reik j R〈
ζl |
ζ j〉ff. (52)

Applying the Cauchy-Schwarz inequality to the scalar product
〈·|·〉ff we get inequality (35) with detuning and decay rates as
in Eq. (47). In contrast to the quantum case, we fully recover
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the Lee-Wolfenstein bound in the limit of a large region �

due to the fact that the free-space dispersion relation ω = ck is
here linear. But again the price is that the such obtained scalar
product is dominated by the behavior of the modes far away
from the physically interesting region with ε �= 1, μ �= 1.

IV. GEOMETRIC INTERPRETATION

One known interpretation of the Lee-Wolfenstein inequal-
ity (1) is that the right-hand side can be understood as spectral
overlap of the two states in terms of their associated normal-
ized Breit-Wigner (Lorentz) distributions [66]. The geometric
interpretation that is presented in this section is very different.
We relate each side of the inequality to a distance either in
Hilbert space or in complex energy (or frequency or wave
number) space.

A metric or distance function d (x, y) between two arbitrary
elements x and y of a given set is a mapping to the real
numbers with axioms: (i) identity of indiscernibles d (x, y) =
0 if and only if x = y, (ii) symmetry d (x, y) = d (y, x), and (iii)
triangle inequality d (x, y) � d (x, z) + d (z, y). From these ax-
ioms one can deduce d (x, y) � 0.

We consider normalized states 〈ψ j |ψ j〉 = 1 and rewrite
inequality (1) as

√
1 − |〈ψl |ψ j〉|2 � |El − Ej |

|E∗
l − Ej | (53)

with the positive branch of the square root and the complex
eigenenergies Ej . The left-hand side is the Hilbert-Schmidt
distance of two pure and normalized states |φ〉, |ψ〉 ∈ H (up
to a factor of

√
2, see, e.g., [67])

dHS(φ,ψ ) =
√

1 − |〈φ|ψ〉|2. (54)

Obviously, this distance is bounded. The maximal value of
unity is attained if the two states are orthogonal. The minimal
value of zero is attained if the states are collinear. An easy
intuitive visualization is provided by vectors in RN where
dHS = | sin α| with α ∈ [0, π/2] being the angle between the
two involved vectors.

The right-hand side of Eq. (53) can be expressed in two
ways. First, we can identify it with the pseudo-hyperbolic
distance on the lower half complex plane, see, e.g., [68]

dph(E , E ′) = |E − E ′|
|E∗ − E ′| . (55)

By convention, the literature actually considers the upper
half plane, see, e.g., [69], but the distance is invariant under
flipping the imaginary parts of E and E ′ simultaneously.
Hyperbolic distances describe surfaces of constant negative
curvature. A distance is called pseudo-distance if the first
axiom is relaxed in the sense that still d (x, x) = 0 for all x, but
also d (x, y) = 0 is possible for x �= y. This is the case here, as
in the limit E , E ′ → ∞ the distance dph(E , E ′) = 0 even for
E �= E ′. This is not a problem for our purpose. The same is
true for the fact that the distance (55) is not additive along
geodesics [68]. Also the distance dph(E , E ′) is bounded and
lies in the interval [0,1]. An illustration is provided in Fig. 3.

With Eqs. (54) and (55) the Lee-Wolfenstein inequality (1)
can be written as a relation between distances in Hilbert space

FIG. 3. Pseudo-hyperbolic distance dph(E , E ′) [Eq. (55)] with
E ′ = 1.5 − i0.1 marked by the plus symbol. (a) Isolines of constant
distance and (b) three-dimensional representation. Energies are given
in dimensionless units.

and complex energy space

dHS(ψl , ψ j ) � dph(El , Ej ). (56)

Hence, states that are “spectrally close”—now rigorously
defined by the distance function dph—can be also close in
Hilbert space, i.e., strongly nonorthogonal. In the context of
Fig. 3(b), this inequality means that for fixed E ′ = Ej and
variable E = El , the distance dHS can take on values that are
located on or above the surface dph(E , E ′).

Alternatively, we can consider the hyperbolic distance on
the lower half plane (the Poincaré metric, see, e.g., [69])

dP(E , E ′) = 2arctanh
|E − E ′|
|E∗ − E ′| . (57)

This distance function is unbounded and additive along
geodesics. For small distances, the pseudo-hyperbolic dis-
tance and the hyperbolic distance coincide, up to the obvious
factor of 2. With Eqs. (54) and (57) the Lee-Wolfenstein
inequality (1) can be written as

dHS(ψl , ψ j ) � tanh

[
dP(El , Ej )

2

]
. (58)

For the single-decay channel case, inequalities (56) and (58)
turn into equalities for all energy eigenstates.

The formulation of the nonorthogonality bound in terms
of distance functions in Eqs. (56) and (58) is relevant for
two reasons: (i) It gives the interpretation “spectrally close”
a precise meaning. (ii) It can be extended to n > 2 energy
eigenstates, e.g., by

n−1∑
j=1

dHS(ψ j, ψ j+1) �
n−1∑
j=1

dph(Ej, Ej+1). (59)

This inequality compares the lengths of two polygon courses,
one in Hilbert space and one in complex energy space. An
expression similar to the left-hand side of Eq. (59) has been
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used in Ref. [13] as a cost function to search for (higher-order)
exceptional points in parameter space.

V. DISCUSSION AND CONCLUSIONS

Various aspects of nonorthogonality constraints in open
quantum and wave systems have been discussed. Starting
with an introduction of Hermitian forms we have shown
that positive semidefiniteness of these forms is sufficient to
derive the Lee-Wolfenstein bound for the overlap of two
energy eigenstates. We have revealed that for the case of
single-channel decay the nonorthogonality is maximal in the
sense that the Lee-Wolfenstein inequality turns into an equal-
ity. For increasing rank of the decay operator the average
nonorthogonality decreases. We have also shown how the
Lee-Wolfenstein inequality can be reformulated for the case
of a biorthogonal basis. The reformulated version can be
considered a bound for sensitivity measures.

We have demonstrated that the condition of positive
semidefiniteness does not apply to quantum and wave systems
with radiation. The reason is the phenomenon of quantum or
optical backflow. The lack of an upper bound for the overlap
allows larger effects of nonorthogonality.

The fact that the backflow spoils the positive semidef-
initeness of the Hermitian form or the decay operator is

itself an interesting finding that is also relevant for the recent
experiments on sensors based on exceptional points [70–72].
It had been shown that the positive semidefiniteness implies a
restriction for the operation of passive devices indicating that
gain is needed for practical applications [51,73]. Our finding
implies that there is a chance that the usage of gain might be
avoided.

We have shown that the Lee-Wolfenstein inequality can be
rescued by extending the range of integration for the scalar
product to the far-field region. Moreover, for quantum systems
one has to replace energies by wave numbers in the inequality.
For the case of three-dimensional electromagnetic systems the
corresponding replacement of frequencies by wave numbers is
irrelevant because of the linear free-space dispersion relation.

Finally, we have introduced a geometric interpreta-
tion of the nonorthogonality bound. We have related the
Lee-Wolfenstein inequality to a relation of the Hilbert-
Schmidt distance, measuring the nonorthogonality, to the
(pseudo-)hyperbolic distance on the lower half plane of com-
plex energies, measuring the spectral closeness.
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