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Poloidal flow generation in the dynamics of Rossby waves
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This paper considers the dynamics in the Charney-Hasegawa-Mima equation, basic to several different
phenomena. In each of them, the generation of poloidal/zonal flow is important. The paper suggests a possibility
to generate such flows (which can serve as transport barriers). Namely, one needs to create significant increments
and decrements in the neighborhoods of some wave vectors k1 and k2 (respectively) such that (1) Rk1 < Rk2 ,
where Rk is the spectral density of the extra invariant kernel (I = ∫

RkEkdk is the extra invariant, with Ek being
the energy spectrum), (2) |k1| < |k2|, and (3) k1 + k2 is a poloidal/zonal wave vector. These three conditions
define a quite narrow region.

DOI: 10.1103/PhysRevResearch.1.033180

I. INTRODUCTION

The quasigeostrophic or Charney-Hasegawa-Mima (CHM)
equation [1,2]

(1 − �)ψt + ψy = ψx�ψy − ψy�ψx (1)

is a basic model for several different phenomena, in partic-
ular, (i) ocean dynamics [3], (ii) tokamak plasmas [4,5], and
(iii) slow magnetohydrodynamics in the ocean of the core [6]
(in the latter case, instead of being the stream function, ψ is
the vertical component of the vector potential, so −ψy, ψx are
the horizontal components of the magnetic field) [7].

In all these situations the generation of poloidal/zonal flow
is important. In the first case, emerging zonal flow limits the
meridional transport. In the second case, poloidal flow limits
the transport in the radial direction of a tokamak. In the third
case, instead of zonal flow, we have the generation of a zonal
magnetic field, important for dynamo theory.

Unlike cases (i) and (iii), in case (ii) we can actually change
something, and this is the reason why the CHM equation is
written here in plasma notations (with radial x and poloidal
y coordinates; the units are chosen to make the coefficients
equal 1).

The present paper describes what increments or decre-
ments we could add to the CHM equation in order to generate
or to aid in the generation of poloidal flow (a transport barrier).

In the Fourier representation, Eq. (1)—with the increments
γk—becomes

ψ̇k + i�kψk = 1

2

∫
W−k,α,βψαψβ dα β + γkψk, (2)
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where indices α, β (and later λ,μ, ν) stand for the corre-
sponding wave vectors (kα, . . .). dαβ = dkα dkβ . Here,

�k = q

1 + k2
(3)

is the dispersion law [wave vector k = (p, q), k2 = p2 + q2];
the coupling kernel W−k α β = U−k α β δ(−k + kα + kβ ),

U−k α β = (pαqβ − pβqα )
k2
β − k2

α

1 + k2
. (4)

II. EXTRA INVARIANT

Equation (1) is remarkable in the following sense [8,9]. In
addition to the energy and the momentum (the enstrophy is
their linear combination), this equation has an (independent)
extra invariant conserved adiabatically, i.e., approximately
over a long time [10]. To see this, consider the quantity

I = 1

2

∫
Xk|ψk|2 dk + 1

6

∫
Yλ μ νψλ ψμ ψν dλ μ ν, (5)

with undetermined coefficient functions X and Y (without loss
of generality, Y is independent of the order of its indices, and
X is even, Xk = X−k since ψk = ψ−k). The time derivative of
(5) due to Eq. (2) is

İ =
∫

γk Xk |ψk|2 dk

+ 1

6

∫
{XλWλμν + XμWμνλ + XνWνλμ

+ (γλ − i�λ + γμ − i�μ + γν − i�ν )Yλμν}ψλψμψν dλμν

+ 1

4

∫
W−λαβYλμνψαψβψμψνdαβμν. (6)

Suppose the drift waves have small amplitudes and small
increments: ψk = O(ε) and γk = O(ε), where ε is a small
parameter. Cubic O(ε3) terms in Eq. (6) would cancel if

Yλμν = XλWλμν + XμWμνλ + XνWνλμ

i(�λ + �μ + �ν )
, (7)
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�⇒ İ =
∫

γk Xk|ψk|2 dk + O(ε4). (8)

Without an increment (γk ≡ 0), we have İ = O(ε4), while
I = O(ε2); integrating in time, we find �I ≡ I (t ) − I (0) =
O(ε3) over a long time t = O(ε−1). Notice that the Y term in
Eq. (5) has the same order O(ε3) as �I , and so the Y term can
be eventually discarded.

The above argument tacitly assumes that expression (7)
does not blow up when its denominator vanishes. The latter
condition turns out to be very restrictive [11], realizable only
for some special functions Xk: If Xk = 1 + k2, then Y ≡ 0,
and I is the energy. If Xk = k2(1 + k2), then Y ≡ 0, and I is
the enstrophy.

There is one choice with nonzero Y : Xk = (1+k2 )2

q ηk,

ηk = arctan

(
p + √

3 q

k2

)
− arctan

(
p − √

3 q

k2

)
. (9)

The requirement of no blowup in Eq. (7) is reduced [12] to
the conservation of function (9) in the three-wave resonance
interactions:

kλ + kμ + kν = 0,

�λ + �μ + �ν = 0

}
⇒ ηλ + ημ + ην = 0 (10)

[recall that all three W kernels in Eq. (7) contain the same
delta function δ(kλ + kμ + kν )]. Condition (10) uniquely [13]
determines function (9)—up to linear combinations: Obvi-
ously, any linear combination of functions k,�k, ηk is also
conserved in the three-wave resonance interactions. Actually,
it is beneficial, instead of function ηk, to consider function
η̃k = ηk − 2

√
3 �k. This combination vanishes as k → ∞,

faster than ηk and �k separately, and this takes place along all
directions in the k plane. The function η̃k gives a well-defined
invariant that holds in the physical space as well [14]. The
combination η̃k also vanishes faster than ηk and �k separately,
as q → 0, for any p.

Thus, Eq. (1) has three invariants:

energy: E = 1

2

∫
Ek dk, Ė =

∫
γkEk dk,

enstrophy:  = 1

2

∫
k2Ek dk, ̇ =

∫
γkk2Ek dk,

extra invariant: I = 1

2

∫
RkEk dk, İ =

∫
γkRkEk dk,

(11)

Rk = ηk − 2
√

3 �k

�k
. (12)

We should keep in mind that the extra conservation holds
only for weak nonlinearity, when ε is small enough, and the
reminder O(ε4) in Eq. (8) can be neglected.

All three invariants (11) are positive-definite.

III. ENERGY TRANSFER

The presence of the extra invariant leads to an essential
conclusion about the energy transfer from the source (acting
at some scale) to other scales [8]. The following argument [15]
describes the emergence of poloidal flow.

FIG. 1. Contour plot of the ratio (12). The values of the color
bar are proportional to log10 Rk. The white spots at the bottom
correspond to the values of log10 Rk out of the range of the color bar
(R ∼ π/q → ∞ as k → 0, |p/q| <

√
3, and R ∝ q2 → 0 as q → 0).

Due to the enstrophy conservation, the energy from the
source would transfer towards larger scales, i.e., towards the
origin in the k plane. Due to the extra conservation, the energy
should concentrate near the p axis, that corresponds to the
poloidal flow.

Indeed, Fig. 1 shows the contour plot of the ratio (12).
We see that Rk decreases when k becomes larger or when q
becomes smaller; more precisely,

Rk = 8
√

3 ×
{

5p2q2+q4

5k8 + O(k−6), k → ∞,

q2

p2(1+p2 )2 + O(q4), q → 0.
(13)

So, if the energy from the source were transferred away
from the p axis, then the extra invariant would significantly
increase: From the right upper corner (big k) in Fig. 1 to
the left bottom corner (small k) the ratio R changes by nine
orders of magnitude, provided the small wave vectors belong
to the sector of polar angles θ ≡ arctan(q/p) > 30◦. When
θ decreases from 30◦ to 0◦, the ratio R decreases to zero.
So, the difference in scales (between the source scale and
the big scale) should be large enough to ensure the energy
concentration near the p axis.

Thus, the poloidal flow is always generated (without us
doing anything), provided the scales are disparate enough.
This reasoning equally applies to the cascade (local in the k
plane) or nonlocal energy transfer.

IV. ENERGY TRANSFER WITHOUT SCALE DISPARITY

However, there is a problem with the above argument: It
is hardly possible in practice that the drift waves are weakly
nonlinear in a wide range of scales. Usually, smaller scales are
strongly nonlinear, while larger scales are weakly nonlinear
(e.g., Ref. [16]). The present paper is motivated by two goals.
First, we will see the possibility of zonal flow generation
without the presence of a wide range of scales, namely,
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without small scales. However, for this, we do need to arrange
increments and decrements in a certain special way. The large
scales do have to be weakly nonlinear, but this matches the
stability of zonal waves in the weakly nonlinear limit (see
below).

The second goal is to make a specific suggestion about how
one could generate poloidal (zonal) flow. This suggestion is
based on the fact—not noticed earlier—that the contour lines
in Fig. 1 have a “depression” in some region near the q axis
(away from the poloidal flow, corresponding to the p axis): In
this region, the ratio Rk is an increasing function of p (while
q is fixed). This “depression” is hardly visible in Fig. 1.

Let there be a positive increment in a small neighborhood
B1 of some wave vector k1 and a decrement in a small
neighborhood B2 of some k2, while γk ≡ 0 everywhere else.
Consider the positive quantities

G1 =
∫ ∞

0
dt

∫
B1

γkEkdk, G2 = −
∫ ∞

0
dt

∫
B2

γkEkdk.

According to (11),

E � = E0 + G1 − G2,

� = 0 + k2
1 G1 − k2

2 G2,

I� = I0 + R1 G1 − R2 G2,

where E0,0, I0 are the initial values (at t = 0) of the energy,
enstrophy, and extra invariant; their final values (at t = ∞) are
E �,�, I�; Rj = Rk j ( j = 1, 2). A slight difference between
k1 and k2 (respectively, R1 and R2) could produce a large
difference between 0 and � (I0 and I�) if the time interval
is long enough.

We want to generate a significant amount of energy (G1 >

G2) and to have a small amount of the extra invariant I� ≈
0. (Recall that the vanishing of the extra invariant requires
vanishing of all drift waves besides the poloidal flow.) If
I� < I0, i.e., R1 G1 − R2 G2 < 0, then

R1 < R2 . (14)

Condition (14) is implied by even less stringent require-
ments that the generated extra invariant per generated energy
R1 G1−R2 G2

G1−G2
is less than R1 or R2.

We want to generate large-scale flow. In other words, the
energy should concentrate in longer waves. The latter carry
less enstrophy per energy than shorter waves. Thus, we should
pump mostly energy and dissipate mostly enstrophy, i.e.,

k1 < k2. (15)

Formally, condition (15) follows from the requirement that the

generated enstrophy per generated energy k2
1 G1−k2

2 G2

G1−G2
is less

than k2
1 or k2

2 .
If (15) does not hold, k1 > k2, then the generated enstrophy

per generated energy could take any large values. Also, if k1 >

k2, it is possible that the extra invariant becomes small, but
the poloidal flow is not generated; this can happen because
the ratio Rk quickly decreases as k increases [see Fig. 1 and
asymptotics (13)].

We want to generate poloidal flow, and so we require k3 =
k1 + k2 be a purely polodal wave vector:

p2 = p3 − p1, q2 = −q1. (16)

q

k k
k k
R R

FIG. 2. Three regions in the k1 plane (while p3 = 1/2):
(i) Outside of the semicircle is the region k3 < k1. (ii) To the left
of the vertical line p1 = p2 = p3/2 is the region k1 < k2. (iii) The
region R1 < R2 consists of two pieces: to the right of the line and
outside of the parabolalike curve, and to the left of the line and inside
the parabolalike curve. The intersection of regions (ii) and (iii) is
the region satisfying conditions (14)–(16). Inside this intersection is
the point k1 = (0, 2) marked by the dot. (Due to the symmetry, only
half of the domain, with q1 > 0, is shown.)

Figure 2 shows region of the k1 plane determined by con-
ditions (14)–(16), while p3 is held fixed. These conditions
automatically imply k3 < k1. So, the wave k1—pumped due
to the positive increment—can decay into the waves k2 and
k3 [17].

V. MODEL SIMULATIONS

There is an additional bonus of condition (15): It implies
that one can make a numerical simulation with a only few
modes, as significantly shorter waves are not generated. The
generation of much longer waves is also impossible if the
scales corresponding to k1, k2, k3 are close to the size of the
system.

With this in mind, we consider the dynamics of
only three waves [18] with wave vectors k3 = (1/2, 0),
k1 = (0, 2) corresponding to the dot in Fig. 2, and
k2 = k3 − k1,

ψ̇1 + i�1ψ1 = U1ψ3ψ2 + γ1ψ1,

ψ̇2 + i�2ψ2 = U2ψ3ψ1 + γ2ψ2, (17)

ψ̇3 + i�3ψ3 = U3ψ1ψ2;

U1 = Uk1 k3 −k2 , U2 = Uk2 k3 −k1 , U3 = Uk3 k1 k2 , � j = �k j

( j = 1, 2, 3), γ1 > 0, γ2 < 0.
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FIG. 3. Triad simulation. The curves appear having some width;
this is due to oscillations (cf. Ref. [18]). (Note the figure shows
oscillations of absolute values |ψ |, not ψ themselves.) For this
particular graph, γ1 = 0.05, γ2 = −0.06, and |ψ1(0)| = |ψ2(0)| =
0.01, while |ψ3(0)| = 0 (the initial phases arg[ψ (0)] are random and
appear insignificant).

There is long history of modeling fusion plasmas by var-
ious small systems of ordinary differential equations (ODE)
(see Refs. [19,20] and references cited therein).

Figure 3 shows the emergence of poloidal flow in the model
(17). I performed simulations using MATLAB ODE solvers
with decreased absolute and relative tolerances (AbsTol and
RelTol). Instead of MATLAB default values AbsTol = 10−6

and RelTol = 10−3, I used AbsTol = 10−13 and RelTol =
10−11. These are needed for the validity of long-time simu-
lations. I also checked that different ODE solvers produced
indistinguishable results.

The relevance of these calculations to tokamak plasmas
is due to the smallness in seconds of the timescale for drift
waves. In particular, for ITER, the drift velocity is vd ∼
2 km/s and the ion inertial (Rossby) radius ρ ∼ 3 mm [21];
therefore, the timescale is ρ/vd ∼ (3/2) × 10−6 s. So, the
dimensionless time t = 1000 (the time range in Fig. 3) cor-
responds to 1.5 × 10−3 s; within a fraction of this time, the
amplitude of the poloidal mode becomes significantly bigger
than the amplitudes of the other two modes. The emergence
of the poloidal flow would occur faster if the increment and
decrement had bigger magnitudes.

VI. STABILITY CONSIDERATIONS AND CONCLUSION

If the emerging flow were not poloidal, it would be unstable
with respect to decays into other waves. But poloidal flow is

stable in the weak interaction limit [17]. One can derive that
the poloidal mode is stable if

|p3ψ3| < 1/
(
1 + k2

3

)
. (18)

Indeed, in the weak interaction limit, the instability of a
Rossby wave k3 is the instability with respect to decays into a
pair of waves, say k4 and k5, such that k3 = k4 + k5, and k3 is
in between k4 and k5 [17]. It is well known that this instability
does not take place if

D ≡ ω2/4 − U4U5|ψ3|2 > 0,

where ω = �4 + �5 (�3 = 0), and according to (4),

U4 = Uk4 k3 −k5 = p3q5
(
k2

3 − k2
5

)/(
1 + k2

4

)
,

U5 = Uk5 k3 −k4 = p3q4
(
k2

3 − k2
4

)/(
1 + k2

5

)
.

Since q4 + q5 = 0, we can write

ω = q4

(
1

1 + k2
4

− 1

1 + k2
3

)
+ q5

(
1

1 + k2
5

− 1

1 + k2
3

)
.

By the inequality for arithmetic and geometric means,

(ω

2

)2
� q4q5

(
k2

3 − k2
4

)(
k2

3 − k2
5

)
(
1 + k2

4

)(
1 + k2

5

)(
1 + k2

3

)2 , �⇒

D � q2
4

(
k2

4 − k2
3

)(
k2

3 − k2
5

)
(
1 + k2

4

)(
1 + k2

5

)
{

1(
1 + k2

3

)2 − p2
3|ψ3|2

}
.

So, D > 0 if the condition (18) holds. The condition (18)
says that the fluid velocity v3 = ip3ψ3, due to the poloidal
wave, has a smaller magnitude than the velocity of this wave
(its phase and group velocities coincide). This stability in the
weak interaction limit matches the argument based on the
extra invariant that requires weak nonlinearity as well.

To summarize, this paper suggests a specific possibility
to generate poloidal flow, which can help in plasma confine-
ment. Namely, the paper suggests a certain arrangement of
increments and decrements, so that the energy is accumulated,
while the extra invariant is “drained,” and the amount of en-
strophy per energy does not increase. The suggested possibil-
ity needs to be verified. The considered example [system (17),
Fig. 3] illustrates this possibility, but clearly is insufficient for
its verification.

The considerations in the present paper can be extended
beyond the CHM equation (1) (e.g., Ref. [22]); the system
should contain waves with dispersion law (3) and possess a
Hamiltonian structure.

[1] J. G. Charney, The Atmosphere–A Challenge (Springer, 1990),
pp. 251–265.

[2] A. Hasegawa and K. Mima, Phys. Rev. Lett. 39, 205 (1977).

[3] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics. Fun-
damentals and Large-Scale Circulation (Cambridge University
Press, Cambridge, UK, 2006).

033180-4

https://doi.org/10.1103/PhysRevLett.39.205
https://doi.org/10.1103/PhysRevLett.39.205
https://doi.org/10.1103/PhysRevLett.39.205
https://doi.org/10.1103/PhysRevLett.39.205


POLOIDAL FLOW GENERATION IN THE DYNAMICS … PHYSICAL REVIEW RESEARCH 1, 033180 (2019)

[4] P. H. Diamond, S.-I. Itoh, and K. Itoh, Modern Plasma Physics
(Cambridge University Press, Cambridge, UK, 2010), Vol. 1.

[5] W. Horton, Turbulent Transport in Magnetized Plasmas (World
Scientific, Singapore, 2012).

[6] S. I. Braginsky, Earth Planet. Sci. Lett. 253, 507 (2007).
[7] A. M. Balk, Astrophys. J. 796, 143 (2014).
[8] A. M. Balk, S. V. Nazarenko, and V. E. Zakharov, Phys. Lett. A

152, 276 (1991).
[9] A. M. Balk, Phys. Lett. A 155, 20 (1991).

[10] Equation (1) has an infinite family of invariant Casimirs, but
these explicitly depend on the coordinate x. Besides, if the equa-
tion is Fourier truncated, the Casimirs fail to be conserved—
unlike the energy, enstrophy, and extra invariant. This is due to
the quadratic nature of the latter three invariants.

[11] V. E. Zakharov and E. I. Shul’man, Physica D 1, 192 (1980).
[12] A. M. Balk and F. van Heerden, Physica D 223, 109 (2006).

[13] A. M. Balk and E. V. Ferapontov, in Nonlinear Waves and Weak
Turbulence, edited by V. E. Zakharov (Amer. Math. Soc. Trans.
Ser. 2, 1998), Vol. 182, pp. 1–30.

[14] A. M. Balk and T. Yoshikawa, Physica D 238, 384 (2009).
[15] A. M. Balk, Phys. Lett. A 345, 154 (2005).
[16] P. B. Rhines, J. Fluid Mech. 69, 417 (1975).
[17] A. Gill, Geophys. Fluid Dyn. 6, 29 (1974).
[18] A. M. Balk, Phys. Rev. E 98, 062208 (2018).
[19] F. A. Marcus, M. Roberto, I. L. Caldas, K. C. Rosalem, and

Y. Elskens, Phys. Plasmas 26, 022302 (2019).
[20] I. I. Rypina, M. G. Brown, F. J. Beron-Vera, H. Kocak, M. J.

Olascoaga, and I. A. Udovydchenkov, Phys. Rev. Lett. 98,
104102 (2007).

[21] W. Horton and S. Benkadda, ITER Physics (World Scientific,
Singapore, 2015).

[22] D. Qi and A. J. Majda, arXiv:1901.08590.

033180-5

https://doi.org/10.1016/j.epsl.2006.11.014
https://doi.org/10.1016/j.epsl.2006.11.014
https://doi.org/10.1016/j.epsl.2006.11.014
https://doi.org/10.1016/j.epsl.2006.11.014
https://doi.org/10.1088/0004-637X/796/2/143
https://doi.org/10.1088/0004-637X/796/2/143
https://doi.org/10.1088/0004-637X/796/2/143
https://doi.org/10.1088/0004-637X/796/2/143
https://doi.org/10.1016/0375-9601(91)90105-H
https://doi.org/10.1016/0375-9601(91)90105-H
https://doi.org/10.1016/0375-9601(91)90105-H
https://doi.org/10.1016/0375-9601(91)90105-H
https://doi.org/10.1016/0375-9601(91)90501-X
https://doi.org/10.1016/0375-9601(91)90501-X
https://doi.org/10.1016/0375-9601(91)90501-X
https://doi.org/10.1016/0375-9601(91)90501-X
https://doi.org/10.1016/0167-2789(80)90011-1
https://doi.org/10.1016/0167-2789(80)90011-1
https://doi.org/10.1016/0167-2789(80)90011-1
https://doi.org/10.1016/0167-2789(80)90011-1
https://doi.org/10.1016/j.physd.2006.08.020
https://doi.org/10.1016/j.physd.2006.08.020
https://doi.org/10.1016/j.physd.2006.08.020
https://doi.org/10.1016/j.physd.2006.08.020
https://doi.org/10.1016/j.physd.2008.11.008
https://doi.org/10.1016/j.physd.2008.11.008
https://doi.org/10.1016/j.physd.2008.11.008
https://doi.org/10.1016/j.physd.2008.11.008
https://doi.org/10.1016/j.physleta.2005.07.033
https://doi.org/10.1016/j.physleta.2005.07.033
https://doi.org/10.1016/j.physleta.2005.07.033
https://doi.org/10.1016/j.physleta.2005.07.033
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1017/S0022112075001504
https://doi.org/10.1080/03091927409365786
https://doi.org/10.1080/03091927409365786
https://doi.org/10.1080/03091927409365786
https://doi.org/10.1080/03091927409365786
https://doi.org/10.1103/PhysRevE.98.062208
https://doi.org/10.1103/PhysRevE.98.062208
https://doi.org/10.1103/PhysRevE.98.062208
https://doi.org/10.1103/PhysRevE.98.062208
https://doi.org/10.1063/1.5071437
https://doi.org/10.1063/1.5071437
https://doi.org/10.1063/1.5071437
https://doi.org/10.1063/1.5071437
https://doi.org/10.1103/PhysRevLett.98.104102
https://doi.org/10.1103/PhysRevLett.98.104102
https://doi.org/10.1103/PhysRevLett.98.104102
https://doi.org/10.1103/PhysRevLett.98.104102
http://arxiv.org/abs/arXiv:1901.08590

