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Causal nonseparability refers to processes where events take place in a coherent superposition of different
causal orders. These may be the key resource for experimental violations of causal inequalities and have
been recently identified as resources for concrete information-theoretic tasks. Here, we take a step forward
by deriving a complete operational framework for causal nonseparability as a resource. Our first contribution
is a formal definition for the specific notion of quantum control of causal orders, a stronger form of causal
nonseparability—with the celebrated quantum switch as best-known example—where the causal orders of events
for a target system are coherently controlled by a control system. We then build a resource theory—for both
generic causal nonseparability as well as quantum control of causal orders—with a physically motivated class of
free operations, based on process-matrix concatenations. We present the framework explicitly in the mindset with
a control register. However, our machinery is totally versatile, being directly applicable also to scenarios with a
target register alone. Moreover, an important subclass of our operations is free not only with respect to causal
nonseparability and quantum control of causal orders but it also preserves the very causal structure of causal
processes. Hence, our treatment contains, as a built-in feature, the basis of a resource theory of quantum causal
networks too. As applications, first, we establish a simple sufficient condition for pure-process free convertibility.
This imposes a hierarchy of quantum control of causal orders with the quantum switch at the top. Second, we
prove that causal-nonseparability distillation exists. More precisely, we show how to convert multiple copies of
a process with arbitrarily little causal nonseparability into fewer copies of a quantum switch. Our findings reveal
conceptually new, unexpected phenomena, with both fundamental and practical implications.
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I. INTRODUCTION

The study of physical processes with events without a pre-
defined, fixed causal order is ultimately motivated by general
relativity, whereby the dynamical distribution of energy has a
bearing on whether events are time- or spacelike separated.
In fact, it has been conjectured [1–3] that quantum gravity
may require a theory where a dynamical causal order between
events plays an important role. In this context, quantum-
mechanical effects on causal orders cannot be disregarded. For
instance, this is particularly relevant when one considers the
space-time warping caused by spatial quantum superpositions
of a massive body [4].

On a more down-to-earth plane, processes with events in
indefinite causal orders have sparked a great deal of inter-
est in quantum information and foundations [5,6]. From a
fundamental point of view, they constitute an exotic class
of quantum operations, adding to the extensive list of coun-
terintuitive properties of quantum theory. This class does
not fit the usual quantum-computing paradigm of quantum

*marciotaddei@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

circuits with fixed gates, and more general frameworks have
been developed to encompass it [7–12], such as, e.g., the so-
called process matrices [9–11]. In general, a process is called
causally nonseparable if it cannot be decomposed as a clas-
sical (i.e., probabilistic) mixture of causal processes [9–11]
(i.e., processes with a fixed causal order). These processes are
fundamentally important since they are suspected to be the
key resource for potential experimental violations of causal
inequalities [9,13]. A notable subclass of causally nonsepara-
ble processes is the one displaying quantum control of causal
orders, where a quantum system (the control) coherently
controls the causal order with which events for another system
(the target) take place. The best known example thereof is the
celebrated quantum switch [5,6,14–16]. The latter is special
because it represents the only form of causal nonseparability
so far known to be physical [10,17]. In turn, from an ap-
plied viewpoint, it has been recently shown to be a useful
resource for a number of interesting information-processing
tasks [5,14,16,18]. Moreover, it has already been subject
of experimental investigations [15,19–21]. Curiously, even
though quantum control of causal orders is the rule-of-thumb
terminology evoked to discuss the quantum switch, a precise
formal definition of this notion is—to our knowledge—still
missing.

Here, we study quantum superpositions of causal orders
from a resource-theoretic perspective. Resource theories pro-
vide powerful frameworks for the formal treatment of a
physical property as an operational resource, adequate for
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its characterization, quantification, and manipulation [22,23].
Their central component is a set of transformations—called
the free operations of the theory—that are unable to create the
resource in question. We build a physically meaningful class
of free operations of both causal nonseparability and quantum
control of causal orders. This requires a satisfactory rigorous
definition of the latter notion, which we provide on the way.
The proposed free operations are reminiscent in spirit to the
free wirings of other types of quantum resources [24–27].
More precisely, they are given by concatenations of the input
process with causally separable processes of two elementary
kinds. Processes are mathematically represented by process
matrices [9–11] and process concatenations by the so-called
link product [8]. Both elementary types of process concate-
nations are remarkably simple and, yet, they give rise to
highly nontrivial effects. First, they establish an ordering
for a conceptually interesting and experimentally relevant
subset of processes to which we refer as generalized quantum
switches. The ordering is mathematically captured by a simple
majorization condition sufficient for a pure process to be
freely obtained from another. As a corollary of the latter, it
follows that any generalized quantum switch can be freely
obtained from the quantum switch. This yields a hierarchy of
quantum control of causal orders where the quantum switch
sits at the top, thus giving it the status of basic unit of this
exclusive form of causal nonseparability. Second, we prove
that, remarkably, it is possible to concentrate the causal non-
separability spread among multiple copies of nonmaximally
causally nonseparable processes (even those arbitrarily close
to the causally separable ones) into a quantum switch. Hence,
distillation of quantum control of causal orders exists. Our
proof is constructive, with an explicit distillation protocol,
so that a lower bound to the optimal concentration rate is
obtained. Finally, we emphasize that our machinery is both
highly versatile and notably unifying. On the one hand, it is
explicitly formulated in the mindset with a control register
but is also readily applicable to scenarios with a target system
alone. On the other hand, one of the two elementary types of
free operations mentioned leaves invariant not only both the
sets of processes without causal nonseparability or quantum
control of causal orders but also that of causal processes,
for all underlying causal structure. Thus our framework also
includes, as a built-in feature, the basis of an eventual resource
theory of quantum causal networks.

The paper is organized as follows. In Sec. II, we introduce
preliminary concepts and notation. In Sec. III, we propose
a formal definition of quantum control of causal orders. In
Sec. IV, we introduce our operational framework with the
free operations. In Sec. V, we study single-shot conversions,
a hierarchy, and units of quantum control of causal orders. In
Sec. VI, we show that distillation is possible. Finally, Sec. VII
is devoted to our conclusions.

II. PRELIMINARIES

We consider physical processes in the scenario outlined
in Fig. 1(a). A convenient tool to describe such processes
is the process-matrix formalism [9–11], which extends the
quantum combs formalism [8], both in turn based on the Choi-
Jamiołkowski (CJ) isomorphism [28,29]. For any Hilbert

FIG. 1. Schematics of a process. (a) Two users, Alice and Bob, in
laboratories A and B, respectively, receive a target qudit as local input
and subsequently send out an equivalent system as output after some
operation. We label Alice’s input (output) AI (AO), and Bob’s BI (BO).
The events inside each laboratory occur in a definite order: AI (BI )
happens before AO (BO). However, no causal order between A and B
is assumed. For practical purposes, but without loss of generality,
we do nevertheless assume a past and a future to both A and B.
These are realized by laboratories P and F , whose only function
is to input into and output from the process the initial and final
states of the target qudit, respectively. Finally, there is yet another
laboratory, C, operated by a third user, Charlie, who gets as local
input a control qubit. This can control the causal order between A
and B. The process, denoted by W , then specifies the entire system
history—preparations, evolutions, measurements, etc.—outside the
laboratories (light gray). The operations inside each laboratory, in
turn, are described by instruments (dark-gray). (b) Pictorial repre-
sentation of processes with definite causal orders A → B (solid) and
B → A (dashed). Coherent superpositions of the latter give causally
nonseparable processes. If, in addition, such superpositions involve
entanglement with the control qubit, the process can feature quantum
control of causal orders (see Fig. 2 for precise definition).

space H, we denote by B(H) the space of bounded-trace, linear
operators on H. The CJ isomorphism allows one [8,10] to
represent any completely positive trace-preserving linear map
E : B(HI ) → B(HO) from arbitrary input to output spaces
B(HI ) and B(HO), respectively, as the CJ state

E = (I ⊗ E )(|1〉〉〈〈1|). (1)

Here, |1〉〉 := ∑
j | j〉 ⊗ | j〉 is a (non-normalized) maximally

entangled state on HI ⊗ HI ′ , where HI ′ is a space isomorphic
to (i.e., a copy of) HI , with {| j〉} j an orthonormal basis of
HI . In turn, I : B(HI ′ ) → B(HI ′ ) is the identity map on the
copy space. Complete positivity of E implies, by virtue of
Choi’s theorem [28], that E is positive semidefinite. Thus E
is technically equivalent to a (non-normalized) state on the
extended space B(HI ′ ⊗ HO). Whenever there is no risk of
ambiguity we omit (in a slight abuse of notation) the apostro-
phe that distinguishes copy from system spaces. For instance,
we sometimes write E ∈ B(HI ⊗ HO) instead of E ∈ B(HI ′ ⊗
HO). In addition, for (non-normalized) maximally entangled
states between a system and a copy of it, we directly omit the
copy subindex. That is, we use the short-hand notation |1〉〉I to
denote |1〉〉II ′ .

In turn, the composition D ◦ E of E with another map
D : B(HO) → B(HÕ) is given in the CJ representation by
the link product [8], denoted here by “∗.” More precisely, if
D ∈ B(HO ⊗ HÕ) is the CJ state of D, then the CJ state of

033174-2



QUANTUM SUPERPOSITIONS OF CAUSAL ORDERS AS AN … PHYSICAL REVIEW RESEARCH 1, 033174 (2019)

D ◦ E is D ∗ E ∈ B(HI ⊗ HÕ), defined by

D ∗ E := TrO[(E ⊗IÕ)(II ⊗DTO )]. (2)

Here, IÕ and II are respectively the identity maps on HÕ and
HI , TrO denotes the partial trace over HO, and TO the partial
transpose over HO (in the chosen basis {| j〉} j).

Process matrices generalize the notion of CJ states to
encapsulate state preparations, operations, and measurements
all in a unified description. In our setting, Fig. 1(a), they
can be defined by all CJ states that, upon composition with
any arbitrary instruments at A and B (including instruments
exploiting entangled ancillas between the laboratories), yield
a CJ state on the remaining laboratories that describes a
valid completely positive (CP) trace-preserving (TP) channel
from B(HP ) to B(HF ⊗ HC ) [9–11]. This corresponds to
CJ states W ∈ B(HP ⊗ HAO ⊗ HBO ⊗ HF ⊗ HAI ⊗ HBI ⊗ HC )
that must be positive semidefinite and satisfy a few normal-
ization constraints (given in Appendix A). If, in addition, a
process W has rank 1, it decomposes as W = |w〉〉〈〈w |, with
|w〉〉 ∈ HP ⊗ HAO ⊗ HBO ⊗ HF ⊗ HAI ⊗ HBI ⊗ HC the corre-
sponding pure CJ state vector. In that case, we refer to W as
a pure process [10] and denote it simply by |w〉〉.1 We denote
the set of generic process matrices for the scenario in question
P ⊂ B(HP ⊗ HAO ⊗ HBO ⊗ HF ⊗ HAI ⊗ HBI ⊗ HC ).

Two basic examples are shown in Fig. 1(b). The first one
(solid line) represents processes of the type

|0〉C |10〉〉 := |0〉C |1〉〉PAI |1〉〉AOBI |1〉〉BOF , (3)

where the subindices in the right-hand side indicate the space
supporting each ket. The target-system process |10〉〉 defines
a quantum causal model [30,31] with causal structure P →
A → B → F . More precisely, the composite-system process
in Eq. (3) describes the situation where Charlie receives
the control qubit state |0〉C and the target qudit is directed
from P to Alice, who (after applying her instrument) in turn
sends it to Bob, who (after his intervention) finally forwards
it towards the final target-system output at F . The second
process (dashed line) defines a quantum causal model with
causal structure P → B → A → F for the target system and
gives laboratory C a different local input:

|1〉C |11〉〉 := |1〉C |1〉〉PBI |1〉〉BOAI |1〉〉AOF . (4)

That is, Charlie now receives the orthogonal state |1〉C while
the target now goes from P to B, then to A, and finally to F .

Clearly, |10〉〉 and |11〉〉 display fixed causal orders between
A and B: A → B and B → A, respectively. They are thus
particular instances of causal processes. The causal relations
between the different laboratories are captured by the signal-
ing constraints of the process [10]. Namely, a process WA→B

is compatible with a causal order A → B if it is nonsignaling
from B to A, i.e., if it cannot be used to send information from

1There are different definitions of a pure process in the literature.
For example, in Ref. [10] the term “pure process” refers to any rank-1
process. In contrast, in Ref. [17], the term “pure process” is reserved
to the processes that, upon composition with unitary instruments on
A and B, yield a unitary channel from past to future. The two notions
are not equivalent but can be connected. We use the convention of
Ref. [10]. The term “purification” will also refer to this convention.

Bob’s output BO to Alice’s input AI (see Appendix A for the
explicit definition); and analogously for WB→A. In addition,
we demand that processes are compatible with the orders
P → (A, B) and (A, B) → F . That is, P and F are respectively
taken as the global past and future of the target system
(see Appendix A). In turn, a process is said to be causally
separable [9–11] if it can be decomposed as a probabilistic
mixture of causal processes

Wcs = pWA→B + (1 − p)WB→A, (5)

with 0 � p � 1. We denote by CS ⊂ P the set of all causally
separable process for our scenario. Any W ∈ P \ CS is called
causally nonseparable.

Causal nonseparability is known to appear in processes
that can violate causal inequalities [9,13,32]. These processes
involve coherent superpositions of causal orders on the target
system alone, i.e., with C playing no role in the causal non-
separability. However, it is not clear whether such processes
admit a physical realization [17]. A conceptually different
form of causal nonseparability, called quantum control of
causal orders, takes place when the superposition involves
entanglement with C. The quantum switch [5,6]

|wqs〉〉 := |0〉C |10〉〉 + |1〉C |11〉〉√
2

(6)

is the paradigmatic example thereof. There, C coherently
controls the causal order in which the target qudit passes
through A and B. Quantum control of causal orders constitutes
a stronger form of causal nonseparbility in the sense of requir-
ing not only coherence but also entanglement. Interestingly,
in addition, it admits clear physical interpretations in terms
of interferometers [15,19–21]. Somewhat surprisingly though,
even though the terminology quantum control of causal orders
appears quite frequently in the literature, a precise formal
definition of this notion has—to our knowledge—not been
provided yet. We propose one next.

III. DEFINITION OF QUANTUM CONTROL
OF CAUSAL ORDERS

While generic causal nonseparability is a rigorously de-
fined concept, the specific notion of quantum control of causal
orders has so far been—surprisingly—only colloquially intro-
duced. Here, we need a precise mathematical definition of this
notion. We begin by formalizing the notion of entanglement
for processes. This is done in the obvious way, in analogy
to entanglement for states [33]. First, for a tripartite process
WABC ∈ B(HC ⊗ HAO ⊗ HBO ⊗ HAI ⊗ HBI ) (without past and
future laboratories),2 we define WABC to be separable between
control and target if it belongs to the convex hull of product
processes in that bipartition, i.e., if

WABC =
∑

μ

q j �
( j)
C ⊗ W ( j)

AB , (7)

2Such processes are sometimes referred to as bipartite, to empha-
size that there are only two laboratories (Alice’s and Bob’s) that
can display indefinite causal orders. In the operational framework
developed here, Charlie is an active user that applies nontrivial
operations. Hence, we opt for referring to WABC as tripartite instead.
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with {q j} j an arbitrary probability distribution over μ, �
( j)
C ∈

B(HC ) an arbitrary state of the control, and W ( j)
AB ∈ B(HAO ⊗

HBO ⊗ HAI ⊗ HBI ) an arbitrary process (causally separable
or not) for Alice and Bob’s laboratories alone. Then, we
define a five-partite process W ∈ P (with past and future
laboratories) to be separable between the control and the
indefinite laboratories if its reduced process over A, B, and C,
given by its partial trace TrPF [W ] over P and F , is separable
between control and target. We denote by S ⊂ P the set of
all processes separable between the control and the indefinite
laboratories. In turn, any W ∈ P \ S is entangled between the
control and the indefinite laboratories. What is more, here we
refer for short to separability or entanglement between the
control and the indefinite laboratories simply as separability
or entanglement, respectively.

The reason why our definition of entanglement focuses
on the reductions over A, B, and C is to isolate the entan-
glement between the control and the target laboratories that
can admit indefinite causal orders. Recall that the past and
future laboratories have a fixed causal order. In fact, there exist
processes in P that are entangled over B(HC ⊗ HP ⊗ HF ) but
separable over B(HC ⊗ HAO ⊗ HBO ⊗ HAI ⊗ HBI ), e.g., those
corresponding to controlled gates from P to F (with C the
control) that act trivially on A and B. Such processes clearly
cannot contain quantum control of causal orders. Hence, we
exclude them as entangled, so that definition 1 below does not
assign them quantum control of causal orders. Moreover, there
are important processes without explicit past and future vari-
ables, being readily given by tripartite processes on B(HC ⊗
HAO ⊗ HBO ⊗ HAI ⊗ HBI ) [10,14–16,19–21]. These processes
are readily included in our framework, corresponding to the
trivial case of one-dimensional Hilbert spaces HP and HF ,
and our entanglement criterion directly applies there too. Still,
entanglement turns out to be necessary but not sufficient for
quantum control of causal orders.

Consider for instance the process |went〉〉 =
(|0〉C |10〉〉 + |1〉C |uAB〉〉)/

√
2, where |uAB〉〉 := |1〉〉PAI

|uAB〉〉AOBI |1〉〉BOF is a causal process analogous to |10〉〉
but with an arbitrary unitary gate uAB �= 1 from A to B. This
can be physically implemented by a quantum circuit with
definite causal order A → B and controlled unitary gates.
Process |went〉〉 is pure and entangled, thus featuring quantum
control of unitary gates between A and B. Nevertheless, since
both |10〉〉 and |uAB〉〉 have causal order A → B, no control
of causal orders takes place. In fact, |went〉〉 is itself causally
ordered. The following is a satisfactory definition that rules
out such cases.

Definition 1 (Quantum control of causal orders). A pro-
cess W ∈ P has quantum control of causal orders, or, equiva-
lently, is quantum-control causally ordered, if it is outside the
convex hull Conv(CS ∪ S) of the sets CS and S of causally
separable and separable processes, respectively.

In turn, any W ∈ Conv(CS ∪ S) is not quantum-control
causally ordered. We denote by NQC := Conv(CS ∪ S) the
set with no quantum control of causal orders. See Fig. 2.

Definition 1 excludes the convex hull of CS and S (instead
of just their union) because convex mixing describes a purely
classical operation. In other words, any process that can be op-
erationally generated by probabilistically choosing one out of

P

S CS

NQC

FIG. 2. Pictorial representation of the internal geometry of the
set P of all processes. CS and S are the subsets of causally separable
and separable processes, respectively. The processes outside CS
are causally nonseparable, whereas those outside S are entangled
between control and target. The convex hull of CS and S gives
the set NQC (gray) with no quantum control of causal orders. This
includes processes (given by convex combinations of elements in CS
and S) that are causally nonseparable and entangled. We define the
processes outside NQC to have quantum control of causal orders.

two resourceless processes must also be resourceless. (Other-
wise, probabilistically choosing would not be a free operation
of quantum control of causal orders.) This is reminiscent of
the definition of genuinely multipartite entanglement, where
multipartite states entangled in each and all of the system
bipartitions but within the convex hull of the biseparable states
are also excluded as genuinely multipartite entangled (see,
e.g., Refs. [34,35]).

Notable examples of P \ NQC are all pure processes

|w〉〉 = √
p0 |�0〉C |u0〉〉 + √

p1 |�1〉C |u1〉〉, (8)

with {|�0〉, |�1〉} any orthonormal basis of HC ,
p := {p0, p1} any binary probability distribution,
and |u0〉〉 := |uPA〉〉PAI |uAB〉〉AOBI |uBF 〉〉BOF and |u1〉〉 :=
|uPB〉〉PBI |uBA〉〉BOAI |uAF 〉〉AOF causal processes analogous
to |10〉〉 and |11〉〉, respectively, but with arbitrary unitary
gates uPA, uAB, uBF , uPB, uBA, and uAF instead of 1. That
is, |u0〉〉 and |u1〉〉 have opposite definite causal orders,
similarly to |10〉〉 and |11〉〉, but with channels other than
the identity. These processes capture the most pristine form
of causal nonseparability. In fact, for p0 = 1

2 = p1, they
can be physically realized by applying on |wqs〉〉 local (i.e.,
single-lab) unitary transformations on C and nonlocal (i.e.,
multilab) controlled unitary gates on the target controlled by
C. A particular interesting subset of the processes in Eq. (8)
is that where the six unitary channels satisfy the constraints

u†
PAuBAu

†
BF = 1 = u†

PBuABu
†
AF . (9)

Remarkably, this condition turns out to characterize, for p0 =
1
2 = p1, the subset of processes that are local-unitary equiv-
alent to |wqs〉〉 (see Appendix C for details). We refer to all
processes (for arbitrary p) satisfying both Eqs. (8) and (9)
as generalized quantum switches. These are experimentally
friendlier than the general processes in Eq. (8) with uncon-
strained unitaries and will be crucial in Secs. V and VI.

Finally, a comment on the relevance of definition 1 for
bipartite processes (i.e., with no control variable) is in place.
In Ref. [9], an example of a mixed causally nonseparable
bipartite process matrix was discovered. Albeit not in CS,
such type of processes can be written as in Eq. (7) with a trivial
one-dimensional ρC and are hence in S. This is an intended
feature of definition 1: any process without a control variable
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FIG. 3. Schematics of the operational framework of causal nonseparability and quantum control of causal orders. (a) An initial process
W (dark gray) is concatenated—i.e., link-product multiplied—with the average process V (light gray) of an instrument at Alice, Bob and
Charlie’s laboratories, whereas the past and future laboratories are untouched. The final process is thus V (W ) = V ∗ W (dashed outline). This
has the same configuration of laboratories as the initial process: P, A′, B′, C′, and F , where A′, B′, and C′ have the same structure of input
and output systems as the initial process’ laboratories A, B, and C. The instrument’s inputs are AI , A′

O, BI , B′
O, and C; and its outputs are

A′
I , AO, B′

I , BO, and C′. All the correlations in the control-versus-target bipartition that V produces are due to 1-way classical communication
(double line) of the local instrument outcomes from the control laboratory of Charlie to the target laboratories of Alice and Bob. That is,
V is separable in the bipartition and, therefore, creates no entanglement between control and target systems. Furthermore, for each outcome
j at C, the outcome process V ( j)

AB on the target is designed to contain no causal nonseparability either. For this reason, whenever the initial
process is causally separable, so is the final one. All this, together with linearity of the link product, implies also that whenever the initial
process is not quantum-control causally ordered, neither is the final one. [(b) and (c)] Structure of the instruments on the target register. Each
process V ( j)

AB has six laboratories. Four of them correspond to the inputs AI and BI and outputs AO and BO of the initial process. While the
other two correspond to Alice and Bob’s final laboratories, A′ and B′, both equipped with input and output systems (A′

I and B′
I and A′

O and
B′

O, respectively). We consider two elementary types of instruments. (b) The first one gives rise to the class of local operations and ancillary
entanglement (LOAE). There, each V ( j)

AB describes a local (in the A|B bipartition) unitary evolution on the instrument inputs AI , A′
O, BI , and

B′
O together with (arbitrary-dimensional) ancillary registers Ã and B̃ in a (possibly entangled) state |� ( j)〉ÃB̃, followed by the disposal of the

ancilas. (c) In the second one, called probabilistic lab swaps (PLS), each V ( j)
AB is a pure process where the same unitary operator (either the

swap S or the identity 1 gate) is applied to AI together with BI and to A′
I together with B′

I . That is, conditioned on Charlie’s outcome, Alice and
Bob either exchange their systems (through swap gates on their inputs and outputs) or leave them untouched. This probabilistically exchanges
the causal orders A → B and B → A, but it never introduces causal nonseparability or quantum control of causal orders.

should not have quantum control of causal orders. However,
it is also important to note that these processes necessarily
display quantum control of causal orders with respect to
unaccessible hidden systems (assuming all mixed bipartite
processes are the reduction of a pure tripartite one). Being
mixed and causally nonseparable, such processes can only
admit purifications (i.e., rank-1 process matrices on extended
spaces that have the process in question as reduction) that are
both causally nonseparable and entangled between the indef-
inite laboratories and the ancillas used for the Hilbert-space
extension. For instance, for the process of [9], a purification
can be obtained by adding several single-qubit output spaces
(akin to F or C). If one interprets these outputs a control qudit,
then such purification displays quantum control of causal
orders with respect to them.

IV. THE OPERATIONAL FRAMEWORK

The fundamental property of the free operations of a re-
source theory is that of mapping the subset of resourceless
objects of the theory onto itself. Here we consider linear
transformations V : P → P such that

V (W )

{∈ CS if W ∈ CS,

∈ NQC if W ∈ NQC.
(10)

In other words, we demand that the operations are free with
respect to both causal nonseparability and quantum control of
causal orders. This may in general be too restrictive if one
is only interested in a resource theory of quantum control of
causal orders alone. In the end of the section, we mention
some subtleties towards such a theory though. In any case,
here we are interested in a unified resource theory for both
types of resources.

In concrete terms, we propose the following general
parametrization for the elementary free operations:

V (W ) = V ∗ W. (11)

where V is a (well-normalized) process matrix in
B(HAO ⊗ HA′

O
⊗ HBO ⊗ HB′

O
⊗ HAI ⊗ HA′

I
⊗ HBI ⊗ HB′

I
⊗

HC ⊗ HC′ ). Here, we again explicitly distinguish isomorphic
spaces with an apostrophe because the link product
in Eq. (11) requires careful space matching. In fact,
using Eq. (2), note that V effectively represents a
CP TP map from B(HAI ⊗ HA′

O
⊗ HBI ⊗ HB′

O
⊗ HC ) to

B(HA′
I
⊗ HAO ⊗ HB′

I
⊗ HBO ⊗ HC′ ), acting trivially on P and

F [see Fig. 3(a)]. The explicit form of V is taken as

V =
∑

j

V ( j)
C ⊗ V ( j)

AB , (12)
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with V ( j)
C ∈ B(HC ⊗ HC′ ) sub-normalized process matrices

(each one representing a CP non-TP map) that sum up to
the normalized process matrix

∑
j V ( j)

C (representing a CP TP

map) and V ( j)
AB ∈ B(HAO ⊗ HA′

O
⊗ HBO ⊗ HB′

O
⊗ HAI ⊗ HA′

I
⊗

HBI ⊗ HB′
I
) normalized process matrices (each one represent-

ing a CP TP map).
More technically, each term in Eq. (12) represents the jth

outcome of an instrument at Charlie’s laboratory coordinated
with a different process at Alice and Bob’s laboratories.
Instruments generalize the notion of positive operator-valued
measures (POVMs) from measurements to state transforma-
tions [36]. They reduce to POVMs when the output space has
dimension 1. The above-mentioned coordination is achieved
through classical communication of Charlie’s outcome j to
Alice and Bob. Thus all the free operations arising from
Eq. (12) belong to the generic class of local operations and
one-way classical communication from the control to the
target and are therefore separable in the control-versus-target
bipartition. Charlie’s instrument can be arbitrary. However, we
demand that all instruments at A and B satisfy the following
basic constraints to avoid introducing causal loops: laborato-
ries AI and BI are jointly in the causal past of A′ and B′, and
all latter four are jointly in the causal past of AO and BO. This
is mathematically captured by the essential requirement that
A′ and B′ both cannot signal from their local outputs A′

O or
B′

O to neither of their inputs A′
I or B′

I . This, together with the
fact that V is separable automatically implies that V preserves
the set S of separable processes in the control-versus-target
bipartition. Next, we impose more fine-tuned conditions on
the instruments at the target laboratories so that V preserves
also the set CS of causally separable processes. Because of
linearity, this will automatically imply preservation of NQC
too.

Specifically, we consider two broad families of elementary
instruments. The first one arises from restricting all V ( j)

AB
to local quantum operations in the A|B bipartition assisted
by pre-shared entanglement. More precisely, we take each
V ( j)

AB in Eq. (12) as a process resulting from local unitary
dynamics of the instrument inputs AI , A′

O, BI , and B′
O together

with arbitrary-dimensional ancillary registers Ã and B̃, which
are subsequently discarded [see Fig. 3(b)].3 The ancillas are
initialized in an arbitrary pure (normalized) state |� ( j)〉ÃB̃ ∈
HÃ ⊗ HB̃. The evolution is in turn given by local unitary
operators U ( j)

AI
and U ( j)

BI
, from HAI ⊗ HÃ to HA′

I
⊗ HÃ and from

HBI ⊗ HB̃ to HB′
I
⊗ HB̃, respectively, and U ( j)

AO
and U ( j)

BO
, from

HA′
O

⊗ HÃ to HAO ⊗ HÃ and from HB′
O

⊗ HB̃ to HBO ⊗ HB̃,
respectively. Finally, after the unitary evolution, both ancillary
registers are traced out. We refer to the resulting class as local
operations and ancillary entanglement (LOAE); and denote it
by LOAE:

3One has in principle three different isomorphic ancilla spaces on
Alice’s side, one before the application of U ( j)

AI
, one between the

application of U ( j)
AI

and U ( j)
AO

, and one after U ( j)
AO

. Unlike the other
variables, however, this ancilla is not matched to any Hilbert space
outside V ( j)

AB , so we can use a single variable Ã for all of them. Same
for B̃.

Definition 2 (Local operations and ancillary entangle-
ment). A process transformation V is in the class LOAE if
it can be parametrized by Eqs. (11) and (12) with a process V
such that, for all j,

V ( j)
AB := TrÃB̃[U ( j) |� ( j)〉〈� ( j)|ÃB̃ ⊗ |1〉〉〈〈1|in U ( j)†

], (13)

with the short-hand notations U ( j) := (U ( j)
AO

⊗ 1A′
I
)(1A′

O
⊗

U ( j)
AI

) ⊗ (U ( j)
BO

⊗ 1B′
I
)(1B′

O
⊗ U ( j)

BI
) ⊗ 1copy and |1〉〉in :=

|1〉〉AI ⊗ |1〉〉BI ⊗ |1〉〉A′
O

⊗ |1〉〉B′
O

∈ H⊗2
AI

⊗ H⊗2
BI

⊗ H⊗2
A′

O
⊗ H⊗2

B′
O

,
where 1copy is the identity operator on the inputs’ copy’s
Hilbert space HAI ⊗ HBI ⊗ HA′

O
⊗ HB′

O
.

We emphasize that only pre-shared quantum correlations
between Alice and Bob are allowed in LOAE, with no com-
munication of any sort between them. Thus, clearly, each
V ( j)

AB (and therefore also V ) is a nonsignaling process with
respect to the A|B bipartition, i.e., nonsignaling both from
A to B and vice versa (see lemma 10 in Appendix B for
an explicit proof). Explicitly, no information can flow from
AI to B′

I or BO, from BI to A′
I or AO, from A′

O to BO, and
from B′

O to AO. In particular, this excludes the possibility of
teleporting the incoming state of any of the instrument’s inputs
towards the other side of the bipartition. Finally, note that
definition 2 does not impose any restriction on the dimension
or structure of the ancillary spaces HÃ and HB̃. Therefore,
by virtue of Stinespring’s dilation theorem [37], Eq. (13)
effectively parametrizes a quantum process describing an
arbitrary, fully generic CP TP map without signaling between
Alice and Bob and subject to the above-mentioned essential
local-causality requirement that A′

O and B′
O cannot signal to

A′
I and B′

I , respectively. In fact, arbitrary-dimensional ancilas
are actually not required for the latter to hold, just dim(HÃ) =
2 dim(HAI ⊗ HA′

O
) and dim(HB̃) = 2 dim(HBI ⊗ HB′

O
).

The second family of elementary instruments we consider
is called probabilistic lab swaps (PLS), denoted by PLS. It
is simpler than the class LOAE in that each V ( j)

AB in Eq. (12)
is a pure process, describing the same unitary transformation
applied from HAI ⊗ HBI to HA′

I
⊗ HB′

I
and from HA′

O
⊗ HB′

O
to

HAO ⊗ HBO . No ancillary registers are used here. Moreover,
we allow for only two such unitary operations: the swap
gate S and the identity gate 1. That is, each process V ( j)

AB
describes either the joint swap of both inputs and outputs,
which effectively exchanges Alice and Bob’s laboratories, or
the trivial identity map.

Definition 3 (Probabilistic lab swaps). A process trans-
formation V is in the class PLS if it can be parametrized by
Eqs. (11) and (12) with a process V such that, for all j, V ( j)

AB
is a rank-1 process given by either the identity |1AB〉〉〈〈1AB| or
the lab-swap |sAB〉〉〈〈sAB| processes, defined as

|1AB〉〉 := |1〉〉AI A′
I
⊗ |1〉〉BI B′

I
⊗ |1〉〉A′

OAO ⊗ |1〉〉B′
OBO (14a)

and

|sAB〉〉 := |1〉〉AI B′
I
⊗ |1〉〉BI A′

I
⊗ |1〉〉A′

OBO ⊗ |1〉〉B′
OAO . (14b)

Importantly, due to the swap gates, PLS is not only nonlo-
cal but also even signaling in the A|B bipartition, in contrast
to LOAE. In fact, for a causal initial process W , i.e., with
a fixed causal order A → B or B → A, the causal orders
are probabilistically exchanged. However, this never creates
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causal nonseparability because such exchanges are incoher-
ent. Coherence between the different jth terms in Eq. (12)
would be required so that Eqs. (14) can lead to a nonfree
operation able to create causal nonseparability. Finally, a com-
ment on the experimental feasibility of PLS is in place. Even
though mathematically formulated in terms of joint swaps
of both inputs and outputs, process transformations in PLS
can in many cases be simulated without any swap gate. More
precisely, in experiments, processes are often detected through
local instruments at Alice and Bob’s laboratory [15,19–21].
Thus, in those cases, instead of actually applying the joint
swap gates to their initial process W and detecting their final
process V (W ) with local instruments in some given settings,
Alice and Bob can simply do nothing to W and swap the
settings of their local instruments. That is, the lab swap on
the process can be absorbed into the instruments’ settings
on the final process. This considerably alleviates physical
implementations of PLS processes.

The validity of the elementary classes LOAE and PLS as
free operations of causal nonseparability is formalized by the
following theorem. We take advantage of the theorem also to
formally introduce the complete class of free operations we
propose: local operations and one-way classical communica-
tion from the control to the target given by arbitrary sequential
concatenations of transformations in LOAE or PLS.

Theorem 4 (Free operations of causal nonseparability and
quantum control of causal orders). Any process transforma-
tion V in LOAE ∪ PLS is an automorphism of the sets P of
generic processes, CS of causally separable ones, and NQC
of non quantum-control causally ordered ones. Therefore, so
is any sequence of such elementary transformations.

The theorem is proven in Appendix B. In fact, there we
actually prove a stronger result, where LOAE is replaced by
the more general class NSO of nonsignaling operations. In
the latter, instead of preshared entangled ancillas, Alice and
Bob may be assisted by generic (potentially supra-quantum)
nonsignaling resources. What is more, our proof strategy to
show that CS is closed under NSO is to show that even its
subsets of causal processes with definite causal orders are
preserved as well by NSO. Recall that CS is the convex
hull of the latter subsets, so that, by linearity, the implication
automatically follows. In other words, we show that any
process transformation in NSO (and, by inclusion, also in
LOAE) maps an arbitrary causal process, with order either
A → B or B → A, into a causal process with the same order.
That is, it preserves the underlying causal structure of every
quantum causal model. Although this is explicitly proven
here for quantum causal models that are effectively bipartite
(involving Alice and Bob’s laboratories), it can be straight-
forwardly generalized to arbitrary causal networks with more
laboratories. As such, LOAE provides the basis of a yet-
to-be resource theory of quantum causal networks, where
the resourceful set consists of all quantum causal models
incompatible with a given multipartite causal structure under
scrutiny. This is a promising and exciting prospect, but it is
beyond the scope of this work. Still, the unifying power of the
elementary class LOAE could not be left unmentioned here.
In the next two sections, we exploit simple examples of our
two elementary classes of free operations to implement highly

nontrivial information-theoretic manipulations of causal non-
separability.

Finally, we briefly comment on the possibility of a resource
theory of just quantum control of causal orders (and not
causal nonseparability). In principle, the condition that CS is
closed under the transformations is an unnecessary restriction
to that end. However, physically meaningful relaxations of
definitions 2 and 3 so that P and NQC are invariant but
not CS have been elusive to us. For instance, one could
relax the constraint that each V ( j)

AB in Eq. (12) does not create
causal nonseparability, so that—say—|u0〉〉 goes to (|u0〉〉 +
|u1〉〉)/

√
2 for some uPA, uAB, and uBF . The latter corresponds

to a coherent lab swap without a control system.4 However,
the same transformation would then map pure entangled
processes as (|0〉C |10〉〉 + |1〉C |u0〉〉)/

√
2 ∈ CS out of NQC.

Alternatively, one could even relax the constraint that the in-
struments are separable in the control-versus-target bipartition
[i.e., the tensor-product decomposition of Eq. (12)], so that—
say—pure causally separable processes in S are mapped into
NQC \ S (the set with quantum control of different processes
without quantum control of causal orders). The instruments
on the target would then be applied coherently with that on
the control, instead of conditioned on its classical outcomes.
However, similarly to the example above, one can then find
pure causally nonseparable processes in S that would be
taken out of NQC by the same transformations. We leave the
questions of resource theories of quantum control of causal
orders that do not preserve CS or S open.

V. SINGLE-COPY CONVERSIONS AND A HIERARCHY
OF QUANTUM CONTROL OF CAUSAL ORDERS

Here we study free interconversions between processes in
the regime where a single copy of the system is available. (In
the next section, we study transformations in the multicopy
regime.) More precisely, we consider deterministic conver-
sions between generalized quantum switches, i.e., between
any |w〉〉 and |w ′〉〉 obeying Eq. (8). We characterize the al-
lowed conversions in terms of a majorization relation between
the corresponding distributions of |w〉〉 and |w ′〉〉, respectively
denoted by p and p′. For binary distributions, majorization
is defined in a particularly simple way: p is majorized by p′
(denoted p � p′) if maxi pi � maxi p′

i. In other words, p � p′
if p is more flat than p′. The characterization is formalized as
follows.

Theorem 5 (Single-copy pure-process conversion). Let
|w〉〉 and |w ′〉〉 be generalized quantum switches such that
p � p′. Then there is a free operation that converts |w〉〉 into
|w ′〉〉 with unit probability.

The proof is given Appendix C, where we construct an
explicit protocol that does the claimed transformation.

Theorem 5 plays a role for quantum control of causal
orders similar to the one played in entanglement theory

4Strictly speaking, it does not define a valid process matrix, as it
does not satisfy the necessary normalization conditions. However, it
does define a physical process that can be implemented (probabilisti-
cally, with a probability depending on the instruments on the target)
by post-selecting |wqs〉〉 on a local measurement on C.
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by Nielsen’s seminal theorem [38] (see also Ref. [39]) for
pure-state conversions under entanglement-free operations.
It induces a hierarchy—more precisely, a so-called total
preorder—on the set of pure processes obeying Eq. (8). It is
called a preorder because there are cases where |w〉〉 � |w ′〉〉
and |w ′〉〉 � |w〉〉 with |w ′〉〉 �= |w〉〉, so that both processes
can be reversibly interconverted. This is for instance the case
when |w〉〉 and |w ′〉〉 are local-unitary equivalent. In turn,
such preorder is called total because, for binary probability
distributions, there exists no pair of distributions such that
none majorizes the other. That is, theorem 5 leaves no pair
of generalized quantum switches unconnected.

Hierarchies of this kind are important because they sub-
stantiate with a clear operational interpretation the notions of
“more” and “less” quantum control of causal orders: if a pro-
cess can be deterministically transformed freely into another
then the former is not less quantum-control causally ordered
than the latter. The theorem thus lays the basis of formal
quantifiers through causal nonseparability monotones, in the
same spirit as entanglement monotones [33]. Interestingly, at
the top of the hierarchy lies the quantum switch.

Corollary 6 (Partial unit of quantum control of causal
orders). Let |w〉〉 be an arbitrary process given by Eq. (8). Then
there is a free operation that converts |wqs〉〉 into |w〉〉 with unit
probability.

The corollary follows from the fact that pqs := { 1
2 , 1

2 } is
majorized by all distributions. The basic unit of a resource is
important because it renders the notion of maximal amount
of resource operationally meaningful, independently of the
particular choice of quantifier. For instance, a process would
be the unit of quantum control of causal orders if all processes
could be freely obtained deterministically from it. This would
be the counterpart of Bell states in entanglement theory,
which are used as entanglement bits [33,40]. Here, we use the
terminology partial unit of quantum control of causal orders
to stress that the quantum switch is the basic unit only within
the subset of generalized quantum switches. An interesting
possibility would be that |wqs〉〉 can be freely converted prob-
abilistically into all processes (be it exactly or approximately,
up to arbitrarily small error). This would render |wqs〉〉 a
full unit of causal nonseparability in an operational sense.
In fact, invoking again entanglement theory, GHZ states are
considered more entangled than W ones precisely in that
sense [41,42]. Alternatively, it may as well be the case that
there are intrinsically inequivalent classes of causal nonsepa-
rability, even under free operations beyond the ones proposed
here. These are fascinating open questions that our framework
offers for future explorations.

VI. DISTILLATION OF QUANTUM CONTROL
OF CAUSAL ORDERS

We now study the concentration of the quantum control of
causal orders contained in multiple copies of a process (with
nonmaximal resource) into partial units of the resource, i.e.,
into (fewer) copies of the quantum switch. This is similar
in spirit to the notion of entanglement distillation [33,43–
45]. Before we proceed, however, a brief digression on the
composition of independent copies of a process is useful.

In general, the tensor product of two (or more) valid pro-
cess matrices on a given system is known not to yield a valid
process matrix on the system copies [46,47]. The conceptual
reason behind this is that, in the generic situation where Alice
and Bob can apply arbitrary instruments globally on the copies
of their subsystems, the tensor product of two processes that
do not have the same definite causal order renders causal loops
possible [46]. This is an expected and reasonable impossibility
if a process is used to describe space-time structures [4,48,49],
as it is difficult to conceive that Alice and Bob could share two
copies of space-time. However, for processes describing, e.g.,
interferometric experiments [15,19], it is perfectly admissible
to describe two independent setups with the tensor product
of two process matrices, so long as one restricts the type of
instruments on the system copies [46,47]. In fact, this is the
most natural description to adopt for experiments. Because,
since each laboratory corresponds to a local space-time re-
gion, certain configurations of global instruments turn out to
be unphysical. For instance, for the above-mentioned pro-
cesses without the same definite causal order, implementing
the instruments that would induce the causal loops requires
signaling from one subsystem copy into another towards the
past within the same laboratory [47].

Since our focus is operational, we adopt this description
here. Indeed, any transformation given by Eq. (11) can be
thought of as “adding elements to an experimental setup”, as
Fig. 3 suggests. Hence, we represent copies of a process with
tensor products of it and restrict to independent instruments
on each system copy, described in turn by tensor products
of single-system instruments. This rules out intercopy sig-
naling, which guarantees non-negative and well-normalized
instrument-outcome probabilities. That is, the description is
self-consistent and appropriate for operational frameworks.

More technically, we consider the distillation of quantum
switches from generic processes |w〉〉 parametrized by Eq. (8),
even those arbitrarily close to being causally separable. One
says one can distill quantum control of causal orders from
|w〉〉, with p0 �= p1, if there exists a free operation V that
attains the transformation

|w〉〉⊗N free op
−→ |wqs〉〉⊗rN (15)

with unit probability in the limit N → ∞, for some rate
0 � r � 1. That latter is in turn called the distillation rate of
|w〉〉 relative to V . Since we restrict ourselves to independent
single-copy instruments, the deterministic multicopy transfor-
mation is possible only if it is possible probabilistically on
each copy. That is, Eq. (15) is achieved in the asymptotic
limit iff |w〉〉 is freely converted into |wqs〉〉 with probability
psuccess := r. Such conversion is shown in what follows.

Lemma 7 (Probabilistic single-copy pure-process conver-
sion). Let |w〉〉 and |w ′〉〉 be generalized quantum switches
such that p � p′. Then there is a free operation that converts
|w〉〉 into |w ′〉〉 with probability psuccess = min{p0,p1}

min{p′
0,p′

1} .
The proof is simple, consisting of a local filtering operation

on Charlie’s qubit followed by the protocol of theorem 5. It is
given explicitly in Appendix D.

Lemma 7 is important because it shows that single-copy
process conversions where the final process is majorized
by the initial one are also possible (albeit probabilistically).
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It thus complements theorem 5 for the deterministic case,
possible only when the final process majorizes the initial
one. In a sense, it is reminiscent of Vidal’s theorem [50] for
probabilistic single-copy entanglement conversions between
arbitrary pure states. As anticipated, Eq. (15) follows as a
corollary of lemma 7. Applying the lemma independently to
each copy in |w〉〉⊗N , taking the limit N → ∞, and using the
fact that pqs := { 1

2 , 1
2 } proves the main result of this section:

Corollary 8 (Distillation of quantum control of causal or-
ders). Distillation of quantum control of causal orders exists.
In fact, a perfect quantum switch can be distilled from any
|w〉〉 given by Eq. (8) at a rate r = 2 min{p0, p1}.

The specialized reader may note that the rate in corol-
lary 8 is in general lower than the corresponding optimal
entanglement- [33,43–45] and coherence-distillation [51,52]
rates for states analogous to the processes in Eq. (8). Yet,
in both entanglement and coherence distillation, global op-
erations on each subsystem’s copies are exploited, whereas
here only independent single-copy instruments are used. In-
terestingly, it is also possible to distill quantum switches using
certain global multicopy instruments: in Appendix D 1, we
briefly describe a protocol based on single-copy instruments
on the target system conditioned on multiqubit measurements
on the copies of Charlie’s control. These more general instru-
ments still yield licit free operations—also compatible with
tensor products of processes—because they do not involve any
intercopy signaling for the laboratories with indefinite causal
orders (Alice’s and Bob’s). As instrument for Charlie, this pro-
tocol uses the well-known global measurement from optimal
entanglement [44] and coherence [51,52] distillation proto-
cols. However, after the measurement, these protocols require
operations whose equivalent here are not free operations. So,
the restriction on the target’s instruments renders the resulting
distillation rate lower than that of corollary 8. Furthermore,
one could even explore protocols that exploit intercopy signal-
ing, as certain restricted signaling arrangements still give rise
to licit free operations. However, such exploration is outside
the scope of the current work, and we leave the question of
whether those more powerful free operations do actually yield
rates higher than that of corollary 8 as an open problem. In any
case, it is remarkable that distilling causal nonseparability is
possible at all.

VII. FINAL DISCUSSION

We studied processes displaying quantum coherence be-
tween opposite causal orders as an operational resource. In
particular, we derived a unified resource theory of both causal
nonseparability and quantum control of causal orders. This
required a rigorous definition of the latter notion, which,
curiously, was still missing. We provided one. Our operational
framework is based on resource-free operations consisting of
sequential concatenations of the input process with physically
meaningful causally separable processes. As applications,
first, we established a sufficient condition for pure-process
convertibility, mathematically captured by a simple majoriza-
tion relationship. This orders a broad, important subclass of
processes into a hierarchy of quantum control of causal orders
with the quantum switch at the top, thus giving the latter
the status of basic unit of this exclusive form of causal non-

separability. Second, we proved that distillation of quantum
control of causal orders exists, and provided an explicit simple
protocol for it. Our machinery is versatile in that it applies to
both the mindsets with and without a control register.

As further direct potential applications, we may for in-
stance mention causal-nonseparability measures and a re-
source theory of quantum causal networks. As for measures,
here we have focused on process conversions, but the frame-
work also directly paves the way for quantifiers. From an
axiomatic point of view, causal nonseparability monotones
can now be defined by any function that is nonincreasing un-
der the free operations proposed. Examples thereof could for
instance be the relative entropy and robustness of causal non-
separability or the causally nonseparable weight, which could
be defined analogously to in other resource theories [24–27].
From a more operational viewpoint, in turn, corollary 8
gives a lower bound to the distillable causal nonseparability
of generalized quantum switches. As for causal networks,
notably, our machinery not only treats causal nonseparability
and quantum control of causal orders in a unified way but
it also contains the basis of an eventual resource theory
of quantum causal networks. More precisely, the subclass
LOAE of local operations assisted by ancillary entanglement
preserves the causal structure (either A → B or B → A) of any
quantum causal model for the simplest nontrivial case of two
nodes (Alice’s and Bob’s). Straightforward generalizations of
it to more nodes will automatically define free operations
for quantum causal networks, where the resourceful objects
consist of quantum causal models incompatible with some
given multinode causal structure.

Besides, there are several exciting open questions that
arise from this work. First, it is not clear whether there
exist physical pure processes with quantum control of causal
orders (or, more generally, causal nonseparability) apart from
those of Eq. (8). Second, if there is no single total unit
of causal nonseparability, what other inequivalent classes of
causal nonseparability are there? Third, regarding conver-
sions, an important question is whether causal nonsepara-
bility dilution—the converse of distillation—is possible or
not. Finally, all these questions clearly depend on the class
of free operations adopted. Hence, a fourth vast unknown
territory is free operations beyond the ones proposed here. In
particular, two interesting problems are whether there are free
operations of quantum control of causal orders that are not
free with respect to causal nonseparability or entanglement or
free operations involving intercopy signaling that lead to more
efficient distillation protocols than the ones studied here. All
of these are fascinating venues for future research.
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APPENDIX A: CONDITIONS FOR W AND
CAUSAL ORDERS

In order to formally describe many statements in the appen-
dices, we need to define an operation denoted by a subindex
preceding an operator [10]:

XW := (1/dX ) 1X ⊗TrX W, (A1)

where dX is the dimension of the arbitrary subspace HX . This
operation replaces the original action of W on subspace HX

by a trivial (and fully decorrelated) term.
For W to be a valid process (W ∈ P), the composition (link

product) of W ∈ B(HP ⊗ HAO ⊗ HBO ⊗ HF ⊗ HAI ⊗ HBI ⊗
HC ) with any possible instruments applied by Alice and Bob
(even those exploiting entangled ancillas between A and B),
must yield a valid CJ state on B(HP ⊗ HF ⊗ HC ) describing a
CP TP global map from B(HP ) to B(HF ⊗ HC ) [9–11]. These
conditions hold iff W obeys [10,17]

W � 0, (A2a)

Tr W = dPdAO dBO , (A2b)

BI BOCFW = AO BI BOCFW, (A2c)

AI AOCFW = BO AI AOCFW, (A2d)

CFW = AOCFW + BOCFW − AOBOCFW (A2e)

�CFW = P�CFW, (A2f)

where � := AI AOBI BO. We can interpret some of these re-
lations in terms of no-signaling restrictions. Let us take
Eq. (A2c) as an example. By stating that BI BOCFW is un-
changed by replacing AO with a trivial, decorrelated input, one
concludes that AO may only be correlated with the variables
BI , BO, C, and F . As such, it cannot signal to any other
variables, such as AI . Since AI is in the past of AO and such
signaling would yield causal loops, it is only natural that
Eq. (A2c) is a necessary condition for the validity of W . In
fact, the causal order between A and B is formally defined in
terms of such no-signaling restrictions. In general, a process
WA→B is compatible [10] with the causal order A → B if, and
only if,

FWA→B = BO FWA→B, (A3a)

as obeyed by |10〉〉. This relation only allows signaling from
BO to F , precluding any signaling from BO to a variable be-
longing to laboratory A. In other words, this relation precludes
signaling from B to A, as expected. Analogously, a process
WB→A is compatible with the causal order B → A if, and only
if, FWA→B = AO FWA→B, a relation obeyed by |11〉〉 that forbids
signaling from AO to laboratory B in its causal past.

APPENDIX B: PROOF OF THEOREM 4

After presenting some useful preliminary results, we will
break down the proof of theorem 4 in two parts, that of LOAE
(which uses the broader class NSO) and that of PLS. After
proving that both classes map P, CS, and NQC onto them-
selves (lemmas 12 and 13, respectively), theorem 4 follows
straightforwardly.

1. Useful relations

We will need the following result (“hopping”):

TrX (XW Y ) = TrX (W XY ), (B1)

that is, with respect to the inner product given by trace over
(sub)space X , the operation given by subindex X is self-
dual [10]. This is proven by starting from TrX W TrX Y and
“factoring out” the second trace operator:

1

dX
TrXW TrXY = TrX

(
1X

dX
(TrX W )Y

)
= TrX (XW Y ).

(B2)

But the first expression in (B2) is completely symmetric on
W,Y , so the same reasoning can be done with the first trace
operator, yielding TrX (W XY ).

Additionally, given that V represents a CP TP map from
B(HAI ⊗ HA′

O
⊗ HBI ⊗ HB′

O
⊗ HC ) to B(HA′

I
⊗ HAO ⊗ HB′

I
⊗

HBO ⊗ HC′ ), any valid V must obey

Tr V = dAI dA′
O
dBI dB′

O
dC, (B3)

A′
I AOB′

I BOC′V = AI A′
OBI B′

OC A′
I AOB′

I BOC′V. (B4)

Transformations of the form (12) also separately obey

C′V = CC′V, (B5)

A′
I AOB′

I BOV = AI A′
OBI B′

O A′
I AOB′

I BOV. (B6)

2. LOAE and NSO

In order to prove that LOAE is a class of free operations,
we appeal to a broader class of nonsignaling operations,
NSO, which forbids signaling from any of the A variables of
V (AI , A′

I , A′
O, AO) to any of its B variables (BI , B′

I , B′
O, BO)

and vice versa.
Definition 9 (Nonsignaling operations). A process trans-

formation V belongs to the class NSO if, and only if,

AOV = A′
OAOV, (B7a)

BOV = B′
OBOV, (B7b)

A′
I AOV = AI A′

I AOV, (B7c)

B′
I BOV = BI B′

I BOV. (B7d)

We notice that Eqs. (B7a) and (B7b) also exclude signaling
from A′

O (B′
O) to A′

I (B′
I ), preventing causal loops. NSO is,

in fact, a more general class than LOAE in two ways. First,
it need not be separable in the C|AB partition, allowing for
coherent operations between C and AB. Secondly, it allows
for post-quantum resources, such as using a Popescu-Röhrlich
box [53] to correlate outputs. Although mathematically well-
defined, not all elements of NSO have a clear quantum-
mechanical realization. However, the class LOAE, which has
a clear physical interpretation and parametrization, is shown
to be a subset of NSO, so that all properties proven for NSO
are valid for LOAE.

Lemma 10. LOAE ⊆ NSO.
Proof. We will show that V ( j)

AB parametrized as in Eq. (13)
obeys Eqs. (B7). By linearity, the same will hold for V =∑

j V ( j)
C ⊗ V ( j)

AB . We first notice that invariance under the
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application of a subindex operator is equivalent to a trivial
dependence on the corresponding partition, or W = XW ⇔
W ∝ 1X , i.e., W is a tensor product of 1X and operators on the
space of the remaining variables.

Let us begin by Eq. (B7a). Taking the partial trace TrAO V ( j)
AB

on Eq. (13), the entire output space of U ( j)
AO

: HA′
O

⊗ HÃ →
HAO ⊗ HÃ is traced out. In this case, the basis indepen-
dence of the trace allows us to replace U ( j)

AO
for an identity.

The action on HA′
O

⊗ HAO then reduces to |1〉〉〈〈1|A′
OAO . Since

TrAO [|1〉〉〈〈1|A′
OAO ] = 1A′

O
, then TrAO V ( j)

AB ∝ 1A′
O
, or AOV ( j)

AB =
A′

OAOV ( j)
AB . The demonstration of Eq. (B7b) is analogous, in-

terchanging A and B.
Next, we derive Eq. (B7c) for LOAEs. This time, we take

the partial trace TrA′
I AO V ( j)

AB on Eq. (13), and, analogously,

U ( j)
AO

⊗ U ( j)
AI

can be replaced by an identity map due to the
basis independence of the trace. The action on HAI ⊗ HA′

I

reduces to |1〉〉〈〈1|AI A′
I

and since TrA′
I
[|1〉〉〈〈1|AI A′

I
] = 1AI , then

TrA′
I AO V ( j)

AB ∝ 1AI , or A′
I AOV ( j)

AB = AI A′
I AOV ( j)

AB . The demonstra-
tion of Eq. (B7d) is analogous, interchanging A and B. �

Lemma 11. NSO is a class of free operations of causal
nonseparability and of quantum control of causal orders, i.e.,
it maps P, CS and NQC onto themselves.

Proof. Let us first show that Eqs. (B7) preserve the causal
orders A → B and B → A, i.e., show that

FW = BOFW ⇒ F (V ∗ W ) = B′
OF (V ∗ W ), (B8a)

FW = AOFW ⇒ F (V ∗ W ) = A′
OF (V ∗ W ). (B8b)

Given that V ∗ W = Tr�C[W V T�TC ], where � :=
AI AOBI BO, we prove Eq. (B8a) via the equations indicated in
the parentheses and the “hopping” result, Eq. (B1):

F (V ∗ W ) = Tr�C[FW V T�TC ] (B9a)
(B8a)

= Tr�C[BOFW V T�TC ],

F (V ∗ W ) hop
= Tr�C[FW BOV T�TC ] (B9b)

(B7b)
= Tr�C[FW B′

OBOV T�TC ]

= B′
O

Tr�C[FW BOV T�TC ],

(B9b)
= B′

O F (V ∗ W ). (B9c)

Eq. (B8b) is proven analogously. As such, from Eq. (5) we
see that for NSO preserves CS. Because of the separable
structure of Eq. (12), NSO also preserves S. By linearity,
Conv(CS ∪ S) = NQC is preserved as well.

We are left with the lengthier task of showing that NSO
preserves P, i.e., showing that the validity constraints of
Eq. (A2) are preserved under NSO. The positivity con-
straint (A2a) is straightforward, since the link product pre-
serves positivity.

The dimensionality constraint (A2b) will initially be shown
to be preserved by the simpler case of W in a causal order
A → B (FW = BOFW ). We calculate PF�′C′ (V ∗ W ), where

�′ := A′
I A

′
OB′

I B
′
O, from which the trace can be taken:

PF�′C′ Tr�C (WV T�TC )

= P Tr�C (FW �′C′V T�TC ) (B10a)
(B5)
= P Tr�C (BOFW C�′C′V T�TC ) (B10b)

hop
= P Tr�C (CFW BO�′C′V T�TC ) (B10c)

(B7d)
= P Tr�C (CFW BI BO�′C′V T�TC ) (B10d)

hop
= P Tr�C (BI BOCFW �′C′V T�TC ) (B10e)

(A2c)
= P Tr�C (AOBI BOCFW �′C′V T�TC ) (B10f)

hop
= P Tr�C (BI BOCFW AO�′C′V T�TC ) (B10g)

(B7c)
= P Tr�C (BI BOCFW AI AO�′C′V T�TC ) (B10h)

hop
= P Tr�C (FW �C�′C′V T�TC ) (B10i)

= PF�′C′ Tr�C (W �CV T�TC ). (B10j)

Taking the trace of this expression, using the definition (A1)
and the fact that the subindex operator is TP, we find

Tr(V ∗ W ) = TrPF��′CC′

(
W

1�1C

d�dC
⊗ Tr�C V T�TC

)
(B10k)

= (TrPF�C W )
1

d�dC
(Tr��′CC′ V T�TC ) (B10l)

= dPdAO dBO

1

d�dC
dA′

O
dB′

O
dAI dBI dC, (B10m)

where in the last line Eqs. (A2b) and (B3) were used. We then
obtain Tr(V ∗ W ) = dPdA′

O
dB′

O
, as desired. If W is not in the

causal order A → B, the demonstration changes as follows:
instead of Eq. (B10b), we obtain a term identical to Eq. (B10c)
but without the BO subscript. Using Eq. (A2e),

PF�′C′ (V ∗ W ) = P Tr�C (AOCFW �′C′V T�TC )

+ P Tr�C (BOCFW �′C′V T�TC )

− P Tr�C (AOBOCFW �′C′V T�TC ). (B11)

For the first term on the right-hand side, the demonstration can
be carried out as above, switching the roles of A and B. For the
second and third, all calculations on Eqs. (B10) are valid. As
such, all three terms are equal to dPdA′

O
dB′

O
. Given their signs,

we obtain Tr(V ∗ W ) = dPdA′
O
dB′

O
, as before.

Let us now prove that Eq. (A2c) is preserved. Once again
we begin by assuming FW = BOFW and afterwards lift that
assumption. Firstly, B′

I B′
OC′F (V ∗ W ) can be shown to equal

B′
I B′

OC′ Tr�C (AOBI BOCFW V T�TC ) using Eqs. (B7d) and (A2c) as
done in Eqs. (B10a) and (B10f). So we can write B′

I B′
OC′F (V ∗

W ) as

B′
I B′

OC′Tr�C (AOBI BOCFWV T�TC ) (B12a)

hop
= B′

I B′
OC′Tr�C (BI BOCFW AOV T�TC ) (B12b)

(B7a)
= B′

I B′
OC′Tr�C (BI BOCFW A′

OAOV T�TC ) (B12c)

= A′
OB′

I B′
OC′Tr�C (BI BOCFW AOV T�TC ) (B12d)
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and comparing Eq. (B12d) with Eq. (B12b), we find that
B′

I B′
OC′F (V ∗ W ) = A′

OB′
I B′

OC′F (V ∗ W ), as desired. If W is not
compatible with A → B, we arrive via Eqs. (A2e) and (B5)
at the three-term expression

C′F (V ∗ W ) = C′ Tr�C (AOCFW V T�TC )

+ C′ Tr�C (BOCFW V T�TC )

− C′ Tr�C (AOBOCFW V T�TC ). (B13)

The steps in Eqs. (B10a) and (B10f) apply to the second
term on the right-hand side. To the first and third terms
on the right-hand side, we can directly apply the steps in
Eqs. (B12). All three terms, then, equal A′

OB′
I B′

OF (W ∗ V ) and,
due to their signs, B′

I B′
OF (W ∗ V ) = A′

OB′
I B′

OF (W ∗ V ) in general.
The demonstration that condition (A2d) is preserved follows
analogously, switching A and B throughout.

The preservation of condition (A2e) is demonstrated as
follows. First let us notice that C′F (V ∗ W ) = (C′V ∗ FW ) =
(C′V ∗ CFW ) = C′ (V ∗ CFW ), then

A′
OC′F (V ∗ W ) + B′

OC′F (V ∗ W ) − A′
OB′

OC′F (V ∗ W )

= C′ Tr�C

[(
AOCFW + BOCFW − AOBOCFW

)
× (

A′
O
V + B′

O
V − A′

OB′
O
V

)T�TC
]
, (B14a)

where Eq. (A2e) has been applied to W . On the nine resulting
terms we apply Eqs. (B1), (B7a), and (B7b) to eliminate A′

O,
B′

O whenever possible, and we see that six of these terms
cancel out, leading to

A′
OC′F (V ∗ W )+B′

OC′F (V ∗ W )−A′
OB′

OC′F (V ∗ W )

= C′ Tr�C

[
CFW

(
AOV +BOV −AOBOV

)T�TC
]

(B14b)

hop
= C′ Tr�C

[(
AOCFW +BOCFW −AOBOCFW

)
V T�TC

]
(A2e)

= C′ (V ∗ CFW ) = C′F (V ∗ W ). (B14c)

Finally, to prove that condition (A2f) is preserved, we once
again begin by assuming W compatible with A → B (FW =
BOFW ) and later lift the assumption:

�′C′F (V ∗ W ) = Tr�C (FW �′C′V T�TC ) (B15a)
(B5)
= Tr�C (BOFW C�′C′V T�TC ) (B15b)

hop
= Tr�C (CFW BO�′C′V T�TC ) (B15c)

(B7d)
= Tr�C (CFW BI BO�′C′V T�TC ) (B15d)

hop
= Tr�C (BI BOCFW �′C′V T�TC ) (B15e)

(A2c)
= Tr�C (AOBI BOCFW �′C′V T�TC ) (B15f)

hop
= Tr�C (BI BOCFW AO�′C′V T�TC ) (B15g)

(B7c)
= Tr�C (BI BOCFW AI AO�′C′V T�TC ) (B15h)

hop
= Tr�C (�CFW �′C′V T�TC ) (B15i)

(A2f)
= Tr�C (P�CFW �′C′V T�TC ) (B15j)

= P�′C′F (V ∗ W ). (B15k)

If W is not compatible with A → B, we have, instead of
Eq. (B15b), the three-term expression [due to Eq. (A2e)]

C′F (V ∗ W ) = C′ Tr�C (AOCFW �′V T�TC )

+ C′ Tr�C (BOCFW �′V T�TC )

− C′ Tr�C (AOBOCFW �′V T�TC ). (B15l)

The calculation above can be done directly on the second term
on the right-hand side and is also valid on the third. To the
first term on the right-hand side, we can apply the same steps
as above, but switching A and B throughout. All three terms,
then, equal P�′C′F (V ∗ W ) and, due to their signs, �′C′F (V ∗
W ) = P�′C′F (V ∗ W ).

We have then showed that NSO preserves P, along with
CS and NQC. �

As a straightforward consequence of lemmas 10 and 11,
Corollary 12. LOAE is a class of free operations of causal

nonseparability and of quantum control of causal orders, i.e.,
it maps P, CS and NQC onto themselves.

3. Probabilistic lab swaps

Lemma 13. PLS is a class of free operations of causal
nonseparability and of quantum control of causal orders, i.e.,
it maps P, CS and NQC onto themselves.

Proof. We begin by noticing that from
Eqs.(14a), (B3), (B4), and (B7) that |1AB〉〉〈〈1AB| ∈ NSO,
and hence preserves P, CS. On the other hand,
V (sw)

AB := |sAB〉〉〈〈sAB| from Eq. (14b) obeys the following
signaling conditions [compare Eqs. (B7)]:

AOV (sw)
AB = B′

OAOV (sw)
AB , (B16a)

BOV (sw)
AB = A′

OBOV (sw)
AB , (B16b)

B′
I AOV (sw)

AB = AI B′
I AOV (sw)

AB , (B16c)

A′
I BOV (sw)

AB = BI A′
I BOV (sw)

AB . (B16d)

As expected, V (sw)
AB inverts the ordering A → B and B → A,

i.e., from Eqs. (B16) it follows that

FW = BOFW ⇒ F
(
V (sw)

AB ∗ W
) = A′

OF

(
V (sw)

AB ∗ W
)
, (B17a)

FW = AOFW ⇒ F
(
V (sw)

AB ∗ W
) = B′

OF

(
V (sw)

AB ∗ W
)
, (B17b)

which can be shown following the steps in Eq. (B9) with
Eq. (B16) instead of Eq. (B7). Most importantly, although the
causal order is inverted, the existence of a well-defined causal
order is preserved when V (sw)

AB alone is applied, and so is CS.
The preservation of P [Eqs. (A2)] by V (sw)

AB is demonstrated
analogously as shown above for NSO, switching A′

I ↔ B′
I ,

A′
O ↔ B′

O.
Given that both |1AB〉〉〈〈1AB| and |sAB〉〉〈〈sAB| preserve CS

and P, so does a probabilistic lab swap, since convex mixtures
preserve Eqs. (5) and (A2). The separable form of Eq.(12)
guarantees preservation of S, hence PLS preserves P, CS,
and NQC. �

APPENDIX C: PROOF OF THEOREM 5

We prove theorem 5 constructively, presenting a protocol
that transforms |w〉〉 into |w ′〉〉 [both generalized quantum
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switches obeying Eqs. (8) and (9)], which can be decomposed
into four steps. (1) Apply certain unitaries to the laboratories
inputs and outputs. (2) Apply a unitary on the control qubit
mapping {|�0〉C, |�1〉C} into {|�′

0〉C, |�′
1〉C}. (3) Make a non-

demolition measurement on the control qubit to skew p into
p′

id = p′ = {p′
0, p′

1}. (4) This measurement may incorrectly
turn p into p′

sw := {p′
1, p′

0} instead. However, this is heralded
by the measurement outcome, conditioned on which a correc-
tion is applied: the control qubit is flipped and the laboratories
are swapped.

Proof. For step C, we apply

|u′
PAu

†
PA〉〉AI A′

I
|u′

PBu
†
PB〉〉BI B′

I

⊗|u†
AFu

′
AF 〉〉A′

OAO |u†
BFu

′
BF 〉〉B′

OBO , (C1)

transforming u0, u1 into u′
0, u′

1, where u′†
PAu

′
BAu

′†
BF = 1 =

u′†
PBu

′
ABu

′†
AF has been used. These constraints reflect the fact

that the freedom to pick four local unitaries is not sufficient
to attain all six unitaries in Eq. (8). In fact, the reader can
verify that, starting from a superposition of |�0〉C |10〉〉 and
|�1〉C |11〉〉, Eq. (9) is necessary and sufficient for the target
process to be attainable by local unitaries.

Steps C–C can be encapsulated in a single transformation.
The majorization relation p � p′ implies [52,54]

p =
∑
π

λπ p′
π , (C2)

where p′
π is the π th permutation of p′, with π = id repre-

senting the identity and π = sw the swap, and λ := {λπ }π
is a probability distribution on π . The transformation will be
decomposed as in Eq. (12) (for π playing the role of j) with
V (π )

C := |v (π )
C 〉〉〈〈v (π )

C |, being

∣∣v (π )
C

〉〉 =
√

λπ

∑
i

√
p′

π (i)

pi
|�i〉C |�′

π (i)〉C′ , (C3)

and

V (id)
AB := |1AB〉〉〈〈1AB|, V (sw)

AB := |sAB〉〉〈〈sAB|, (C4)

for |1AB〉〉 and |sAB〉〉 given by Eq. (14). In addition, the
short-hand notation π (i) := i, for π = id, and π (i) := i + 1
mod 2, for π = sw, has been used. The unitary in step C
always exists because {|� j〉} j=0,1 and {|�′

j〉} j=0,1 are or-
thonormal bases. The measurement in step C is a two-outcome
POVM on HC that skews the flatter p distribution into ei-
ther p′ or p′

sw (less balanced) while preserving the quantum
superposition [the general form of such POVM is shown
in Eq. (D1)]. The conditional lab swap (step C) belongs to
PLS and occurs together with a simple bit-flip on the control
qubit in the {|�′

j〉} j=0,1 basis. Normalization follows from the
majorization relation (C2). Applied to |w〉〉, the outcome for
each π is pure:

π = id,
√

λid(
√

p′
0|�′

0〉|u′
0〉〉 +

√
p′

1|�′
1〉|u′

1〉〉), (C5)

π = sw,
√

λsw(
√

p′
1|�′

1〉|u′
1〉〉 +

√
p′

0|�′
0〉|u′

0〉〉), (C6)

where we have used |w0,1〉〉 from Eqs. (3) and (4). Both
results are proportional to |w ′〉〉. A sum over π , with λid +
λsw = 1, yields this process exactly. Except for the lab

swap which belongs to PLS, all transformations belong to
LOAE. �

APPENDIX D: PROBABILISTIC CONVERSION
AND DISTILLATION

The distillation protocol hinges on lemma 7, proven here
by construction.

Proof. The first step is to convert |w〉〉 into a pure process
|waux〉〉 with paux � p′ (for best success probability, we also
have paux � p′—whether paux = p′ or paux = p′

sw depends on
the specific processes |w〉〉 and |w ′〉〉). This is achieved with a
simple local-filtering measurement on Charlie’s qubit, which
can be written formally as the POVM {M ( j)

C (x, y)} j=0,1 =
{|m( j)

C 〉〉〈〈m( j)
C |} j=0,1, where∣∣m(0)

C

〉〉 = √
x|�0〉C |�0〉C′ + √

y|�1〉C |�1〉C′ ,∣∣m(1)
C

〉〉 = √
1 − x|�0〉C |�0〉C′ +

√
1 − y|�1〉C |�1〉C′ ,

(D1)

with

x = min

{
p1

p0

max{p′
0, p′

1}
min{p′

0, p′
1}

, 1

}
, (D2)

y = min

{
p0

p1

max{p′
0, p′

1}
min{p′

0, p′
1}

, 1

}
. (D3)

Outcome j = 0, which corresponds to a rank-2 POVM ele-
ment and occurs with probability psuccess = min{p0,p1}

min{p′
0,p′

1} , leads to
|waux〉〉 as desired. Outcome j = 1, which necessarily corre-
sponds to a rank-1 POVM element, indicates a failed result
of the local filtering. The success probability of this step (and
of the overall procedure) is psuccess = min{p0,p1}

min{p′
0,p′

1} . If successful,
on the process |waux〉〉 we apply the deterministic protocol
from theorem 5 to produce |w ′〉〉. �

To prove corollary 8, we need to apply this probabilistic
protocol, with |wqs〉〉 as target, onto N copies of |w〉〉 in
parallel. In the asymptotic limit of N → ∞ [55,56], the result,
with probability tending to one, is to have N psuccess copies
of |wqs〉〉. Since the success/failure is heralded, one can pick
the successful copies, distilling causal nonseparability with
rate r = psuccess = 2 min{p0, p1}, where we have used that
pqs := { 1

2 , 1
2 }.
1. Distillation with multicopy instruments

We now present an alternative distillation protocol mak-
ing use of multicopy operations, inspired on the coherence-
distillation protocol developed in Refs. [51,52]. Because of
the limitations to act jointly on different copies of Alice’s and
Bob’s laboratories, joint operations are used only on Charlie’s
control qudit. This is capable of obtaining distillation, albeit
at a rate r = min{p0, p1}, lower than that in corollary 8. This
protocol distills |w〉〉 [Eq. (8)] into |wqs〉〉, and is composed
of four steps. (1) Application of local unitaries to the inputs
and outputs of the laboratories, and to Charlie’s control qubit,
each acting on a single copy of the process. (2) Measurement
of the total number of qubit flips on the control qubits. This
is a joint measurement on all control qubits, and generates
(with high probability for large N) equally balanced superpo-
sitions of different causal orders. (3) Subnormalized projector
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measurements on the control qubits. Also a joint measurement
on all control qubits, its random outcome determines which
copies will be turned into |wqs〉〉 or not. (4) Operations to
disentangle certain copies from the others.

Proof. The unitaries in Step D 1 are the same as in the
proof of theorem 5, with |u′

0〉〉 = |10〉〉, |u′
1〉〉 = |11〉〉 [Eq. (C1)]

and |�′
j〉C′ = | j〉C′ . Step D 1 is a projective measurement on

collective subspaces with a well-defined total number of |0〉’s
and |1〉’s (N− j and j, respectively). They are referred to as
type-class measurements in Ref. [52] and correspond to mea-
suring the Hamming norm on a string in the computational
basis. The measurement entangles the different copies, and
this is the step that creates a balanced superposition of terms.
For outcome j, the resulting process is

∑
π∈Rj

π
[|0C10〉〉⊗N−j ⊗|1C11〉〉⊗ j

]
√(N

j

) , (D4)

where Rj is the set of permutations of the factors in paren-
theses, with ‖Rj‖ = (N

j

)
. For N → ∞, the typical result is

j = N p1 [55].
Step D 1 is meant to reduce the number of terms in the

superposition to 2k in order to obtain an exact number of
copies of |wqs〉〉⊗k . This is once again done with measurements
on the control qubits. To avoid measurement outcomes that
lead to a failure, the second POVM {EN

j,�}�∈{1,L} is

EN
j,� = 1√

n

∑
π∈Rj,�

π [(|0〉〈0|C )⊗N− j ⊗ (|1〉〈1|C )⊗ j], (D5)

where Rj,� ⊆ Rj are sets (composed of ‖Rj,�‖ = 2k elements)
with typically nonempty intersections such that every element
of Rj belongs to exactly n of such sets. This can be done
with n = LCM[2k,

(N
j

)
]/

(N
j

)
, and with L = LCM[2k,

(N
j

)
]/2k

sets Rj,�, where LCM denotes the least common multiple. The
resulting state after outcome � is

1√
2k

∑
π∈Rj,�

π [|0C10〉〉⊗N− j ⊗ |1C11〉〉⊗ j]. (D6)

The value k will define our final rate, since 2k = 2rN . Clearly
2k �

(N
j

)
, since 2k superposed terms are left from projecting

a superposition of
(N

j

)
. Moreover, a decomposition of |wqs〉〉⊗k

contains a term ∝ |0〉C |10〉〉⊗k as well as one ∝ |1〉C |11〉〉⊗k . By
comparing with the state (D6), we see that k � min{ j, N − j}.
Since 2min{ j,N−j} �

(N
j

)
, in fact k = min{ j, N− j}.

At this point we have N entangled copies of the whole
process, in a superposition of 2k terms. In step D 1, we disen-
tangle N − k copies of the process from the remaining k. Both
the control qudits and the laboratories’ inputs/outputs must be
disentangled in this step. To disentangle the ith control qubit
from the remaining control qubits, one makes a measurement
on the |±〉C,i basis. The |−〉C,i outcome heraldedly introduces
an unwanted sign, which can be corrected through controlled
phase gates on the remaining control qubits. To disentangle
the ith laboratory from the rest, we apply on that laboratory

V AB
bypass = |1〉〉〈〈1|AI AO ⊗ |φ〉〈φ|A′

I
⊗ 1A′

O
⊗

⊗ |1〉〉〈〈1|BI BO ⊗ |φ〉〈φ|B′
I
⊗ 1B′

O
, (D7)

an operation which bypasses the actual laboratories, short-
circuiting the P signal to F , giving dummy inputs |φ〉 to the
laboratories and discarding the laboratories’ outputs. The def-
inition of which copies to disentangle (and discard) depends
on outcomes j, �, i.e., depends on feed-forwarding.

The distillation rate is r = k/N = min{ j, N − j}/N , which
for N → ∞ tends to the typical result [55] r = min{p0, p1}.

As an illustration, in the case of N = 4, j = 2 the projector
in step D 1 acting jointly on many control qudits is


4
2 = |0011〉〈0011|C + |0101〉〈0101|C + |1100〉〈1100|C

+ |0110〉〈0110|C + |1001〉〈1001|C + |1010〉〈1010|C .

(D8)

The state after this projection, Eq. (D4), accordingly reads (in
a compact notation)

1√
6

[|0C10〉〉|0C10〉〉|1C11〉〉|1C11〉〉

+ |0C10〉〉|1C11〉〉|0C10〉〉|1C11〉〉
+ |1C11〉〉|1C11〉〉|0C10〉〉|0C10〉〉
+ |0C10〉〉|1C11〉〉|1C11〉〉|0C10〉〉
+ |1C11〉〉|0C10〉〉|0C10〉〉|1C11〉〉
+ |1C11〉〉|0C10〉〉|1C11〉〉|0C10〉〉]. (D9)

In step D 1, k = 2 copies can be obtained. The POVM
Eq. (D5), will be composed of L = 3 elements, and each
projector appears in n = 2 different elements:

E4
2,1 = (|0011〉〈0011|C + |0101〉〈0101|C + |1100〉〈1100|C

+ |0110〉〈0110|C )/
√

2, (D10a)

E4
2,2 = (|1001〉〈1001|C + |1010〉〈1010|C + |1100〉〈1100|C

+ |0110〉〈0110|C )/
√

2, (D10b)

E4
2,3 = (|1001〉〈1001|C + |1010〉〈1010|C + |0011〉〈0011|C

+ |0101〉〈0101|C )/
√

2. (D10c)

If, e.g., outcome ( j, �) = (2, 2) were obtained, the state
would become a balanced superposition of the last four terms
of Eq. (D9). We would then keep the second and third copies,
since these appear in all two-bit combinations (00,01,10,11),
and discard the remaining two. The disentangling operations
would be applied to the copies i = 1, i = 4, yielding the
process

W1 ⊗ |wqs〉〉〈〈wqs|⊗2 ⊗ W4, (D11)

where Wi are obtained from Eq. (D7). Other outcomes of the
POVM (D10) require discarding different systems, illustrating
the need for a feed-forward [(D10a) leads to discarding the
first two, (D10c), the second and fourth].
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