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Bump-on-tail instability across coupling and interaction-range regimes
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The impact of collisionality and the range of the interparticle interaction on the bump-on-tail instability is
examined both computationally and theoretically. Using three-dimensional, nonequilibrium molecular dynamics
with a force law that varies continuously from long range (pure 1/r Coulomb limit) to short range and across
coupling regimes from weakly to strongly collisional, we examine properties of the instability; unlike other
computational methods, molecular dynamics includes large-angle scattering, including the extreme limit of
caging, and dynamical nonlinear screening across length scales as small as the interparticle spacing. A simpler
theoretical model is also developed for comparison to the molecular dynamics results; we find that the two
methods agree well in the appropriate limit, revealing that molecular dynamics is an accurate tool for the
exploration of plasma instabilities. Our results reveal that the bump-on-tail instability exists only for long-range
interactions.
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I. INTRODUCTION

Kinetic and fluid instabilities are distinguishing features
of most plasmas, including those that appear in the solar
wind [1], inertial-confinement fusion experiments [2], mate-
rial processing [3], neutron-star magnetospheres [4], earth’s
foreshock region [5,6], and tokamaks [7], among many other
examples. A common type of instability is that of energy
conversion from a directed current into random thermal mo-
tion; examples of this type of instability are the two-stream
and bump-on-tail (BOT) instabilities. Early work on this class
of instabilities was carried out by Bunemen, who examined
electron currents colliding with initially stationary ions [8,9]
and found rapid clustering of ions that destroyed these cur-
rents within a few plasma periods. Because these instabilities
occur in a wide range of plasmas, including those with various
levels of collisionality and containing various species, it is
important to examine in detail the role of different types of
interparticle interactions and varying levels of collisionality
and interparticle correlations.

All plasmas exhibit some degree of collisionality, which,
for simplicity, is often neglected in theoretical and com-
putational models, yet instability growth is expected to be
reduced in the presence of collisions. Early studies ad-
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dressed ion-ion collisions in the two-stream instability in
thermonuclear plasmas using Krook models [10] and exam-
ined anomalous absorption of radiation energy by electrons
using Fokker-Planck models [11]. In their seminal work,
Takizuka and Abe [12] developed a method for including
collisions in plasma simulations. The most natural compu-
tational method for describing collisional plasmas is molec-
ular dynamics (MD), which inherently and self-consistently
includes dynamical many-body correlations beyond the mean
field and large-angle collisions. While MD has been used
to examine phenomena on the hydrodynamic scale [13–15],
our goal here is to examine nonequilibrium plasma insta-
bilities driven by long-range electric fields across coupling
regimes.

Before discussing the MD model in Sec. III, we develop
a simple theoretical model in the next section that includes
a variable-range interaction potential between particles and a
simple model for collisionality. Results from both MD and
the theoretical model are then presented in Sec. IV, before we
summarize our work in Sec. V.

II. THEORETICAL MODEL

We first consider a simple theoretical model that can
reveal the approximate impacts of collisions and the range
of the effective interparticle pair potential u(r). Consider a
single-species plasma in which particles have an effective
charge of Ze and interact through a Yukawa potential u(r) =
Z2e2 exp(−r/λ)/r; this potential describes the pure Coulomb
case when λ → ∞ and in general the screened ionic case
with electronic screening with finite λ. The Yukawa model
is generic: The values of Z and λ can be chosen to apply to
a wide range of plasma types and environments. Using u(r)
for a cold plasma with a cold bump at stream speed Vs and
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FIG. 1. Dispersion relation for �2 = 0.01, Vs = 1.0, and two
different combinations of kr and ν, for the (a) real and (b) imaginary
parts. The dashed lines correspond to the pure Coulomb collisionless
case (kr = 0.0 and ν = 0.0) and the solid blue lines correspond to a
Yukawa interaction with kr = 0.1 and ν = 0.1. Adding collisionality
shifts the imaginary curve downward, reducing the range of unstable
k values; adding screening (kr �= 0) does not significantly affect the
imaginary part, but creates an acoustic structure for the real part.

including a simple Krook model for collisions, we obtain the
(dimensionless) dispersion relation

0 = 1 − F (k)

(ω + iν)2
− �2F (k)

(ω + iν − k)2
, (1)

F (k) = k2

k2 + k2
r

. (2)

Here � = ωs/ωb is the ratio of stream to bulk plasma fre-
quencies ωx =

√
4πnx(Zxe)2/mx; assuming that the stream

and bulk particles have the same charge and mass and occupy
the same volume, this quantity reduces to � ∼ √

ns/nb, which
is usually a small quantity. The wave vector k is in units of
ωb/Vs and ω is in units of ωb. The impact of the variable-
range interaction enters through the factor F (k) in (2), which
arises from the Fourier transform of the Yukawa potential; the
interaction range is characterized by the range parameter kr =
Vsω

−1
b

λ
, which is the ratio of the distance the stream moves in

one plasma period to the range of the Yukawa potential. Note
that F (k) reduces to the pure Coulomb case when kr → 0 or
F (k) = 1. In this analysis, we have assumed that the screening
factor is the same for both bulk and stream particles.

The solution of (1), a fourth-order polynomial, is readily
found and is shown in Fig. 1. The base case is the set of gray
dashed curves representing the collisionless Coulomb (λ = ∞
and kr = 0) result. In Fig. 1(a), which is the real part of the
dispersion relation, we see the usual plasma oscillations at
±1, as well as the acoustic branch that bifurcates at large
k. The imaginary part is shown in Fig. 1(b); the top (gray
dashed lines) set of curves for the imaginary part shows the
well-known result that an instability (Im[ω] > 0) exists for a
wide range of wave vectors. In contrast, the blue solid lines
correspond to ν = 0.1 and kr = 0.1, which is the collisional
screened case. Now, with a finite kr , the real part of the
dispersion is purely acoustic and the branches of Im[ω] are
shifted into the negative half plane by a constant shift of ν,
where the modes are now stable, except for a smaller region
of instability in the range of about 0.75 < k < 1.25.

Figure 2 shows detailed trends in Im[ω] as each of the
four main parameters is systematically varied, including the
effects that variation in stream strength � [Fig. 2(b)], stream
speed Vs [Fig. 2(a)], range kr [Fig. 2(c)], and collisionality
ν [Fig. 2(d)] have upon the dominant unstable mode kdom.
Figure 2(d) shows that increases in ν decrease Im[ω] but do
not affect kdom, suggesting that increasing the collisionality
should suppress the growth of the instability but leave its mode
unaffected. In Fig. 2(c) we see that increases in kr decrease

(a) (b)

(c) (d)

FIG. 2. Theoretical dispersion curves of Im[ω(k)] for Vs = 40 (top row) or Vs = 20 (bottom row), �2 = 0.11, kr = 0, and ν = 0, except
when that parameter is varied, as shown in the legends.
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FIG. 3. Plot of ν as a function of (a) � for κ = 0.0, 0.5, and 1.0
(top to bottom) and (b) κ for � = 0.01, 0.1, 1.0, and 10.0 (bottom to
top).

both kdom and Im[ω], suggesting that increasing the range
parameter both suppresses the growth of the instability and
moves kdom to longer wavelengths. Such predictions will be
compared with our MD simulation results below.

Yukawa-based models are typically expressed in terms of
two dimensionless parameters. Measuring distances in terms
of the ion-sphere radius a = (3/4πn)1/3, a proxy for the
interparticle spacing, and energies in units of the initial (bulk)
temperature T (in energy units where the Boltzmann constant
kB = 1), the screening parameter κ = a/λ and Coulomb cou-
pling parameter � = Z2e2/aT are often used, in particular
when the coupling is large enough that discreteness of the par-
ticles plays a role. What is missing from this simple theoretical
model is a prediction for the value of ν, which is expected to
have a strong dependence on κ and �; however, Stanton and
Murillo [16] have proposed a model for calculating ν(�, κ ).
Figure 3 shows ν as a function of � [Fig. 3(a)] and of κ

[Fig. 3(b)]. The onset of caging occurs above approximately
� ∼ 10 [17]. Using this prescription for ν(�, κ ), we can
examine how the dominant unstable mode kdom and the growth
rate Im[ω(kdom )] of that mode vary and compare these results
directly with the MD results.

III. MOLECULAR DYNAMICS

We now turn to our MD approach, which describes point
particles at any length scale, allows for variable-range interac-

tions that can vary continuously from long to short range (with
the 1/r Coulomb interaction as a limit), includes correlations
in three dimensions, and allows the level of collisionality to
be varied across orders of magnitude. With these constraints,
we propose a MD model based on the Hamiltonian

H =
N∑

i=1

p2
i

2m
+

∑

i< j

Z2e2

ri j
e−ri j/λ + UB, (3)

where all particles are assumed to have the same mass m and
charge Ze.1 The number of particles in the simulation was
chosen across a wide range both to ensure convergence and
to control the aspect ratio of the periodic simulation cell for
the desired wave vector; the typical number of particles was
N = 104–105. This model uses the Yukawa potential, which
is described above. The term UB is a uniform background
term that ensures the system is charge neutral; this term is
needed to ensure convergence of the force sum in the pure
Coulomb limit. The Yukawa interaction depends only on the
relative distance ri j = |ri − r j | between the particles. Electric
fields are manifestly included in this Hamiltonian through the
Coulomb potential-energy terms, which satisfy a Poisson (or
Helmholtz, for finite λ) equation. Relative to other computa-
tional approaches, such as particle-in-cell or Fokker-Planck
models, MD describes waves and their damping fully consis-
tently and for any level of collisionality. The only potential
limitation of this approach is its limitation to small (in space
and time) systems.

All MD simulations were performed using an effi-
cient particle-particle–particle-mesh (PPPM) algorithm2 for
screened Coulomb systems [18]; the PPPM algorithm nat-
urally includes long-range electric fields. The simulations
were carried out in three dimensions to correctly resolve the
trajectories involved in many-body Coulomb collisions. Using
a time step of 	t = 0.0025ω−1

p , where the plasma period is
ω−1

p = (4πnZ2e2/m)−1/2, energy was well conserved for all
cases, as confirmed by the lack of significant drift in the total
energy using the error metric 	E (%) = 100

M

∑M
j=1 |E (t j )

E (0) − 1|,
which is the percentage error accumulated over time rela-
tive to the initial energy of the system. For all simulations,
	E (%) < 0.1%. The Hamilton equations were integrated
using the standard velocity Verlet algorithm. The degree of
collisionality was controlled through the choice of initial
temperatures, which were set through an equilibration phase
with a Langevin thermostat at the target temperature, and the
choice of the charge state Z .

The BOT initial condition was created using a three-step
process. First, the target thermodynamic state was achieved
through equilibration for 40ω−1

p plasma periods, a value we

1Alternatively, the potential (σ/r)n also varies from Coulomb for
n = 1 to short range for large n (the hard-sphere limit); we chose the
exponential form because of its closer relation to plasma screening.

2For the PPPM algorithm, the Ewald parameter was varied over a
range of about 1–10, in units of a−1; for the particle-particle part, the
cutoff radius was typically about rc ∼ 5 (in units of a); and for the
particle-mesh part, the grid dimensions were 64 × 64 × 64 and the B
splines were of order 6. These parameters corresponded to an error
of ∼10−6 (e2/a2

i ) in the computed forces.
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FIG. 4. Physical-space view of the individual particles in the MD simulation, at four times: t = 0ω−1
p , 12ω−1

p , 24ω−1
p , and 36ω−1

p . Initial
bulk and stream particles are in orange (the majority of the particles) and blue (those particles that bunch in the cell center at t = 24ω−1

p ),
respectively. Molecular dynamics reveals the expected behavior of this instability.

determined empirically; results were very insensitive to longer
equilibration periods. Second, another equilibration for 5ω−1

p
was carried out to establish an initial external density per-
turbation resulting from the form Uext = p cos(kx), where p
is the strength of the perturbation, k = 2πm/Lx, and m is
the mode of the perturbation. For this study, m was varied
to change which Fourier mode k was seeded initially. The
perturbation strength p was also varied; p was chosen to
be small enough for the system to be in the linear regime,
although, in principle, there is no restriction. In most cases, p
was chosen to be 0 to examine growth out of the natural noise
in the system. At the end of this second equilibration phase,
the third step of generating the BOT initial condition was to
remove the external potential and the thermostat and add a
bump to the velocity distribution by increasing the velocity
of the specified number of particles in the simulation to the
specified mean-stream velocity, with a distribution about the
mean determined by the specified temperature. Finally, the
main simulation was run and data were obtained for 40ω−1

p
plasma periods.

Figure 4 shows the physical-space evolution of the BOT
instability obtained with MD; in the figure, each dot is a single
charged particle, not a computational particle. In this example,
there is no initial perturbation, and Vs = 40, c = 0.1, κ = 0
(pure Coulomb), and � = 0.1, where c is the percentage of
particles in the stream, c = �2

1+�2 . A single, large, coherent,
and long-lived longitudinal wave forms at approximately one-
quarter of the simulation time and dissipates by about three-
quarters of the simulation time; by the end of the simulation,
the bulk and stream are well mixed, although remnants of the
longitudinal wave are still visible.

The strength of the beam is characterized by the relative
number of particles in the stream to that of the bulk, while
in the cold-plasma dispersion relation, it is characterized by
�2; these quantities are directly comparable. Taking into
account the different dimensionless parameters of the two sys-
tems, the MD screening parameter κ is exactly equal to kr in
the dispersion relation. The MD parameters � and κ appear in
the dimensionless theoretical collisionality ν; here we employ
the Stanton-Murillo [16] model. Each of these four parameters
was systematically varied in both the theoretical model and
the MD simulations, and the results of interest from this
variation of parameters are the dominant wave vector of the
instability kdom and the growth rate of that instability Im[ω].

IV. RESULTS

In Fig. 5 we show the phase-space evolution of the BOT
instability obtained using MD; each dot represents one parti-
cle. In this example, there is no initial perturbation (p = 0),
Vs = 40, c = 0.1, κ = 0 (pure Coulomb), and � = 0.1 (weak
coupling). In this case, there is a single, large, coherent, and
long-lived phase-space vortex, forming at approximately one-
quarter of the simulation time and dissipating by about three-
quarters of the simulation time. By the end of the simulation,
the bulk and stream are well mixed, although remnants of the
vortex are still visible.

For these same conditions, the Fourier transform of the
spatial density histogram is taken at each point in time. Then
an exponential curve can be fit to the absolute value of the
amplitude as a function of time to determine the growth rate of
the instability; this process is shown in Fig. 6. Figure 7 shows
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(a) (b)

(c) (d)

FIG. 5. Phase-space snapshots of the MD output at four times (a) t = 0ω−1
p , (b) t = 12ω−1

p , (c) t = 24ω−1
p , and (d) t = 36ω−1

p , where each
dot is an individual particle. Initial bulk and stream particles are in yellow (lower points) and blue (upper points), respectively; note that the
MD particles are in a 6D phase space, but we project onto a 2D phase space here for visualization purposes. The MD data reveal the expected
behavior of the instability.

the growth rate from this fit is as a single data point, together
with the dispersion relation generated from the theoretical
model in the collisionless and collisional cases.

We move now to a systematic exploration of the full
parameter space, varying the four main parameters of interest,
each of which can be controlled and varied independently in

(a)

(c)

(b)

FIG. 6. Density of the system and its Fourier transform, for the
same conditions as in Fig. 5. (a) Coordinate histogram, representing
the particle density (N particles per bin in x) at t = 24ω−1

p , and (b) its
Fourier transform. (c) Amplitude of the first mode of the system as a
function of time, together with a fitted exponential growth curve; the
early-time growth fits an exponential curve very well. The argument
of this fitted exponential curve will be compared against the predicted
dispersion curves in Fig. 7.

both the theoretical model and MD simulations. These four
main parameters in the theoretical model and the MD are
the stream speed, the stream strength, the screening, and the
collisionality. As variables in the MD system, they are Vs, c,
κ , and �. As variables in the dispersion relation, they are Vs,
�2, kr , and ν.

We focus on the dominant wave vector kdom of the insta-
bility and its growth rate Im[ω], both initialized with p = 0.
Figures 8 and 9 show the effects that variation of any one of
the four main parameters has upon Im[ω] and kdom, respec-
tively. The MD data points, shown in red in these figures, are

FIG. 7. Theoretical dispersion curves for Vs = 40, �2 = 0.11,
and kr = 0, compared with the growth rate calculated from the MD
data (red circle). The dispersion curve calculated using ν = 0 is
shown by the gray dashed line and the dispersion curve calculated
using the calculated value of ν is shown by the orange solid line.
The red point corresponds to the fitted growth rate obtained from
MD and shown in Fig. 6. For this case, it is interesting to note that
the MD result agrees better with the predicted dispersion curve for
ν = 0 than the predicted dispersion curve for which ν is calculated,
suggesting a weakness of the theoretical model.
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(a)

(d)(c)

(b)

FIG. 8. Fitted MD growth rate (red dashed lines) compared with
the predicted dispersion curves as individual parameters are varied.
The gray solid (upper) curves again assume ν = 0, while the yellow
solid (lower) curves use a calculated value of ν. For the MD runs,
c = 0.1, Vs = 40, κ = 0, and � = 0.1, except when one of these
parameters was varied. The MD parameter values are shown on the
lower axes and their theoretical equivalents are shown on the upper
axes. As any one of the parameters is varied, we find that the MD
growth rates stay within an envelope of predictions obtained from
the dispersion relations, suggesting strong agreement between the
theoretical model and the MD simulations.

each generated from unique runs in which a single parameter
is varied while the other three parameters are held constant.
Then a process identical to the one used to generate Fig. 6 is
performed for each run to determine kdom and Im[ω].

In Fig. 8, the gray solid (higher set) curves are generated
from dispersion relations for which ν = 0, while the yellow
solid (lower set) curves correspond to dispersion relations for
which ν is calculated using the Stanton-Murillo model [16].
For almost all runs, the values of Im[ω] calculated from the
MD data fit neatly within the envelope formed using the pre-
dicted values for ν = 0 (gray curves) and using the calculated
values for ν (yellow curves). The strong agreement between
the numerical results and the predicted dispersion curves
validate the use of our MD model for predicting growth rates
of plasma instabilities. However, note that, in most cases, the
MD tends to agree with the collisionless model. This behavior
likely arises from weaknesses in the theoretical model and
illustrates how MD can be used to validate standard plasma
models. More work to address this finding is warranted.

V. SUMMARY AND CONCLUSIONS

In summary, this study investigated the BOT instability
using MD thereby describing waves and their damping con-
sistently for any level of collisionality. We found agreement

(a)

(c) (d)

(b)

FIG. 9. Dominant mode of the instability in MD vs the four
parameters (a) Vs, (b) c, (c) κ , and (d) � that characterize the
instability. Also shown as a solid line is the theoretical curve. As
before, c = 0.1, Vs = 40, κ = 0, and � = 0.1, except when one of
these parameters is varied. The MD parameter values are shown on
the lower axes and their theoretical equivalents are shown on the
upper axes. As any one of the parameters is varied, the dominant
mode of the simulation generally agrees with the predictions of
the dispersion relation, suggesting that the MD results predict the
dominant mode of the instability accurately when compared with the
theoretical dispersion relation.

between the predictions of the dispersion relation and the MD
results. Specifically, the dominant mode of the instability was
typically well aligned with that predicted by the dispersion
relation, and the growth rate of the dominant modes fit within
an envelope formed by one curve calculated using ν = 0 and
another calculated using a calculated value of ν. This work
demonstrates that MD accurately describes nonequilibrium
heterogeneous systems with long-range electric fields and
does so with very high physics fidelity (e.g., dynamical many-
body collisions). Thus, while MD is restricted to describing
small systems in terms of absolute time and length scales, in
terms of scaled variables, MD provides a validation approach
for other methods traditionally employed for the study of
large-scale plasma waves and instabilities.

Animations of our MD simulations are available in [19].
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