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Robust spectral phase reconstruction of time-frequency entangled bi-photon states
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Exploitation of time-frequency properties of spontaneous parametric down conversion photon pairs has
recently found application in many endeavors. Complete characterization and control over the states in this
degree of freedom is of paramount importance for the development of optical quantum technologies. This is
achieved by accessing information both on the joint spectral amplitude and the joint spectral phase. Here we
propose a scheme based on the MICE algorithm, which aims at reconstructing the joint spectral phase by
adopting a multishear approach, making the technique suitable for noisy environments. We report on simulations
for the phase reconstruction and propose an experiment using a Franson-modified interferometer.
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I. INTRODUCTION

Spectral-temporal properties are among the most reliable
and robust choices for encoding information for photonics
quantum technologies. Being an internal degree of freedom,
these are suitable for long-distance communications and allow
for propagation through long-distance fibers without affecting
the quantum state [1]. Applications exploiting time-frequency
encoding range from quantum key distribution protocols [2–5]
and clock synchronization [6] to quantum communications
[7], all of which make use of frequency-correlated two-photon
states.

The most common technique to generate such pairs are
nonlinear processes, such as spontaneous parametric down
conversion (SPDC) and four-wave mixing, in which the
spectral-temporal properties are dictated by the shape of the
pump as well as the material through its phase-matching
function. Tailoring the pump and choosing the appropriate
dispersion allow for diverse capacities in shaping spectrally
broad two-photon states [8–11]. Quantum technologies de-
mand that the information carriers be prepared in fiducial
states at the beginning, as a key requirement for the cor-
rect operation of any protocol. The variegate structure of
time-frequency modes is at the same time what grants its
advantages but poses some critical challenges in its charac-
terization. Ultrafast pulsed modes—exactly like their clas-
sical counterparts—vary too quickly to be characterized in
the time domain. To characterize them in the frequency do-
main, there is a need to access both their spectral amplitude
and spectral phase, as both affect the time profile and can
carry signatures of frequency correlations. Measuring the
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joint spectral amplitude (JSA) is now a commonly addressed
task [12–14]; however the measurement of the joint spectral
phase (JSP) has only recently been tackled. This has been
achieved by performing quantum state tomography on the
bi-photon state [15,16], by extending what is normally ap-
plied to discrete systems, e.g., polarization, or by stimulated
emission [17].

An alternative route relies on classical ultrafast metrology
techniques, which have been extensively developed following
the need to characterize femtosecond and attosecond pulses
[18]. Approaches in this direction have been recently pro-
posed with a modified XFROG in Ref. [19], and in Ref.
[20], where the self-reference classical metrology technique
SPIDER [21] has been adapted to the heralded measurement
of photon pair phases. SPIDER reconstructs the spectral
phase by retrieving the interferometric phase between two
frequency-sheared copies of an unknown pulse. The extrac-
tion algorithm is quite simple and is based on the integration
of the interferometric phase. In the last few decades many
different implementations of SPIDER have been developed to
address increasing degrees of pulse complexity [22–25]. In
particular multishear techniques such as SEA-CAR SPIDER
[26–28] have provided a very robust tool for the reconstruc-
tion of broadband pulses with high spectral complexity. In
all its implementations SPIDER is a referenced technique,
where the reference is either the pulse itself or, with a slight
modification, a known external field. More recently a new
algorithm, MICE [29], which relies as well on multishear
techniques, has been developed. Contrary to the standard SPI-
DER extraction algorithm, MICE allows for the mutual char-
acterization of multiple unknown fields at the same time. Due
to the redundancies achieved via the multishear arrangement,
MICE performs extremely well even under very stringent
noise conditions. This technique has proven to be extremely
versatile in the classical regime and it has been employed
for the reconstruction of spectral phases of complex pulses in
the visible–near-IR regime [30], for wave front reconstruction
[29], for the spatial characterization of high-harmonic sources
[31], and for digital holography microscopy [32].
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Here we propose how to interface MICE with the specific
needs of quantum light detection. Merging together the two
tools demands devising a detection scheme for which MICE
can be adopted and feed back the requirements of the detec-
tion to the implementation of MICE. In order to do so, the
measurement strategy relies on the use of a modified Franson
interferometer [33,34] which is commonly adopted in quan-
tum optics but has no equivalent in classical metrology. The
modified Franson scheme allows us to observe genuine time-
bin entanglement without relying on time-resolved detection.
This is a necessary condition to obtain coincidences which
are dependent on the bi-photon spectral phase to be extracted.
Simulations show that due to the redundancy provided by the
multishear approach, the technique works reliably even with
moderate signal intensities.

II. QUANTUM MICE

MICE is a classical metrology technique which uses an
iterative algorithm to simultaneously reconstruct multiple un-
known fields Ei depending on a set of parameters γ without
the need of an external known reference. This is made possible
by means of a multishear measurement strategy, in which
multiple shears must be used to scan the fields along each
parameter, and the number of fields to reconstruct must be
lower than the number of shears used for each dimension. This
is sufficient to guarantee enough redundancy, which makes the
technique particularly robust against noise. Given two fields
E1(γ ) and E2(γ ), MICE relies on the minimization of the
error with respect to each field [29]:

E =
∑
j,k,l

∣∣ACmeas
j−k, j−l − E1(γ j − �k )E∗

2 (γ j − �l )
∣∣2

, (1)

where ACmeas is the measured interferometric product be-
tween the two fields, obtained as the sideband of the Fourier
transform of Ik,l = |E1(γ − �k ) + E2(γ − �l )|2. Measuring
the bi-photon spectral phase requires implementing interfer-
ometric schemes, which typically demand long accumulation
times to achieve good signal levels. Given its robustness
against noise, using MICE grants a solution to this, becoming
the preferable choice for such an endeavor. This is conditioned
on properly choosing an arrangement whose measurement
outcome obeys the behavior described above.

Consider the modified version of the interferometric
scheme proposed by Cabello et al. [33], as depicted in Fig. 1.
The original motivation of this scheme lies in easing some
technical requirements of Franson’s original idea [35] for
the generation of time-bin entanglement. A photon pair is
generated via SPDC; both the signal and idler photons can
undertake either a short |S〉 or a long |L〉 path before being de-
tected with a frequency-resolved measurement. This scheme
has been proved to generate time-bin entanglement between
the short and long paths without relying on time-resolved
detection [33]. In order to make it suitable for our purposes,
two further modifications need to be introduced: frequency-
resolved detection is adopted; independent frequency shears
are inserted on the Ss and Li path: the signal will be sheared
only when taking the short path, the idler only when taking
the long one. Shearing can be performed by means of electro-
optic modulators (EOMs) as proposed and demonstrated by

FIG. 1. Proposed interferometric scheme. A photon pair pro-
duced via SPDC enters a modified Franson interferometer where
each photon can undertake either a long (L) or short (S) path. When
the signal (idler) photon passes through the short (long) path it
is subject to a frequency shear given by the EOM. A frequency-
resolved coincidence counting measurement is then performed.

[20,36]. This is preferable to nonlinear optical shearing, as we
work in the single-photon regime. Since we adopt a multishear
approach, both the shears have to be scanned independently
through multiple values, so that for each shear (�1,k ) on Ss,
the shear (�2,l ) on Li scans along the idler dimension of the
joint spectral wave function. In the most general case, MICE
is not bounded to work with fields having the same spectral
support, if the shears are chosen so that the interferograms
will completely cover the fields along every dimension. In
fact, the phase will only be retrieved in the zones covered by
the interference. At the same time the interferograms given
by two subsequent shears need to overlap; otherwise they
cannot make use of the redundancy. If the fields interfering
have the same support, the sole purpose of the multiple shears
is to grant the redundancy; hence they can be as small as
allowed by the detection resolution. The state entering the
interferometer will be given by [37]

�(ωs, ωi ) =
∫

dωs dωiA(ωs, ωi )a
†
s (ωs)a†

i (ωi )|0〉|0〉, (2)

where A(ωs, ωi ) = JSA(ωs, ωi )eiJSP(ωs,ωi ) is the wave function
of the bi-photon state. As the photon pair goes through the
interferometer, the output state �̃ will be transformed into

�̃(ωs, ωi,�1,k,�2,l , τ )

=
∫

dωs dωiA(ωs, ωi )a
†
s (ωs + �1,k )a†

i (ωi )

+ A(ωs, ωi )a
†
s (ωs)a†

i (ωi + �2,l )e
i(ωs+ωi+�2,l )τ |0〉|0〉,

(3)

where τ is the delay between the two paths and we have
supposed performing the shear on the Li path after a length
equal to that of the S paths. We notice however that due to
the modified geometry, the detector will not always measure
ωs or ωi, and that is a fundamental requirement to assure
genuine time-bin entanglement between the two photons, as
it allows us to automatically discard the |S〉|L〉 and |L〉|S〉
events. The measurement on �̃(ωs, ωi,�1,k,�2,l , τ ) resolves
the frequencies ωA and ωB at each detection site. When both
photons undertake the short path, detector A will measure
ωA = ωs − �1 and detector B ωB = ωi; when both photons
take the long path, ωA = ωi − �2, ωB = ωs.
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The measured coincidence probability reads

P(ωA, ωB) = |A(ωA, ωB) + A(ωB, ωA)ei(ωA+ωB )τ |2 (4)

which, by defining A1(ωA, ωB) = A(ωA, ωB) and
A2(ωB, ωA) = A(ωB, ωA)ei(ωA+ωB )τ , in terms of the signal
and idler frequencies, becomes

P(ωs, ωi,�1,k,�2,l )

= |A1(ωs − �1,k, ωi ) + A2(ωs, ωi − �2,l )|2, (5)

which has the same structure of the interferogram I between
E1(γ ) and E2(γ ), where γ corresponds to the set of parame-
ters γ = ωs, ωi. As such, this can now be processed with the
MICE algorithm, solving the following equations which have
been obtained by minimizing the error in Eq. (1) with respect
to both fields (∂E/∂Ai = 0):

A1(ωi, ω j ) =
∑

k,l ACmeas
i−k, j+l A

∗
2(ωi + �1,k, ω j − �2,l )∑

k,l A2(ωi − �1,k, ω j + �2,l )
,

A∗
2(ωi, ω j ) =

∑
k,l ACmeas

i+k, j−l A
∗
1(ωi − �1,k, ω j + �2,l )∑

k,l A1(ωi − �1,k, ω j + �2,l )
.

(6)

To solve this set of equations it is necessary to provide an
initial guess for A2 to obtain an initial value of A1, which is
then fed into the second equation. By iteration the two fields
are retrieved. Here we do not make use of the fact that the
two fields are strongly related. We can leave the structure of
the MICE equations unaltered and compare the reconstructed
field as means of verifying the consistency of the recon-
struction. We remark that as any implementation based on
SPIDER, MICE suffers form ambiguities in determining the
amplitude X (ωs, ωi ): the phases retrieved for both fields will
be accurate, but the amplitudes will not. In order to retrieve the
JSA with the setup proposed, it would be sufficient to block
the L arms, and perform the spectral measurement on the S
arms alone.

III. NUMERICAL TESTS

In order to test the analysis routine, we perform a bi-photon
phase reconstruction on simulated data. The JSA and JSP
constituting A1 are shown in panels (a) and (b) of Fig. 2, and
are those typically emitted (e.g., those in Refs. [15,20]). The
field is sampled on a 32 × 32 pixel grid, covering a spectral
range of 10 nm centered at 820 nm along each dimension. A2

is obtained as a permutation between the two dimensions of
A1. The shears are then applied to both fields. Both �1 and
�2 can each assume 8 different values, which leads to 64
interferograms per reconstruction. As per Fig. 2, we choose
a scenario in which the correlations are present only in the
phase to be retrieved and not in the JSA. Since the amplitude
of the two fields is the same and the multiple shears are used
only for the required redundancy, their value can be as small
as dictated by the detection resolution, so in order to have
eight different values, the shear on each arm will vary between
−4 pixels and 3 pixels (where each pixel corresponds to
	λ ∼ 0, 3 nm).

To test against the robustness to noise in a realistic sce-
nario, we perform different reconstructions by varying the sig-

FIG. 2. Simulation results. (a) Joint spectral amplitude for A1.
(b) Joint spectral phase for A1. (c)–(e) Interferograms obtained with
5, 20, and 5000 maximum peak coincidence counts. (f)–(h) Retrieved
joint spectral phase for the three signal intensities.

nal intensity. In particular the interferograms are normalized
by setting peak coincidence counts of the interferogram
Nmax, from 5 to 8000 coincidences. Furthermore acciden-
tal coincidences are added accordingly, given by Nacc =
(Nmax/0.1)2/(80 × 106), obtained considering a 10% coinci-
dence efficiency to determine the signal intensity and a repe-
tition rate of 80 MHz. Note that Nacc is calculated on the max-
imum coincidence value and is hence overestimated. The use
of Nmax as a figure of merit was preferred to the total number
of coincidences as this (for a given number of coincidences
per frequency bin, set by Nmax) would depend solely on the
spectral shape and bandwidth of the input state. The collection
time as well would strongly depend on the implementation,
and hence cannot be specified. The interferograms are then
randomly generated with a Poissonian distribution centered
at the value give by the normalization for each pixel, to which
Possionian-distributed accidental coincidences are added. The
interferograms are then fed to the MICE algorithm set with
20 iterations. The interferograms for Nmax = 5, Nmax = 20,
and Nmax = 5000 coincidence counts are shown in Fig. 2,
panels (c)–(e). Panels (f)–(h) show the reconstructed JSP of
A1 for each signal intensity. The phase of A2, which is also
reconstructed, is not shown as it does not add any meaningful
information.

Each reconstruction is then repeated 30 times to accu-
mulate statistics for calculating the RMS error, weighted
with the field’s intensity [38], between the original and re-
trieved phase of A1. The results are shown in Fig. 3. Varying
the signal intensity, the error converges to its minimum of
0,0045 rad for Nmax = 5000. However even for 5 peak counts
the intensity-weighted RMSE is 0.056 rad, which indicates
a good agreement between the retrieved and original phase.
In fact, even when the full span of the phase is not recon-
structed, the low intensity does not affect the reconstruction
in the portion with nonzero signal. This makes MICE an
excellent tool for dealing with particularly low count rates
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FIG. 3. RMS error between the original and retrieved phase vs
the interferogram’s peak coincidence counts. The error saturates at
5000 peak coincidences at 4.5 × 10−3 rad.

and noisy scenarios. Shear, resolution, and signal intensity
all concur in achieving a correct reconstruction and have
to be tailored to the measured state, taking into account its
spectral amplitude and phase complexity, which is common to
every reconstruction technique in the classical domain as well.
Nonetheless, with the appropriate choice of parameters, the
algorithm is capable of successfully reconstructing arbitrarily
complex JSPs, as demonstrated in the reconstruction in Fig. 4,
where the University of Roma Tre logo has been used as
the JSP. With respect to the reconstruction shown before,
32 shears were employed instead of 8; however the same
resolution and spectral intensity were kept as in the previous,
more realistic case. In this example the redundancy given by
the multiple shears contrasts with the lack of resolution in
the reconstruction of a highly structured phase, showing the

FIG. 4. JSP reconstruction of University of Roma Tre logo.

flexibility given by the interplay among the many reconstruc-
tion parameters.

Concluding, we propose of a technique which is capable
of characterizing the joint spectral phase of a bi-photon state
even in low-signal, noisy regimes. This takes advantage of the
high redundancy granted by the multishear approach, which
is implemented using a modified Franson interferometer. The
robustness to noise is reflected in a rapid convergence of
the RMS error to its minimum. The proposed setup presents
its complexities but it has already been successfully used
in many endeavors. The lack of strict signal requirements
and the robustness to noise make up for these complexities,
posing this technique as a possible route to obtain a complete
characterization of time-frequency states.
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