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Quantum mean embedding of probability distributions
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The kernel mean embedding of probability distributions is commonly used in machine learning as an injective
mapping from distributions to functions in an infinite-dimensional Hilbert space. It allows us, for example, to
define a distance measure between probability distributions, called the maximum mean discrepancy. In this
work, we propose to represent probability distributions in a pure quantum state of a system that is described
by an infinite-dimensional Hilbert space and prove that the representation is unique if the corresponding kernel
function is c0 universal. This enables us to work with an explicit representation of the mean embedding, whereas
classically one can only work implicitly with an infinite-dimensional Hilbert space through the use of the kernel
trick. We show how this explicit representation can speed up methods that rely on inner products of mean
embeddings and discuss the theoretical and experimental challenges that need to be solved in order to achieve
these speedups.
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I. INTRODUCTION

In machine learning, kernel methods are used to implicitly
evaluate inner products in high-dimensional feature spaces.
Popular linear algorithms, such as the support vector machine
[1,2] or principal component analysis [3], become more ex-
pressive if the data are first mapped onto a high-dimensional
feature space. Instead of evaluating inner products explicitly
in the feature space, a more efficient evaluation can be done
implicitly in the original space using a positive-definite kernel
function. This is known as the kernel trick [4]. The kernel trick
does not require an explicit feature map, and hence allows us
to work with infinite-dimensional feature spaces, e.g., using
a Gaussian kernel. Nevertheless, most kernel-based methods
scale polynomially with the size of the data sets. This problem
has been tackled in the realm of quantum computation and
exponential speedups have been conjectured [5,6]. However,
such speedups are still highly controversial [7,8].

Recently, the cost of a single kernel evaluation was ad-
dressed by quantum computing research [9–11]. Speedups
might be possible since the cost of explicitly evaluating inner
products of quantum states only grows logarithmically with
the system size [12], as opposed to linear on a classical
computer. Schuld and Killoran further conjecture the usage
of continuous-variable quantum systems for working with
classically intractable, i.e., hard to compute, kernels in infinite
dimensions [10], but it is unclear whether problems exist for
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which such kernels are beneficial. Furthermore, the recent
suggestions do not address the polynomial scaling of kernel
methods with the sample size, leaving the application of quan-
tum computing in large-scale kernel methods a challenging
problem.

The idea of explicitly representing an infinite-dimensional
feature vector as a quantum state opens a way to tackle this
problem. While it is impossible classically to sum two infinite-
dimensional vectors, a quantum mechanical superposition of
two states can be constructed explicitly, even for infinite-
dimensional systems; see, e.g., [13]. On the other hand, the
evaluation of inner products in an infinite-dimensional quan-
tum Hilbert space is independent of the number of states in a
superposition. We identify methods involving the kernel mean
embedding [14–16] as a branch of machine-learning tech-
niques that suffer from the fact that on a classical computer,
the cost of the evaluation of inner products of sums of feature
maps is not independent of the number of data points involved.

This paper is organized as follows. We start by introducing
the kernel mean embedding from a classical perspective, point
out the main problem it has in big data applications, and
present its relevance in current machine-learning research
through some real-world applications. We then define the
quantum mean embedding as a modified version of the kernel
mean embedding, which makes it suitable for investigation in
the context of quantum computation, and show that this modi-
fication still allows for the usage in conventional applications.
We present how the quantum mean embedding can be used,
in principle, to overcome the problems faced classically and
discuss the challenges left to achieve this. Finally, we sum up
with a discussion of our results.

II. KERNEL MEAN EMBEDDING

Let X be a locally compact and Hausdorff space. A
function k : X × X → C is called a positive-definite ker-
nel function, or kernel function for brevity, if, for all
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n ∈ N, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ C, it holds that∑n
i, j=1 c∗

i c jk(xi, x j ) � 0 [4]. For every kernel function, there
exists a unique reproducing kernel Hilbert space (RKHS)
Hk such that k(·, x) ∈ Hk for all x ∈ X and the reproducing
property f (x) = 〈 f , k(·, x)〉Hk holds for all f ∈ Hk and x ∈
X . We call the mapping φ : X → Hk given by φ(x) := k(·, x)
the canonical feature map of k, i.e., k(x, y) = 〈φ(y), φ(x)〉
[17].

Let P be a probability measure over X . The kernel mean
embedding (KME) of P is defined as [14,15]

μP :=
∫
X

k(·, x)dP (x) =
∫
X

φ(x)dP (x). (1)

The embedding μP exists and is a function in Hk

if EX∼P [k(X, X )] < ∞ [15]. Based on a sample X =
{x1, . . . , xn} drawn from P , an empirical estimate of μP

is given by the KME of the empirical distribution P̂ =
1
n

∑n
i=1 δxi ,

μX := 1

n

n∑
i=1

φ(xi ). (2)

The kernel function k is said to be characteristic if the map
μ : P 	→ μP is injective [18,19]. Thus, the corresponding
KMEs represent all properties of a probability distribution by
a function in the RKHS. The notion of characteristic kernels
is closely related to the notion of universal kernels [20]. Here
we call a kernel c0 universal if the corresponding RKHS is
dense in the space of continuous functions over X that vanish
at infinity [21]. For c0-universal kernels, the KME is injective
even for finite-signed measures [21]. Popular universal kernels
include the Gaussian kernel k(x, y) = exp(−‖x − y‖2/2σ 2)
and Laplacian kernel k(x, y) = exp(−‖x − y‖1/σ ), where σ

is a bandwidth parameter [19,22].
The expressiveness of characteristic kernels comes at a

price. Since there exist distributions with infinite moments,
the corresponding RKHS must have infinite dimensions to
prevent information loss. Consequently, it is classically im-
possible to represent and manipulate μX directly. However,
if we only care about inner products of mean embeddings,
which is usually the case in most algorithms, we can resort
to the “kernel trick” and replace inner products with kernel
evaluations [4]. That is, given independent and identically
distributed (i.i.d.) samples X = {x1, . . . , xn} from P and Y =
{y1, . . . , yn} from Q [23], we can evaluate

〈μX , μY 〉 = 1

n2

n∑
i, j=1

〈φ(xi ), φ(y j )〉 = 1

n2

n∑
i, j=1

k(xi, y j )

=: K (X,Y ). (3)

The inevitable drawback of this trick is that algorithms based
on K (X,Y ) have a runtime complexity that scales at least
quadratically with the number of data points n.

In the following, we present essential applications of the
KME, which suffer from the above limitation.

Learning on probability distributions. Classical machine-
learning algorithms were originally developed for training
data consisting of points in some vector space. In several do-
mains such as astronomy and high-energy physics, however,
data are represented naturally as probability distributions,

e.g., clusters of galaxies and groups of collision events. The
KME (1) allows us to generalize algorithms to the space of
probability distributions [24–27] through the distributional
kernel function,

K (P ,Q) = 〈μP , μQ〉Hk =
∫∫

X
k(x, y)dP (x)dQ(y). (4)

Given i.i.d. samples X = {x1, . . . , xn} from P and Y =
{y1, . . . , yn} from Q, K (P ,Q) can be approximated by

K (P ,Q) ≈ 1

n2

n∑
i, j=1

k(xi, y j ) = K (X,Y ). (5)

Maximum mean discrepancy (MMD). The MMD is a
discrepancy measure between any two distributions P and
Q [28,29]. It is given by the distance of the corresponding
mean embeddings of the distributions [29, Lemma 4] and
can be expressed solely in terms of inner products of mean
embeddings (assuming a real kernel),

MMD[Hk,P ,Q]2 = ‖μP − μQ‖2

= 〈μP , μP 〉 − 2 〈μP , μQ〉 + 〈μQ, μQ〉.
(6)

For characteristic kernels, MMD[Hk,P ,Q] = 0 ⇔ P = Q
[29, Theorem 5]. With the samples X and Y , it is possible
to estimate the MMD by evaluating (6) with the embeddings
μX and μY [29, Eq. (5)]:

MMD[Hk, X,Y ]2 = ‖μX − μY ‖2

= K (X, X ) − 2K (X,Y ) + K (Y,Y ). (7)

Deep learning. The applications of KMEs in deep learning
have gained a lot of attention in the past few years. Notably,
the MMD has been used as an objective function for training
deep generative models [30–32]. For a deep generative model
Gθ , parametrized by a parameter vector θ , the idea is to
learn θ by minimizing the MMD[Hk,P ,Qθ ]2, where P is
the data distribution and Qθ is the distribution induced by the
generative model Gθ . In this area, we usually deal with a huge
amount of data [33].

All of the above applications require the estimation of
terms such as K (X,Y ), which scale quadratically with the
sample size n, and hence become prohibitive for large n. To
enable large-scale learning with KMEs, a common approach
is to approximate μX by a finite-dimensional representation,
e.g., using random Fourier features [34] or the Nyström
method [35], after which it can be manipulated explicitly. For
a d-dimensional approximation, the cost drops to O(n + d ),
which is linear in n. The downside is that the embedding de-
fined in terms of this representation can no longer be injective,
which is an essential requirement in most applications of the
KME.

Recent work [10,11] showed how one can, in principle,
evaluate a d-dimensional approximation of the kernel function
using only O(log2 d ) qubits. Furthermore, Ref. [36] has inves-
tigated quantum kernels in the context of the MMD. Reference
[37] formulates quantum graphical models in terms of the
kernel mean embedding and uses a density matrix as a mean
map. On the contrary, we focus on the quadratic scaling when
using an infinite-dimensional feature map.
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FIG. 1. Schematic comparison of the classical KME and the
QME: The KME maps probability distributions P onto functions in
the RKHS Hk . The QME additionally enforces that the mapping is
onto the unit ball (denoted by the circle) in the RKHS. Theorem
1 shows the injectivity of the QME for c0-universal kernels. For
visualization, we choose H = Hk .

III. QUANTUM MEAN EMBEDDING

Let H be the Hilbert space of a quantum system and ϕ :
X → H, x 	→ |ϕ(x)〉 be a quantum feature map that assigns a
quantum state |ϕ(x)〉, i.e., a normalized function in H, to each
point in the input domain x ∈ X [38]. This defines a kernel
k(x, x′) = 〈ϕ(x)|ϕ(x′)〉 [10,11] with the constraint k(x, x) = 1
for all x ∈ X , due to the normalization of quantum states [39].

Let P be a probability distribution over the input domain.
We define the quantum mean embedding (QME),

|νP 〉 := 1

NP

∫
X

|ϕ(x)〉 dP (x), (8)

where the normalization NP ensures the physicality of the
state and is given by the norm of the corresponding KME (1),
i.e., NP := ‖μP‖Hk .

The QME exists for all probability distributions due to the
constraint k(x, x) = 1. A subtle difference between the KME
and the QME are the spaces in which the embeddings live.
While the KME is a function in the RKHS Hk and uniquely
defined by the kernel k, the QME depends on the quantum
system’s Hilbert space H and the choice of the feature map ϕ.

Even though the embeddings live in different spaces, for
any two probability distributions P and Q, we have

〈μP , μQ〉Hk
= NP · NQ 〈νP |νQ〉H . (9)

That is, their inner products have a fixed relation independent
of H. Hence, the important difference is that the QME maps
every probability distribution on the unit sphere in a Hilbert
space, whereas the KME does not enforce this; see Fig. 1.
In the following theorem, we show that if the kernel is c0

universal, we do not lose information about a probability
measure when using the QME.

Theorem 1. Injectivity of the QME. Let P be the space of
Borel probability measures over the measurable space (X ,A),
where A denotes the Borel σ algebra. Let ϕ : X → H, x 	→
|ϕ(x)〉 be a mapping such that k(x, y) = 〈ϕ(x)|ϕ(y)〉. If k is
a c0-universal kernel, the QME (8) is injective over P , i.e.,
|νP 〉 = |νQ〉 ⇔ P = Q for any P ,Q ∈ P .

The proof is included in the Appendix.
For a finite sample X , we define an empirical QME as

|νX 〉 := 1

NX

1

n

n∑
i=1

|ϕ(xi )〉 , (10)

Creation of QME Swap test

|0〉 H H

X Eϕ |νX〉

Y Eϕ |νY 〉

FIG. 2. The quantum approach separates the creation of the
QME from the inner-product estimation. It requires two subroutines:
an experimental setup Eϕ that creates the QME efficiently (left), and
the swap test (right), which uses an ancillary qubit to estimate inner
products of arbitrary states. This approach detaches the estimation of
the inner product from the sample size.

with the normalization constant

NX = ‖μX ‖Hk =
√√√√ 1

n2

n∑
i, j=1

k(xi, x j ). (11)

As discussed before, for infinite-dimensional feature maps,
the KME cannot be described explicitly and only used via in-
ner products. The advantage of the QME is that it is possible,
in principle, to explicitly create |νX 〉 in the laboratory, even
for infinite-dimensional cases. Here it is important that an
experimenter only needs to create a state that is proportional
to

∑n
i=1 |ϕ(xi )〉. The prefactor (11) is enforced by the laws of

physics and is not required for the state preparation. Given this
explicit representation, it allows us to decouple the cost of the
inner-product evaluation from the sample size n; see Fig. 2.

Conjecture 1. Suppose we are given a routine that prepares
states of the form (10) with cost O(n) for a feature map ϕ.
In addition, we are given a routine that can evaluate inner
products of arbitrary states in H in constant time. Then, for
two samples X = {x1, . . . , xn} and Y = {y1, . . . , yn}, one can
evaluate K (X,Y ), defined in Eq. (3), with cost O(n), whereas
a classical computer scales with O(n2).

Proof. By assumption, we can prepare |νX 〉 and |νY 〉 with
linear cost in n. Furthermore, we can evaluate 〈νX |νY 〉 in
constant time, given the individual states. Together the cost
of evaluating the term 〈νX |νY 〉 scales, at most, with O(n). The
normalizations NX and NY can also be estimated with cost
O(n); see Sec. IV. Using relation (9), we obtain

K (X,Y ) = 〈μX , μY 〉Hk
= NXNY 〈νX |νY 〉H . (12)

�
Compared to the classical KME, this conjecture implies

that under the stated assumptions, it is possible to simul-
taneously reduce the cost of the QME while preserving its
expressibility guarantee given in Theorem 1.

Given an efficient evaluation of K (X,Y ), it is possible to
speed up the methods presented earlier, which rely on inner
products of the KMEs. In Sec. IV, we discuss the assumptions
of Conjecture 1.

Apart from using the QME to speed up the evaluation of
inner products of the KMEs, it follows from the proof of
Theorem 1 that the QME is also important on its own, as it
can uniquely represent probability distributions. However, it
is unclear to what extent the applications of the KME could
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be rephrased solely in terms of inner products of the QME
instead of taking the detour over K (X,Y ), where we need to
determine the normalizations.

IV. CHALLENGES

In order to harvest a potential quantum speedup, it is
necessary to create the QME efficiently, i.e., with resources
and time linear in the sample size. We phrase this as the first
challenge:

Given a quantum feature map ϕ, find an experimental
strategy, denoted Eϕ , such that for an arbitrary input sample
X = {x1, . . . , xn}, with n ∈ N, it creates |νX 〉, using resources
that scale, at most, linear in n.

In the case of coherent states as the feature map (see the
Appendix), superpositions similar to |νX 〉 have already been
experimentally realized for specific cases and are known as
“cat states” [13,40,41]. However, it is an open question how
these approaches scale, even theoretically, for superposing a
large number of states; see [42] for an overview on similar
experimental approaches. In general, the rigorous study of
resources required to construct superpositions of quantum
states and the connections to entanglement are the subject
of current research [43,44]. Particularly for the case of su-
perpositions of nonorthogonal states, as is the case for our
proposed embedding, the theory becomes more involved; see
Sec. III.K.4 of Ref. [44].

Note that we explicitly allow for an experimental setup
Eϕ that is specific to the given quantum feature map ϕ,
i.e., a specific kernel function. This is necessary because a
universal machine that builds a superposition of completely
arbitrary and unknown quantum states cannot exist [45,46].
Furthermore, we emphasize that this work does not require a
qRAM [47].

Given the QMEs, at the core of our approach lies the
estimation of the inner product of two arbitrary quantum states
in H. Formally, this can be done by using the swap test [48];
see right side of Fig. 2. The swap test works independently
of the input states, which for our purpose we denote by
|νX 〉 , |νY 〉 ∈ H. These inputs are each in one register and a
single ancilla qubit in the state |0〉 in an additional register.
The test itself consists of a Hadamard transformation H on
the qubit, followed by a controlled swap of the two states
conditioned on the state of the qubit, and another Hadamard
transformation on the qubit. This circuit maps the initial state
|0〉 |νX 〉 |νY 〉 onto

|0〉 (|νY 〉 |νX 〉 + |νX 〉 |νY 〉) + |1〉 (|νY 〉 |νX 〉 − |νX 〉 |νY 〉)

2
;

see [48, Eq. (4)]. At the end, the qubit is measured in
the computational basis. This results in outcome 0 with
probability p0 = (1 + | 〈νX |νY 〉 |2)/2 and outcome 1 with
probability p1 = 1 − p0. Repetitive application of this routine
allows for an estimation of p0 and p1, from which one
can infer | 〈νX |νY 〉 |2 = 2p0 − 1. When using a Gaussian
kernel, we know a priori that 〈νX |νY 〉 > 0, and thus
〈νX |νY 〉 = √

2p0 − 1. If we cannot guarantee the positivity
of 〈νX |νY 〉, we need a phase-sensitive estimation of inner
products, as discussed in the supplemental material of [10].

Crucially, the swap test works independently of the size of
the samples X and Y .

For finite-dimensional systems, Ref. [12] recently pro-
posed an implementation that scales logarithmically with
the dimension of the Hilbert space. But this approach does
not translate to systems of infinite dimension. The infinite-
dimensional case has been studied in Refs. [49–51]. However,
they do not give an explicit solution and we are not aware of
any experimental realization of a universal swap test for the
infinite-dimensional case. This marks the second challenge
arising from this paper.

At the stage of preparing superpositions in the form of (10)
on a quantum device, it is not necessary to know the value
of the normalization NX . However, if the goal is to estimate
K (X,Y ) with the help of a quantum device, then knowledge
of the normalizations is needed; see (12). The naive approach,
i.e., using its definition (11), takes O(n2) operations and would
prohibit the polynomial advantage. In the Appendix, we show
how one can estimate NX . The suggested strategy only relies
on the previous two challenges and hence does not pose a
difficulty by itself.

V. CONCLUSION

In this work, we adapted the concept of kernel mean
embeddings to quantum mechanics, by defining the quantum
mean embedding. While the kernel mean embedding maps a
probability distribution to a function in a reproducing kernel
Hilbert space, the quantum mean embedding can only map
onto the unit sphere of a Hilbert space, a necessity that
arises due to the normalization of quantum states. Despite
this additional constraint, we showed that the quantum mean
embedding is still injective if the induced kernel is c0 univer-
sal. Since the quantum mean embedding can, in principle, be
created in the laboratory, it allows for a polynomial speedup
when computing inner products between mean embeddings
of empirical distributions. We highlighted the relevance of
this task by describing use cases in recent machine-learning
applications. We made explicit which requirements need to
be fulfilled by the quantum hardware in order to harvest the
polynomial advantage.

This work opens multiple paths for further research; for
example, on the quantum side, the experimental creation of
superpositions of a large number of states and the estimation
of inner products thereof. Furthermore, the quantum mean
embedding is a way of encoding probability distributions in
quantum states, which allows us to use the results known
from the kernel theory. For machine-learning research, it
is an open question what the possible applications of the
embedding of probability distributions onto the unit sphere in
the reproducing kernel Hilbert space could be.
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APPENDIX

Proof of Theorem 1. We make the proof in terms of the
canonical feature map φ, which maps into the RKHS. The
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validity for any mapping ϕ : X → H that leads to the same
kernel function is then trivial.

Let M(X ,A) denote the set of finite non-negative mea-
sures on the measurable space (X ,A), i.e., ξ (X ) < ∞ for
all ξ ∈ M(X ,A). We can extend the definition of the kernel
mean embedding (1) to M(X ,A) by defining

μξ =
∫
X

k(·, x)dξ (x) =
∫
X

φ(x)dξ (x), (A1)

for any ξ ∈ M(X ,A) that fulfills
∫
X k(x, x)dξ (x) < ∞. Let

ξ1 and ξ2 be arbitrary measures in M(X ,A). By assumption,
k is universal over C0(X ) and thus characteristic over
M(X ,A), i.e., μξ1 = μξ2 ⇔ ξ1 = ξ2; see Theorem 6 in
Ref. [21].

Define νP as the mean embedding onto the unit sphere of
the RKHS,

νP := 1

NP
μP , (A2)

with NP ∈ R+ such that ‖νP‖Hk = 1. Let P and Q be proba-
bility measures for which the embedding onto the unit sphere
(A2) coincide, i.e., νP = νQ. We can relate this to the kernel
mean embeddings as

μP = NP νQ = NP

NQ
μQ = μξ , (A3)

where we defined the finite non-negative measure ξ = NP
NQ

Q,
using the linearity of (A1). With the injectivity of the em-
bedding (A1), this implies P = ξ = NP

NQ
Q. By assumption, P

and Q are probability measures and fulfill P (X ) = Q(X ) =
1. This implies NP

NQ
= 1 and thus P = Q, which proves the

injectivity of ν for the set of probability distributions. �

1. Coherent states and Gaussian kernel

In this section, we consider an explicit example, previously
reported in Ref. [9]. Let H be an infinite-dimensional (com-
plex) Hilbert space, with orthonormal basis {|n〉}n∈N0 . This
could, for example, be the space corresponding to a single
mode of the electromagnetic field [52]. For simplicity, we
consider X = R and define the feature map ϕ : R → H as

|ϕ(x)〉 = e− 1
2 x2

∞∑
n=0

xn

√
n!

|n〉 . (A4)

In quantum optics, the states |n〉 are called Fock states. States
of the form (A4) are called coherent states and are well studied
[53]. In the context of this paper, however, the nature of

the basis and hence the exact form of the Hilbert space are
unimportant. The important part is the orthonormality of the
basis states, which implies

〈ϕ(x)|ϕ(x′)〉 = e− 1
2 (x−x′ )2 =: k(x, x′), (A5)

for arbitrary x, x′ ∈ R, and defines the popular Gaussian
kernel [4]. By composing the mapping (A4) with the map-
ping x 	→ x

σ
, for some σ > 0, it is also possible to include

a bandwidth parameter σ . The Gaussian kernel fulfills the
requirements of Theorem 1 (see [21, theorem 17]). Therefore,
it is possible to construct an injective embedding of probabil-
ity distributions over the real numbers in a superposition of
coherent states.

Coherent states are commonly considered the most clas-
sical states in quantum optics and are easy to simulate on
a classical device. Working with a quantum device becomes
interesting when the states become nonclassical [52]. When
using the coherent feature map (A4), the embedding of a
sample (10) corresponds to the cat states [13,40,41]. Cat states
are considered nonclassical, as their Wigner function attains
negative values. From a quantum perspective, this already
hints at the difficulties encountered when working with such
states on classical devices.

2. Estimation of NX

In order to obtain NX without explicitly calculating (11),
we can evaluate NX by estimating the inner product with
a reference state |ψref〉 = |ϕ(xref )〉 for some reference value
xref ∈ X . To this end, we analytically calculate

c := 1

n

n∑
i=1

〈ψref|ϕ(xi )〉 = 1

n

n∑
i=1

k(xref, xi ), (A6)

using O(n) operations. Now given the preparation of |νX 〉
and of |ψref〉, we can experimentally evaluate the inner prod-
uct 〈ψref|νX 〉 and from this obtain the normalization NX =
c〈ψref|νX 〉−1. Obviously, in order to make this well defined,
we need to choose the reference function such that 〈ψref|νX 〉 �=
0. This strategy relies on the two challenges phrased in the
main text, i.e., the preparation of |νX 〉 and the estimation of
inner products, but apart from this does not pose an extra
difficulty by itself.

We emphasize again that due to Theorem 1, it should be
possible to come up with algorithms that directly work with
the QME and hence make the estimation of the normalization
superfluous.
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