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Using the fluctuation-dissipation theorem for nonconservative forces
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An equilibrium system which is perturbed by an external potential relaxes to a new equilibrium state, a
process obeying the fluctuation-dissipation theorem. In contrast, perturbing by nonconservative forces yields
a nonequilibrium steady state, and the fluctuation-dissipation theorem can in general not be applied. Here we
exploit a freedom inherent to linear response theory: Force fields which perform work that does not couple
statistically to the considered observable can be added without changing the response. Using this freedom,
we demonstrate that the fluctuation-dissipation theorem can be applied for certain nonconservative forces. We
discuss the case of a nonconservative force field linear in particle coordinates, where the mentioned freedom can
be formulated in terms of symmetries. In particular, for the case of shear, this yields a response formula, which
we find advantageous over the known Green-Kubo relation in terms of statistical accuracy.
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The linear response of a classical equilibrium system to a
potential perturbation U ptb applied for time t > 0 is given by
the fluctuation-dissipation theorem (FDT) [1–4],

〈A(t )〉ptb − 〈A〉 = − 1

kBT
[〈AU ptb〉 − 〈A(t )U ptb(0)〉], (1)

where A is an observable of interest, kB is Boltzmann’s
constant, T is temperature, and 〈· · · 〉ptb and 〈· · · 〉 indicate av-
erages in the perturbed and equilibrium system, respectively.
The stationary limit of formula (1) can be derived from the
equilibrium distribution the system relaxes to.

In contrast, a nonpotential perturbation drives the system
to a nonequilibrium steady state. The corresponding (nonequi-
librium) distribution is typically unknown [5], and the linear
responses to these types of perturbations yield forms fun-
damentally different from Eq. (1). One hence applies other
methods in this case, as equations for a probability distri-
bution [4,6–8], path integral techniques [9–14], or Malliavin
calculus [15–17]. Compared to Eq. (1), the resulting response
relations show less universality and typically contain time
integration through the transient dynamics of the system (see
Refs. [3,17–21] for specific examples).

In this work, we exploit a simple method for computing
the linear response to a nonpotential perturbation via FDT
for certain observables, using the freedom of adding forces
whose work does not couple to the considered observable.
Note that a similar freedom has been discussed in Ref. [22].
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We illustrate that, for a force perturbation linear in coordi-
nates, the mentioned freedom can be formulated in terms
of symmetries. We study in detail the case of a Brownian
system perturbed by simple shear flow, finding a response
formula [Eq. (11) below], which is an alternative to the classi-
cal Green-Kubo relation [Eq. (12) below]. Using numerical
simulations, the formula is found to have a lower variance
for all cases studied, making it advantageous in terms of
statistics.

Consider a classical system of N interacting particles,
subject to external potentials and coupled to a heat bath at
temperature T , in thermal equilibrium at time t = 0. For
time t > 0, the system is perturbed by nonconservative forces
{Fptb

i }, with Fptb
i acting on particle i at position ri. Because the

equilibrium state is time symmetric, the linear response of A
is related to the work done on the system [3,23],

〈A(t )〉ptb − 〈A〉 = 1

kBT

∫ t

0
dt ′

〈
A(t )

N∑
i=1

Fptb
i (t ′) · ṙi(t

′)

〉
.

(2)

If Fptb
i is a conservative force, i.e., Fptb

i = −∇iU ptb, the work∫ t
0 dt ′ ∑N

i=1 Fptb
i (t ′) · ṙi(t ′) = U ptb(0) − U ptb(t ) depends only

on the states, and Eq. (1) follows from Eq. (2).
Notably, response relation (2) displays a freedom in Fptb

i
when computing the perturbed A: It allows adding perturba-
tion forces Gptb

i whose work does not couple to the observable
A, i.e.,

∫ t

0
dt ′

〈
A(t )

N∑
i=1

Gptb
i (t ′) · ṙi(t

′)

〉
= 0, (3)

without changing the response of A. Thus, if a force Gptb
i

obeying Eq. (3) exists such that adding the two forces results
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FIG. 1. Illustration of the concept for the case of simple shear,
Fptb

i = κ12(yi, 0, 0)T . Superposition of Fptb
i and Gptb

i given by Eq. (6)
results in the gradient of the potential U ptb = − κ12

2

∑N
i=1 xiyi. Note

that this corresponds to superposition of the shear field with its image
mirrored at the plane x = y. Given the symmetries detailed in the
main text, the linear responses to Fptb

i and U ptb are identical.

in a potential U ptb,

Fptb
i + Gptb

i = −∇iU
ptb, (4)

then, according to Eq. (2), the response of A to the nonconser-
vative force Fptb

i is equivalent to the response to the potential
U ptb and given by formula (1). Exploring this possibility of
restoring an FDT is the content of this paper.

We investigate the specific case of a force field linear in ri,

Fptb
i = κ · ri, (5)

with the tensor κ independent of particle positions. If κ is sym-
metric, Fptb

i derives from a generalized harmonic potential.
The case of interest is that κ is not symmetric, such that Fptb

i
of Eq. (5) is not conservative. One natural way of exploring
the above-mentioned freedom is by using the transpose of κ,
i.e., it is promising to use

Gptb
i = 1

2 (κT − κ) · ri. (6)

The sum of Fptb
i and Gptb

i is then immediately found,

Fptb
i + Gptb

i = 1
2 (κ + κT ) · ri = −∇iU

ptb({ri}), (7)

where the potential is identified as

U ptb({ri}) = −1

4

N∑
i=1

ri · (κ + κT ) · ri. (8)

How to satisfy Eq. (3)? Many cases that do so can be
identified on the basis of symmetries, as we demonstrate by re-
garding κ = κ12x̂ ⊗ ŷ (with x̂, ŷ, and ⊗ denoting unit vectors
and the tensor product, respectively), i.e., shear forces (see
Fig. 1 for an illustration) [24]. From Eq. (8), the corresponding
potential reads

U ptb = −κ12

2

N∑
i=1

xiyi, (9)

being a potential with one stable and one unstable direction
in the xy plane (see Fig. 1). One direct way of fulfilling
Eq. (3) is restricting to systems and observables which are
symmetric under interchange of the x and y coordinates. These

are systems for which interaction and external potentials
remain the same under interchange {xi} ↔ {yi}, and observ-
ables which remain the same under interchange {xi} ↔ {yi}
and {vix} ↔ {viy} (where vix denotes the x component of the
velocity of particle i). Then condition (3) is fulfilled by sym-
metry [25]. For example, spherically symmetric potentials and
observables like A = ∑N

i=1 xiyi, A = ∑N
i=1 vixviy, or the xy

component of the stress tensor [4] comprise these symmetries.
Substituting Eq. (9) into Eq. (1), we find that, for these cases,
the linear response to shear forcing is given by

〈A(t )〉ptb − 〈A〉

= κ12

2kBT

[〈
A

N∑
i=1

xiyi

〉
−

〈
A(t )

N∑
i=1

xi(0)yi(0)

〉]
. (10)

Formula (10) thus provides the response to a nonconservative
force (shear force) via FDT.

Many models treat forces and external flow driving in an
identical manner. Regarding Brownian particles with mobility
μ [see Eq. (13) below], an external flow velocity field V(r)
gives rise to a force Fptb

i = V(ri )
μ

[26], neglecting hydrody-
namic interactions. The mentioned shear forces then translate
to shear flow by identifying κ12 = γ̇

μ
(with shear rate γ̇ ), and,

under the above symmetries, we obtain for the shear perturbed
〈A(t )〉(γ̇ ),

〈A(t )〉(γ̇ ) − 〈A〉

= γ̇

2kBT μ

[〈
A

N∑
i=1

xiyi

〉
−

〈
A(t )

N∑
i=1

xi(0)yi(0)

〉]
. (11)

Response relations (11) and (10) are our main results. We
note that Eq. (11) has been derived in Ref. [17] for a single
overdamped Brownian particle. A prestage version of Eq. (11)
has been given in Ref. [27], and we discuss the relation
at the end of this paper. Equation (11) is an alternative
to the classical Green-Kubo relation for shear which, for
the case of overdamped Brownian particles, reads as [see
Refs. [2–4,7,18,28,29] for various Green-Kubo relations, and
Ref. [18] for formula (12) in particular]

〈A(t )〉(γ̇ ) − 〈A〉 = γ̇

kBT

∫ t

0
dt ′〈A(t ′)σxy(0)〉, (12)

where σxy is the xy component of the stress tensor defined
as σxy = −∑N

i=1 (F int
ix + F ext

ix )yi, with F int
ix and F ext

ix being
interaction and external forces, respectively, acting on particle
i in direction x. One advantage of Eq. (11) over Eq. (12) is the
absence of a time integral. Another is that forces do not have
to be measured.

Seeking a numerical example, we turn to interacting over-
damped Brownian particles in two space dimensions, follow-
ing Langevin dynamics [3,23],

ṙi

μ
= κ · ri + Fint

i + Fext
i + fi, (13)

where μκ · ri is the shear velocity, imposed at t > 0, with the
shear-rate tensor μκ = γ̇ x̂ ⊗ ŷ.

Fint
i = −∇i

�

2

N∑
i=1

N∑
j=1( j �=i)

1

ri j
e−ri j/rc (14)
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FIG. 2. Response to shear flow for A = ∑N
i=1 xiyi of a two-

dimensional system of interacting Brownian particles confined in
a harmonic trap. The main plot shows the linear (small γ̇ ) re-
sponse computed by shearing (“Response”), using the Green-Kubo
formula (12), and using Eq. (11) (“FDT”). The inset plot shows
a nonlinear (large γ̇ ) response with the corresponding simulation
snapshots demonstrating the effect of shear on the morphology of
the cluster (black particles are in equilibrium, while orange particles
are sheared). Parameters: N = 50, k = 10, and C = 4 × 105.

are interaction forces, chosen to arise from a screened
Coulomb potential, with interparticle distance ri j ≡ |ri − r j |,
coupling strength �, and interaction range rc. The external
force follows from a harmonic potential,

Fext
i = −∇i

k

2

N∑
i=1

|ri|2, (15)

with spring constant k. fi is a Gaussian white noise,

〈fi(t )〉 = 0, 〈fi(t ) ⊗ f j (t
′)〉 = 2kBT

μ
Iδi jδ(t − t ′), (16)

where I is the identity matrix. We set kBT = rc = μ = 1,
and � = 25. N , k, γ̇ , and the number of independent noise
realizations C for performing averages are varied between
measurements. The dynamics is simulated using the Euler
method. We choose A = ∑N

i=1 xiyi, which is the lowest non-
trivial moment of the particle distribution. Since the system
and A are xy symmetric, condition (3) is fulfilled and formula
(11) is valid.

We compute 〈A(t )〉(γ̇ ) − 〈A〉 via three different routes: by
(i) applying finite shear, (ii) using equilibrium correlations
according to the Green-Kubo formula (12), and (iii) using
equilibrium correlations according to Eq. (11) (labeled “FDT”
in the figures). Figure 2 compares these as a function of time
t after start of shear. For small shear rate (main plot), all
methods agree, thereby confirming formula (11). For large
shear rate (inset plot), the deviation from the linear response is
evident, also regarding the form of the response curve, which
shows a characteristic “overshoot,” i.e., a nonmonotonic be-
havior as a function of time, which has also been observed in
sheared bulk systems [30]. Snapshots for equilibrium (black
particles) and sheared (orange particles) systems illustrate the

TABLE I. Scaling behaviors of the relative variance for the three
different computational methods (extracted from Fig. 3).

Method Response Green-Kubo FDT

Power for k 0.84 0 −0.02
Power for N −0.73 −0.01 −0.01

change of shape of the cluster from circular to ellipsoidal:
〈A〉 = 0, but 〈A(t )〉(γ̇ ) � 0.

Panels (a) and (c) of Fig. 3 show the dependence on the
confinement strength k and the number of particles N of the
steady-state response, again confirming agreement between
the three methods. From fits to the data, the response follows
the scaling ∝k−1.48 (compared to ∝k−2, obtained analytically
for N = 1) and ∝N1.55 (for N � 4).

Panels (b) and (d) of Fig. 3 show the corresponding vari-
ance, related to the statistical error of a single measurement
using the different methods [31]. It shows a notable differ-
ence between the methods following scaling behaviors of
∝k−0.64N0.82, ∝k−1.48N1.54, and ∝k−1.50N1.54, respectively.
The Green-Kubo relation and formula (11) scale similarly, but
the latter has a notably lower variance.

Table I compares scaling behaviors of the relative variance
(variance divided by the mean) for the three methods. The
relative variance of the directly measured response grows with
k and decreases with N . For the Green-Kubo relation (12) and
for Eq. (11), the relative variance hardly depends on k and N ,
indicating that the statistical efficiency of Eqs. (12) and (11) is
invariant with respect to changes of the effective system size
and density, highlighting an interesting property of the linear
response approach. For the set of parameters we used in our
simulations, Eq. (11) has the lowest variance. Comparing it
to the Green-Kubo relation (12), it thus needs a much smaller
number of independent runs (roughly a factor of 100 here,
estimated from the variance and the central limit theorem),
which, additionally to the mentioned absence of integration,
is advantageous.

Finally, the Langevin equation (13) allows one to give more
insights into the nature of Eqs. (11) and (12). Expanding the
corresponding path action in shear rate γ̇ yields for the linear
response [27]

〈A(t )〉(γ̇ ) − 〈A〉 = γ̇

2kBT μ

∫ t

0
dt ′

〈
A(t )

N∑
i=1

ẋi(t
′)yi(t

′)

〉

+ γ̇

2kBT

∫ t

0
dt ′〈A(t ′)σxy(0)〉. (17)

The second term on the right-hand side of Eq. (17), containing
the stress tensor, stems from the time-symmetric part of the
expanded action, and yields (the half of) Eq. (12). The term
containing ẋiyi is time antisymmetric, and yields, after adding
the transpose shear field, Eq. (11). Because the equilibrium
state is time symmetric, the two terms in Eq. (17) are identical
[32]. This discussion finally highlights another advantage of
FDT and Eq. (10): The form of Eq. (10), being based on
the time-antisymmetric part, related to the above-mentioned
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FIG. 3. Dependence of the stationary linear response [(a), (c)] and its variance [(b), (d)] on the confinement strength k [(a), (b)] and the
number of particles N [(c), (d)] obtained in the sheared system (“Response”), using the Green-Kubo formula (12), and using Eq. (11) (“FDT”).
Straight lines correspond to power-law fits. Parameters: N = 10 and γ̇ = 0.04 for panels (a) and (b); k = 10 and γ̇ = 0.1 for panels (c)
and (d).

work, is system independent, while Eq. (12) takes different
forms in different systems [33].

Using the freedom of adding forces whose work does not
couple to the considered observable, we found that the linear
response to nonconservative forces can be computed from
FDT. Compared to standard approaches, application of this
concept typically involves simpler quantities to be measured
[e.g., positions in Eq. (11) versus forces in Eq. (12)], does
not require time integrals, and necessitates a smaller number
of independent measurements. This is expected to make it
advantageous for both simulations as well as experiments.
Future work may address bulk systems via Eq. (11) in order

to obtain the shear viscosity and to connect to “Einstein
relations” for such viscosity [4,34–39].
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