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Repeated ringing of black holes: Quasinormal bursts from highly
eccentric, extreme mass-ratio binaries
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Recent studies of scalar and gravitational waveforms from high-eccentricity, extreme mass-ratio black-hole
binaries show the presence of quasinormal bursts (QNBs), lingering high-frequency decaying oscillations (also
known as “wiggles”), soon after each periapsis passage. One puzzle associated with these QNBs is that in the
case of a nearly extreme rotating central black hole the frequency of the QNBs has been found to be in a range
which is lower than the corresponding range of relevant quasinormal modes. We reproduce these results using a
different approach and perform a detailed analysis to find evidence for the resolution of the puzzle and for the
origin of the QNBs. We find that the QNB frequency as measured at future null infinity evolves in (retarded)
time and approaches the dominant quasinormal frequency exponentially in time. We also show that the QNB
amplitude decays inversely in (retarded) time. We discuss the time dependence of both the QNB waveform
frequency and its amplitude and argue that this behavior arises as a result of the excitation of many quasinormal
overtones and the summation thereof.
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I. INTRODUCTION

When the periapsis of the orbit of a compact object
around a massive black hole gets close to the light ring of
the latter, the compact object can excite the massive black
hole’s quasinormal modes (QNMs), which results in repeated
bursts of high-frequency gravitational waves, also known as
“wiggles,” with each periapsis passage [1,2]. These repeated
high-frequency bursts were first discovered in the energy flux
at infinity for high-eccentricity zoom-whirl orbits around a
spinning black hole [3] and then rediscovered in the context of
the horizon’s shear response for perturbations of the massive
black hole [4] and rediscovered again in the high-frequency
oscillations in the self-force on the compact object [5].

The emitted radiation from an extreme mass ratio inspiral
(EMRI) for a binary black-hole system is expected to be
a source of gravitational radiation detectable by the space-
based Laser Interferometer Space Antenna (LISA). Much like
ground-based detectors, accurate waveform signal templates
will be needed for LISA data analysis for matched-filtering
purposes and for precision parameter estimation. Thus, the
development of computational models for EMRIs is an im-
portant research area of gravitational physics.

In recent computations of scalar and gravitational wave-
forms from highly eccentric EMRIs, repeated high-frequency
quasinormal bursts (QNBs) appear soon after the compact
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object passes through the orbital periapsis of the massive
black hole [1,2]. Quasinormal modes are excited because on a
high-eccentricity orbit, the compact object is able to get close
to the light ring, and the high spin of the central black hole
allows these modes to be long-lived. While excitations by a
particle of QNMs had been observed before (first seen for
a marginally bound particle which is scattered or absorbed
by a Kerr black hole [6]), an unexpected feature emerges
when the central black hole spins at a nearly extreme rate:
The frequency of the QNB waveform lies in a range that is
lower than the relevant QNM frequencies [1]. This curious
phenomenon has been observed also in the self-force on the
compact object [5] and in the shear response of the central
black hole’s horizon [4]. The origin of this feature has not
been studied or discussed in depth, perhaps because it is
notoriously difficult to numerically model nearly extreme Kerr
black holes. However, it was noted in Ref. [1] that the effect
may be due to “some complicated collective behavior of the
QNMs or some new physical effect.”

Here we use time-domain Kerr black-hole perturbation
theory, i.e., we solve the Teukolsky equation in the time do-
main with a point-particle source, to compute the gravitational
waveform for a suitable high-eccentricity EMRI system and
observe the generation of the QNB after the particle passes
through the orbital periapsis. We perform a detailed analysis
of the QNB waveform and find that the QNB frequencies
are time dependent. Specifically, we obtain the precise time
dependence of both its frequency and amplitude. Next we
show that precisely the same effect is also present in a much
simpler, source-free scalar wave evolution in nearly extreme
Kerr space-time background. This result suggests that the
explanation for the time dependence of the frequency of the
QNB waveform is purely due to the quasinormal spectrum of
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a nearly extreme Kerr black hole and does not have much to
do with the motion of a point particle on a highly eccentric
orbit. Next we demonstrate the difference in the behavior of
nearly extreme and subextreme black holes and specifically
point out how high the spin of the black hole needs to be
to observe the apparent time-dependent aspects of the QNB
phenomenon. This value of the spin is similar to that found
in other aspects of the transition from subextreme to nearly
extreme black holes. We then suggest that the full explanation
of the effect we consider in this work lies in the behavior of
the QNM overtones of a nearly extreme Kerr black hole.

II. POINT-PARTICLE BLACK-HOLE
PERTURBATION THEORY

In the large mass-ratio limit of a black-hole binary system,
a study of the system’s dynamics can be addressed using
black-hole perturbation theory. In that approach, the smaller
black hole is modeled as a point particle with no internal
structure, moving in the space-time of the larger black hole.
Gravitational radiation is computed by evolving the pertur-
bations generated by this moving particle, by solving the
Teukolsky master equation with particle source [7]
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where M is the mass of the black hole, a is its angular
momentum per unit mass, � = r2 − 2Mr + a2, and s is the
spin weight of the field. The s = 0 case refers to a scalar field
ψ , while the s = −2 version of this equation describes the
radiative degrees of freedom of the gravitational field ψ4 in
the radiation zone and is directly related to the Weyl curvature
scalar as � = (r − ia cos θ )4ψ4.

Computing the Weyl curvature scalar ψ4 from the motion
of a small object around a Kerr black hole involves a two-step
process. First, we compute the trajectory taken by the point
particle and then we use that trajectory to compute the gravi-
tational wave emission. For the first step, the particle’s motion
can simply be chosen to lie on a highly eccentric geodesic.
In particular, we use the parameters (a/M, p/M, e) =
(0.999 99, 2.918, 0.807), which are identical to those used in
Fig. 14 of Ref. [1], and also (p/M, e) = (2.250 054 2, 0.96)
with a/M = 0.995, 0.9999, 0.999 95, 0.999 99, where the or-
bital parameters are p, the semilatus rectum, and e, the ec-
centricity. For the second step, we solve the inhomogeneous
Teukolsky equation in the time domain while feeding the
trajectory information from the first step into the particle
source term of the equation.

The numerical technique we use to solve the Teukolsky
equation (1) is the same as the one presented in our earlier
works (see Ref. [7]). In particular, (i) we first rewrite the
Teukolsky equation using compactified hyperboloidal coordi-
nates that allow us to extract the evolving fields directly at
null infinity (I +) while also solving the problem of artificial
reflections from the outer boundary; (ii) we take advantage of
axisymmetry of the background Kerr space-time and separate
the dependence on azimuthal coordinate, thus obtaining a set
of (2 + 1)-dimensional (2 + 1D) partial differential equations
(PDEs); (iii) we then rewrite these equations into a first-order
hyperbolic PDE system; and in the last step (iv) we im-
plement a two-step second-order Lax-Wendroff time-explicit
finite-difference numerical evolution scheme. The particle-
source term on the right-hand side of the Teukolsky equa-
tion requires some specialized techniques for such a finite-
difference numerical implementation. Additional details can
be found in our earlier works [7] and the references included
therein. The entire second step of the computation mentioned
above is implemented using OpenCL/CUDA-based GPGPU
computing which allows for the possibility of performing
very-long-duration and high-accuracy computations within a
reasonable time frame. Numerical errors in these compu-
tations are typically on the scale of a small fraction of a
percent [8].

Close to the black hole, our computational grid is approx-
imately uniform in the r∗ radial coordinate. This is important
for the high spin cases, because physically important quan-
tities such as the innermost stable circular orbit, the light
ring, and the horizon tend to be very close to each other (in
the ordinary r coordinate), but are well separated in r∗. For
computations for subextremal Kerr space-time it is typically
sufficient to place the computational grid’s inner boundary
at a value of r∗ ≈ −100M, but this is not the case for the
high spin case. In those cases the inner boundary must be
located at a much larger negative value. In the present work
we use r∗ ≈ −500M. This of course makes the scale of the
computation much larger and demanding.

III. NUMERICAL RESULTS

We first discuss the QNB in the (a/M, p/M, e) =
(0.999 99, 2.918, 0.807) EMRI system; the same orbital pa-
rameters are used in Ref. [1]. The motion is equatorial and
prograde in all the cases we examine. Throughout this pa-
per we choose the 	, m = 2, 2 mode for a detailed analysis,
where the 	, m mode is found by projecting out the 	 mode
from the sum over all 	 modes that we find in our 2 + 1D
computation.

In Fig. 1 we depict ψ2,2
4 sampled at I + as a function of re-

tarded time u. We find good agreement with Fig. 14 in Ref. [1]
(note that there are some quantitative differences, likely due to
different observing angles in use). We find that the oscillations
in ψ2,2

4 start shortly before periapsis passage and are made
of two main parts: first, high-amplitude oscillations that are
related to the whirl part of the orbit [9], followed by the QNB
(“wiggle”) part, lingering high-frequency oscillations that
decay slowly until close to the next periapsis passage. Note
that the QNB is high frequency, in the sense that the relevant
timescale is much shorter than the orbital timescale between
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FIG. 1. The 	 = 2, m = 2 mode of the Weyl scalar ψ4 as a
function of retarded time u at I + from a high-eccentricity EMRI
system with a rapidly rotating central black hole. Here the massive
black hole has spin parameter a/M = 0.999 99 and the compact
object’s orbital parameters are p/M = 2.918 and e = 0.807. The
solid (dashed) curve shows �(ψ2,2

4 ) [�(ψ2,2
4 )], the real (imaginary)

part of ψ2,2
4 . The vertical dotted lines show the time of periapsis

passages. The inset shows a close-up of the decaying wiggles. The
frequency ratio here is ρ ∼ 34.5.

two consecutive periapsis passages. Defining the frequency
ratio ρ := ω/�orbital, we find for this case that ρ ∼ 34.1 � 1.
Therefore, the QNB frequencies are unrelated to the orbital
frequency. Also, the QNB frequencies are separated from the
whirl frequency of the zoom-whirl orbit which is seen close
to the periapsis passage of the orbit. The same oscillations
can also be seen in the flux of energy in gravitational waves
F [3], which we show in Fig. 2. Note that on a linear flux
scale it is not easy to notice the QNB oscillations; they are
made clearer on a logarithmic scale. The average frequency
that we measure from Fig. 2 is ωav ∼ 0.95M−1. While Fig. 1
suggests that the periapsis passages are removed enough in
time to study the QNB phenomenon in detail, Fig. 2 shows
that they are in fact too close to each other. Indeed, the QNB
oscillations from one periapsis passage linger until after the
QNB from the next periapsis passage starts, which makes the
determination of the decay rate of the oscillations’ amplitude
difficult.

The source of the QNB oscillations must therefore be
different from either the orbital frequency or the whirl fre-
quency, and the first candidate was proposed to be the QNM
frequencies. That proposal was indeed confirmed for subex-
tremal black holes [2]. (In Ref. [3] the orbital parameters
were such that the orbital frequency and the QNM frequency
were close and therefore it was difficult to distinguish between
them.) However, a puzzle was found in the case that the
central massive black hole is a nearly extreme Kerr black
hole. Specifically, analysis of the instantaneous frequencies
suggests that the frequency indeed varies from 0.93/M (near
u = 500M) to 0.98/M (near u = 600M), as found in Ref. [1],
where it is also noted that all the QNMs for this nearly extreme
Kerr black hole have frequencies ∼0.995/M. which is outside
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FIG. 2. Energy flux in gravitational waves F as measured at
I + as a function of retarded time u for the same parameters as in
Fig. 1. The flux F is shown on a logarithmic scale to enhance the
oscillations. The inset shows the same on a linear scale. The vertical
dotted lines show the time of periapsis passages.

the frequency range relevant to the QNB waveform. This
observation is the focus of this paper.

To study this apparent discrepancy in the frequencies in
greater detail, we specialize next to orbital parameters that
result in longer-duration and higher-amplitude QNBs. Specif-
ically, we choose (p/M, e) = (2.250 054 2, 0.96) with a/M =
0.995, 0.9999, 0.999 95, 0.999 99. Figure 3 depicts ωQN − ω

for several a/M values extracted from the waveform at I +
as functions of retarded time u. Here ω is the instantaneous
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FIG. 3. The QNB waveform frequency ω of ψ2,2
4 depicted as a

function of retarded time u at I + (solid curves) and predictions
based on Eq. (2) (dashed lines). The EMRI system parameters used
for the data presented here are (p/M, e) = (2.250 054 2, 0.96) with
a/M = 0.9999, 0.999 95, 0.999 99.
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frequency1 of the QNB and ωQN is the [real part of the n = 0
(“fundamental”) mode of the] QNM frequency, computed
with the code of Ref. [10]. (The various n overtones are all
grouped very close to each other and specifically to the n = 0
mode.) From Ref. [11] [specifically, Eqs. (4.56) and (5.28)
therein] we find that for plunge trajectories the (real part of
the) angular frequency for each 	, m mode, after summing
over all overtones, ω	,m, is given by

ω	,m(u) = m

2M
− 3m

8M
e−κ (u−u0 ), (2)

where κ is the black hole’s surface gravity. Motivated by
this result, we propose that when summing over all overtones
for the eccentric orbits we consider here, the QNB angu-
lar frequency ω = ωQN − α exp(−βu), where we predict the
parameter β ≈ κ . Note that for nearly extreme black holes
the surface gravity κ = 1

2M

√
1 − (a/M )2 + O(1 − (a/M )2),

so β ≈ 1
2M

√
1 − (a/M )2, with which we find in Fig. 3 good

numerical agreement.
Figure 3 suggests that the QNB frequency is a monoton-

ically increasing function of time that is likely to approach
the QNM frequency at very late times. Note, however, that
because of the periodic motion of the compact object the
next periapsis passage interferes with the relaxation of the
QNB frequency and resets it. To see the agreement of the
late-time QNB frequency with the massive black hole’s QNM
frequency better, one would need to have a longer lapse of
time between two consecutive periapsis passages. However, it
is harder to model the latter numerically as it requires higher-
eccentricity values and consequently causes the apoapsis to
be farther out. The latter point would then require moving the
hyperboloidal layer of the computational domain farther out,
resulting in significantly increased computational time.

Figure 4 shows the amplitudes of the QNB signals for a
number of a/M values for the same orbital parameters as
in Fig. 3 as functions of retarded time u. We infer that the
QNB amplitude has a transient power-law decay rate that is
consistent with the expected decay rate ∼u−1. In addition
to the next periapsis passage that makes the available time
series for determination of the decay rate finite and short, we
have another complication from the transient nature of nearly
extreme black holes. Specifically, even close to extremality,
eventually the nearly extreme black hole behaves like subex-
treme ones [12,13]. The decay rate of the QNB amplitude
deviates as a transient behavior from the exponential decay
rate of a single QNM because of the many overtones that
contribute to it. However, with increasing times, one mode

1By instantaneous frequency we refer to a “local” frequency in
a time series, i.e., the frequency nearabout a particular moment in
time. This frequency can be computed looking at the time interval
between adjacent zero crossings and then using that as a half-period
to obtain a time-dependent frequency. However, such a data set turns
out to be very sparse and quite unsuitable for further numerical
analysis. Instead, we took a different approach. We first computed
the phase of the waveform, as it (monotonically) varies in time, and
then numerically computed the time derivative of the phase to obtain
the angular frequency.

FIG. 4. The QNB waveform amplitude of ψ2,2
4 plotted at I +

as a function of retarded time u for the same orbital parameters as
in Fig. 3, with a/M = 0.995, 0.9999, 0.999 95, 0.999 99. The inset
shows the same in a log-log plot, with an added straight reference
line whose slope is −1. The case a/M = 0.995 is excluded from the
variable range shown in the inset. The parameter u∗ is chosen such
that the peak of the amplitude is at u − u∗ = 0.

(n = 0) becomes relatively more dominant such that eventu-
ally the transient behavior would transition to an asymptotic
behavior of exponential decay of a single QNM if the next
QNB were not to interfere. The latter effect explains the
curving of the amplitude from the straight line in the inset
of Fig. 4 at late times. We emphasize that while the inverse
(retarded) time behavior of the amplitude is by no means a
new phenomenon and is closely related to the behavior found
in Refs. [13–15], the time dependence of the frequency was
not investigated therein.

Figure 5 shows the frequency of the radiation for the same
orbital parameters as above for the case a/M = 0.995. Note
that the variability in the frequency of the high-frequency
QNB is not present. Instead, we see the frequency approaches
that of a single QNM, to 6 parts in 103, the accuracy of this
computation. Notably, for this value of the spin the black hole
does not behave as a nearly extreme black hole but rather as
a subextreme one. Higher values of the spin are needed to
observe the variability in the QNB frequency.

We infer that for nearly extreme Kerr black holes the
QNB part of the waveform is not likely to be representable
by a single QNM: (i) The frequency is variable and (ii) the
amplitude does not decay exponentially with time. Instead,
the QNB waveform is likely a suitable mixture of many
QNMs such that higher overtones decay faster with time and
the fundamental n = 0 mode gradually dominates more than
higher overtones.

Next we put forth evidence for the origin of the QNB phe-
nomenon. Specifically, we consider a source-free field propa-
gating on the fixed background of a nearly extreme Kerr black
hole. Consider for simplicity the freely propagating 	, m =
2, 2 mode of a scalar field ψ (s = 0). We set the initial data
to be an initially stationary Gaussian wave packet centered
at r/M = 1 of width 0.1M. Figure 6 shows the scalar wave
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FIG. 5. Waveform frequency ω of ψ2,2
4 depicted at I + as a

function of retarded time u. The parameter ωQN is the QNM fre-
quency of the n = 0 overtone calculated with Ref. [10]. The EMRI
system parameters used for the data presented here are (p/M, e) =
(2.250 054 2, 0.96) with a/M = 0.995.

frequency ω as a function of retarded time u. We note that the
transient phenomenon in Fig. 6 is very similar to that seen in
Fig. 3, and therefore we suggest that the presence of the com-
pact object is not significant for the generation of the QNB;
instead, the crucial factor that generates the QNB is the strong
excitation of the QNM, whether it is done by a particle or by
free fields. Indeed, the generation of the QNB is insensitive
to the details of the particle’s motion when there is a particle
moving: In Refs. [11,16] the particle plunges into the nearly
extreme black hole, instead of being in an orbit, and still the
angular frequency evolution is similar, which allows us to
compare our angular frequencies with the prediction based on
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FIG. 6. Waveform frequency ωQN − ω plotted at I + as a func-
tion of retarded time u for a source-free scalar field, with a/M =
0.9999, 0.999 95, 0.999 99 (solid curves). The dashed straight lines
are reference lines corresponding to the frequencies predicted from
Ref. [11].
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FIG. 7. Waveform amplitude plotted as a function of retarded
time u at I + for the 	, m = 2, 2 mode of a source-free scalar field ψ

for the following a/M values: a/M = 0.9999 (dash-dotted curve),
0.999 95 (dashed curve), and 0.999 99 (solid curve). The dotted
straight line is a reference line with slope ∼u−1. The parameter u∗
is chosen so that the maximum of the amplitude is at u − u∗ = 0.

Refs. [11,16]. We display the amplitude of ψ in Fig. 7 as a
function of retarded time u for a number of a/M values. The
behavior of the free scalar field amplitude is very similar to the
behavior of the amplitude of the gravitational perturbations
for the orbital motion of a particle course (cf. Fig. 4). This
conclusion is not unexpected, as the analysis in Ref. [13]
suggests that the transient decay rate for such a field would
be ∼u−1 because of the excitation of many quasinormal over-
tones. The asymptotic faster decay rate at late retarded times
is due to the nearly extreme nature of the central black hole:
The asymptotic behavior is that of a subextreme black hole.

IV. CONCLUDING REMARKS

There are some differences between the two QNB sources
that we consider. When the source is a compact object whose
orbital periapsis gets close enough to the black hole to
strongly excite many QNM overtones that result in QNBs,
the repeated periapsis passages prevent the late-time behavior
from appearing. However, when the QNM excitation source
is a free field, the latter first excites many QNM overtones
and therefore at first looks similar to the QNB, but later the
field is absorbed by the black hole or disperses to I + and
therefore does not excite the overtones anymore and therefore
eventually decays at the same rate as that of the least damped
overtone. Note that as only a single QNM dominates over
the field, at late times we can determine its frequency only
to a certain accuracy (cf. Fig. 5). Indeed, in Fig. 6 at late
times the frequencies curve up, consistently with this picture.
No similar curving is seen in Fig. 3, because the next QNB
overwhelms the signal.

We find the signal to start before periapsis passage: As the
compact object gets close to the periapsis it already moves
in the strong-field region in the whirl part of the orbit, where
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gravitational waves are excited at high amplitudes. Therefore,
we expect the retarded time value of the signal to start slightly
before periapsis passage, assuming the prompt (unscattered)
signal moves along geometrical optics rays. The whirl part
of the signal is then followed by the lingering QNB signal,
which persists through the zoom part of the orbit until the next
whirl signal because of the slow (inverse time) decay of its
amplitude.

We note that the peculiar aspects of the gravitational wave-
form in nearly extreme Kerr black holes [13,14], e.g., the
QNM portion of the scalar or gravitational waveform ampli-
tude decays as M/u for nearly extreme Kerr black holes due to
the unusual “stacking” of QNM overtones, are closely related
to the QNB waveform. Moreover, the transient behavior of
radiation fields in nearly extreme Kerr black holes [12] is
closely related to the transient behavior found herein.

The expression of the time dependence of the frequencies
of the gravitational waveform in the context of a small body
plunging into a nearly extreme Kerr black hole as a sum
over QNM overtones [11] provides further evidence that the
explanation for the unexpected features present in the QNB
waveform lies in the sum over the QNM overtones of a nearly
extreme Kerr black hole.

In contrast with subextremal black holes, for which the
QNM portion of the signal for a specific 	, m mode has a fixed

frequency (cf. Fig. 5), in the nearly extreme case the QNB
frequency has a rich time dependence arising from the exci-
tation of overtones. These excitations suggest that in addition
to the QNM amplitudes, there is additional information about
the binary system that may be extracted from the details of the
time dependence of the frequency. If near-extreme black holes
exist and are discovered by current or future gravitational
wave observatories (see, e.g., Ref. [17]), our work suggests
that one may have to perform a very detailed template signal
study in order to extract the type of information that may be
coded in the QNM portion of the signal. The repeated excita-
tion of the QNMs with each periapsis passage, in addition to
the long-lived transient waveform (which decays as inverse
time), bears the potential for highly accurate observational
determination of such information.
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