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Temporal quadratic solitons and their interaction with dispersive
waves in lithium niobate nanowaveguides
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We present a model of soliton propagation in waveguides with quadratic nonlinearity. Criteria for solitons to
exist in such waveguides are developed and two example nanowaveguide structures are simulated as proof of
concept. Interactions between quadratic solitons and dispersive waves are analyzed, giving predictions closely
matching soliton propagation simulations. The example structures are found to support five different regimes
of soliton and quasisoliton existence. Pulse propagation in these example waveguides has been simulated
confirming the possibility of soliton generation at experimentally accessible powers. Simulations of multisoliton
generation, Cherenkov radiation, and quasisolitons with opposite signs of dispersion in the fundamental and
second harmonic are also presented here.
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I. INTRODUCTION

Temporal solitons are an important class of solitary waves
well known in the context of nonlinear optics [1]. Perhaps
the most studied type of temporal solitons are cubic solitons,
whereby self-action due to cubic (χ (3) or Kerr) nonlinearity
(typically self-focusing) balances dispersion, hence leading to
formation of stable self-localized pulses of light propagating
in optical waveguides or fibers [2]. Effective self-action can
also occur in quadratic (χ (2)) nonlinear media due to cascaded
interactions between the fundamental frequency (FF) and sec-
ond harmonic (SH) [3]. In the limit of a large phase mismatch
between FF and SH, the so-called cascading limit [3,4], the
system of coupled equations for FF and SH components
can be reduced to an effective Kerr-type system. Notably,
the sign of such effective Kerr interaction is controlled by
the sign of the phase mismatch. This makes the parameter
space of existence of such cascaded χ (2) temporal solitons
considerably wider than in native χ (3) systems [4]. However,
existence of quadratic temporal solitons away from the cas-
cading limit requires a more complicated balance between
nonlinear interaction, dispersion, and walk-off due to the mis-
match of group velocities of the two copropagating FF and SH
pulses.

Interactions between solitons and small-amplitude disper-
sive waves is a well-known generic mechanism of frequency
conversion in Kerr media, and plays a crucial role in super-
continuum generation in optical fibers [5]. The corresponding
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theory is developed for Kerr solitons [6], and recently was
extended to cases including χ (2) as a perturbation to Kerr
solitons [7] and χ (2) solitons in the cascaded limit [8,9].
Importantly this previous work does not include any predic-
tions for dispersive waves emitted from the SH component
in χ (2) solitons. We also note the existence of embedded
solitons which do not emit radiation despite their spectrum
overlapping with dispersive waves [10].

Recent advancements in the fabrication of lithium nio-
bate (LN) nanowaveguides [11] has reignited interest in
this well-characterized χ (2) material [12]. The small mode
size in these nanowaveguides enhances nonlinearity [11],
therefore reducing required peak powers to achieve effi-
cient nonlinear interactions. Their strong guidance also pro-
vides geometrically tuneable dispersion allowing direct phase
matching between modes [13,14], as well as considerable
reduction of group velocity mismatch between FF and SH
modes within wide frequency ranges [15]. Continued re-
search has seen the loss in these structures fall as low as
0.027 dB/cm [16], further improving the prospects of these
structures for practical application. These LN nanowaveg-
uides therefore provide novel opportunity for χ (2) soliton
research.

In this work a model of temporal quadratic solitons in
χ (2) waveguides is developed. Criteria for the existence of
localized soliton solutions based on waveguide parameters are
derived. The model is then extended to include the interac-
tion of the soliton with dispersive waves. Two examples of
nanowaveguide structures are simulated and found to support
soliton and quasisoliton existence in the normal dispersion
regime, at experimentally attainable powers. Simulations of
pulse propagation in the example nanowaveguide structures
are presented and validate predictions of soliton existence
and the frequency of resonant radiation. This work develops
theory of important frequency conversion phenomena with
potential to enhance understanding of broadband supercontin-
uum generation in χ (2) waveguides.
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II. MODEL

We consider a generic χ (2) waveguide with a fixed cross
section in the Cartesian x-y plane and invariant along z, the
propagation direction. We assume two pulsed light fields are
excited in different modes of the waveguide at a frequency ω f

(fundamental field, FF) and its second harmonic (SH) ωs =
2ω f with envelope functions Uf (z, t ) and Us(z, t ) respectively.
The propagation constant βm(ω) for waveguide mode m is
related to the effective refractive index of that mode, neff,m,
by

βm(ω) = ωneff,m(ω)/c, (1)

where m = f and m = s label the waveguide mode chosen
for the FF and SH respectively. The jth derivative of βm with
respect to frequency is therefore

βm j = d jβm

dω j
= 1

c

[
j
d j−1neff,m

dω j−1
+ ω

d jneff,m

dω j

]
. (2)

The evolution of the field envelopes is described by

i∂ξUf = −D f (i∂τ )Uf − UsU
∗
f eiκξ ,

i∂ξUs = −Ds(i∂τ )Us − U 2
f

2
e−iκξ , (3)

where t has been shifted to move with the FF pulse group
velocity (GV) v f = β−1

f 1 |ω f and normalized by the approxi-
mate pulse duration t0, giving τ = (t − z/v f )/t0. z has been
normalized by the dispersion length zd = 2t2

0 /|β f 2| to give
ξ = z/zd . The phase mismatch κ = 	βzd , where 	β =
βs(2ω f ) − 2β f (ω f ) (note that in the literature κ is often
defined with the opposite sign). From the definition of βm in
Eq. (1) it follows that

κ = 2zdω f [neff,s(2ω f ) − neff, f (ω f )]. (4)

The dispersion operators are found by taking a Taylor
series,

D f (i∂τ ) = −
+∞∑
j=2

r j[i∂τ ] j,

Ds(i∂τ ) = +s1[i∂τ ] −
+∞∑
j=2

s j[i∂τ ] j . (5)

The walk-off parameter s1 = zd/zw where zw = t0/(v−1
s −

v−1
f ) is the walk-off length where the SH GV, vs = β−1

s1 |2ω f .
The remaining dispersion coefficients are

r j = − zd

t j
0 j!

β f j, s j = − zd

t j
0 j!

βs j, (6)

for integers j � 2. It should be noted that r2 = ±1. The
dispersion of each mode at frequency detuning δ = (ω −
ω f )t0 = (ω − ωs)t0 is therefore given by

D f (δ) = −
+∞∑
j=2

r jδ
j, Ds(δ) = s1δ −

+∞∑
j=2

s jδ
j . (7)

Fields are scaled such that Uf = √
2ρ2zd A f and Us =

ρ2zd As, where |A f ,s|2 are intensities in watts. The effective

nonlinear coefficient [14]

ρ2 = ε0 ω f

4
√

NsNf

∫∫
→
e s

[
χ̂2

...
→
e

2

f

]
dAn, (8)

where
→
e f ,s are the electric field profiles of the chosen FF and

SH waveguide modes respectively. χ̂2 is the second-order non-
linear tensor of the χ (2) material in the waveguide and An is
the cross section of the χ (2) material, over which the integral is
performed. The normalization factors, Nm = [1/4]

∫∫
[
→
e m ×

→
h

∗
m] + [

→
e

∗
m × →

h m]dAw, where
→
h m is the magnetic field pro-

file for the mode m and Aw is the cross section of the whole
waveguide, over which the integral is performed (not only the
χ (2) material).

III. SOLITON THEORY

A. Tail analysis

We first consider soliton solutions of the system in Eq. (3)
with second-order dispersion only such that

D f (δ) = − r2δ
2,

Ds(δ) = s1δ − s2δ
2. (9)

Solitons are sought in the form of localized pulses coprop-
agating with a common group velocity ν:

Uf = Wf (η)eiμξ ,

Us = Ws(η)ei[2μ−κ]ξ , (10)

where Wf and Ws are the soliton field profiles. The transverse
coordinate, η = τ − νξ , moves with the soliton velocity ν,
and μ is the nonlinear correction to propagation constant.
μ and ν are the soliton family parameters. Substituting into
Eq. (3) and requiring a nondispersive soliton solution (∂ξWf =
∂ξWs = 0) gives[−iν∂η + r2∂

2
η − μ

]
Wf + WsW

∗
f = 0,

[
i[s1 − ν]∂η + s2∂

2
η − 2μ + κ

]
Ws + W 2

f

2
= 0. (11)

While exact solutions are known for these coupled equa-
tions under specific conditions [17], we work below with a
generic family of fundamental solitons found numerically [4].
For large phase mismatch κ , neglecting SH dispersion s2,
these coupled equations simplify to the nonlinear Schrödinger
(NLS) equation. With the appropriate combination of FF dis-
persion and phase-mismatch signs, such that r2κ < 0, bright
soliton solutions are known to have the form [4]

Wf (η − s1ξ ) ≈ ±2μ
√

α sech(
√

|μ|[η − s1ξ ]),

Ws(η − s1ξ ) ≈ 2μ sech2(
√

|μ|[η − s1ξ ]), (12)

for r2 = ±1 where α = [2μ − κ]/μ � 1. In this limit the FF
component is much greater than the SH and the soliton peak
power increases with |μ|.

Requiring that any soliton solution must be localized gives
the opportunity for further analysis. To meet this requirement
both frequency components of the soliton must be exponen-
tially decaying far from the center. This can be enforced by
setting the form of each soliton profile, Wf = Vf e−θ f |η| and

033146-2



TEMPORAL QUADRATIC SOLITONS AND THEIR … PHYSICAL REVIEW RESEARCH 1, 033146 (2019)

Ws = Vse−θs|η|, for |η| � 1. Operating far from the center of
the soliton, Vf ,s are some small constant amplitudes, therefore
Eq. (11) can be linearized. Then requiring that θ f and θs

have positive real parts ensures exponential decay and yields
conditions for localization of the soliton as

4r2μ > ν2, (13)

4s2[2μ − κ] > [ν − s1]2. (14)

While these conditions are required for exponential tails
they are not sufficient for soliton existence. Another required
condition is the existence of a constant amplitude (CA) so-
lution that acts as the center of the homoclinic orbit corre-
sponding to the soliton solution. To derive a condition for the
existence of a CA solution we look at CA solution itself, found
by others [18] to be

Ūf = ±[2μ{2μ − κ}] 1
2 , Ūs = μ, (15)

where Uf = Ūf eiμξ and Us = Ūsei[2μ−κ]ξ . As the system
[Eq. (3)] is invariant under the transformation

(Uf ,Us) → (Uf eiφ,Use
2iφ ), ∀φ, (16)

both Uf and Us can be chosen to be real (at ξ = 0), and
therefore have a fixed phase difference of either 0 or π . So
the CA solution in Eq. (15) is only valid when it satisfies this
fixed phase difference. As μ is real, Ūs will always be real.
For Ūf to be real, however,

μ[2μ − κ] > 0 (17)

is required, giving our condition for the existence of a CA
solution.

The conditions for localization and CA solution existence
provide the criteria for localized soliton existence. Graphical
representations of these criteria are given in Fig. 1 for various
waveguide parameters. Each condition on soliton existence
is represented by a shaded region in these plots and solitons
may exist where all three regions overlap. The five examples
given in Figs. 1(a)–1(e) represent distinct regimes of soliton
existence. In these examples r2 = −1 has been chosen setting
normal dispersion in the FF, which is the case for the rest of
this work. With normal dispersion in the FF set, solutions in
Eq. (12) are valid when κ is large and positive.

Figures 1(a)–1(c) show regimes in which the phase mis-
match κ is positive. Conversely Figs. 1(d) and 1(e) show
regimes of κ < 0. In this text these regimes will be referred
to by their figure labels [i.e., the regime in Fig. 1(a) is
regime A].

Regimes A, B, and D [shown in Figs. 1(a), 1(b), and 1(d),
respectively] have areas where all three shaded regions over-
lap. These regimes are therefore expected to support soliton
existence. The difference between these regimes is the range
of |μ| for which solitons are predicted. In regime A solitons
are predicted for all negative μ whereas in regime B solitons
are only expected to be possible when |μ| exceeds a certain
threshold value. The key difference between regimes A and B
is the shift of the SH localization condition [Eq. (14)] due to
s1. The overlap of FF and SH localization conditions down to
|μ| = 0 is determined by the condition

κ > −s2
1/4s2. (18)

FIG. 1. Localization conditions, Eqs. (13) and (14), against soli-
ton parameters μ and ν. Conditions in Eqs. (13) and (14) are marked
as shaded regions (in red and blue, respectively) and bounded by
solid and dashed lines, respectively. Grey shaded regions bounded
by dotted lines mark where constant amplitude solutions exist ac-
cording to the condition in Eq. (17). Parameter r2 = −1 throughout,
and (a) s2 = −0.8, κ = 4, s1 = −2. (b) s2 = −0.8, κ = 2, s1 =
−5. (c) s2 = 0.8, κ = 4, s1 = 2. (d) s2 = −0.8, κ = −2, s1 = −1.
(e) s2 = 0.8, κ = −4, s1 = 1.

Regime D also exhibits a threshold |μ| value for soliton
existence but in this regime the threshold is set by the
CA solution criterion [Eq. (17)]. This threshold is therefore
μ = κ/2.

It is clear that there are no areas where all three conditions
overlap in regime C [shown in Fig. 1(c)]. In this regime the
dispersion in the FF and SH have opposite signs. Previous
work investigating this regime [19] has predicted the existence
of quasisolitons where the FF component is localized but the
SH has oscillating tails that do not decay far from the center
of the pulse. The existence of these quasisolitons requires the
localization in the FF and the CA solution to exist but does
not require localization in the SH. We therefore expect the
existence of these quasisolitons for all μ < 0 in regime C.
It follows that similar quasisolitons should exist below the
threshold in regime B where the condition for SH localization
is not met (but the other two conditions are met).
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Finally regime E exists where κ < 0 and opposite signs
of dispersion in the FF and SH. Although clearly similar to
regime C, in this regime a threshold for quasisoliton exis-
tence is predicted. Here for negative μ, when |μ| < |κ/2|
no solitons or quasisolitons are expected to exist. However,
for |μ| > |κ/2| the condition for CA solutions is met but
SH localization is not. Therefore we predict the existence of
quasisolitons here.

We suggest the term “hard” threshold to describe a thresh-
old set by the CA solution existence criterion (17), as in
regimes D and E. Under this threshold no solitons or qua-
sisolitons are predicted at all. The term “soft” threshold is
suggested to describe a threshold set by the SH localization
condition [Eq. (14)] as in regime B, where quasisolitons exist
below the threshold.

B. Interaction with dispersive waves

In the previous section we have discussed the existence
of solitons and quasisolitons under the condition of constant
GVD [Eq. (9)]. Relaxing this condition to allow for the more
general case of nonconstant GVD gives the opportunity for
further analysis. Consider additional terms such that Eq. (9)
becomes

D f (δ) = −r2δ
2 + Cf (δ),

Ds(δ) = s1δ − s2δ
2 + Cs(δ), (19)

where Cf (δ) and Cs(δ) are corrections to the constant GVD of
the form

Cf = −
∞∑
j=3

r jδ
j,

Cs = −
∞∑
j=3

s jδ
j . (20)

If these corrections are small the constant GVD soliton solu-
tions should still be approximate solutions. Practically speak-
ing these terms often become relevant close to a zero-GVD
point. To analyze this, dispersive waves (DWs) are included
into the solution as perturbations of the form

Uf = [Wf (η) + a f (η, ξ )]eiμξ ,

Us = [Ws(η) + as(η, ξ )]ei(2μ−κ )ξ , (21)

where a f and as are small perturbations to the solitons such
that |a f /Wf | 	 1 and |as/Ws| 	 1. Considering these pertur-
bations as a linear combination of generated (resonant) and
existing (pump) DWs gives

a f = ψ f + p f eiφ f (δ f ),

as = ψs + pse
iφs (δs ), (22)

where p f ,s is the real amplitude of the pump DWs and φ f (δ) =
q f (δ)ξ − δ f η and similarly for φs. ψ f are the generated
resonant DWs. In general a f ,s, p f ,s, and ψ f ,s are all functions
of η and ξ . δ f ,s is the frequency detuning of the pump DWs in
the FF and SH respectively and the dispersion in the reference

frame of the soliton is

q f (δ) = D f (δ) − μ − νδ,

qs(δ) = Ds(δ) − 2μ + κ − νδ. (23)

Substituting Eqs. (21) and (22) into Eq. (3) and taking the
Fourier transform gives

[i∂ξ + q f (δ)]ψ̃ f + [W̃s ∗ ψ̃∗
f + W̃ ∗

f ∗ ψ̃s]

= Cf (δ)W̃f (δ) − W̃s(δ) ∗ p̃ f (δ)e−iq f (δ f )ξ

− W̃ ∗
f (−δ) ∗ p̃s(δ)eiqs (δs )ξ ,

[i∂ξ + qs(δ)]ψ̃s + [W̃f ∗ ψ̃ f ]

= Cs(δ)W̃s − W̃f ∗ p̃ f (δ)eiq f (δ f )ξ ,

(24)

where f̃ (δ) denotes the Fourier transform of any function
f (t ), and f (t ) ∗ g(t ) denotes a convolution of functions f (t )
and g(t ). The left-hand side (LHS) acts as an oscillator driven
by the terms on the right-hand side (RHS). As ψ̃ f ,s and W̃s, f

are all localized functions, their convolution [second terms on
LHS of Eqs. (24)] will only make small contributions to the
resonant frequencies of the system. For this reason these terms
are neglected in the following analysis.

1. Cherenkov radiation

In the case of a system initially free from dispersive waves
(p f = ps = 0), Eq. (24) simplifies to the driven oscillator
equations,

[i∂ξ + q f (δ)]ψ̃ f = Cf (δ)W̃f ,

[i∂ξ + qs(δ)]ψ̃s = Cs(δ)W̃s. (25)

Taking ψ f of the form ψ f ∝ eiq f ξ−iδτ (and similar for
ψs) and matching wave numbers between the oscillating and
driving terms gives the resonant conditions

q f (δ) = 0,

qs(δ) = 0. (26)

Where these conditions hold true the soliton is resonant
with dispersive waves in the system. Radiation with the wave
vector q f ,s (and corresponding frequency detuning δ) satisfy-
ing these conditions will be emitted from the soliton. This pro-
cess is known as resonant or Cherenkov radiation [6]. In the
previous section solitons were found to be possible in regimes
A, B, and D. With corrections to the constant GVD [Cf (δ) and
Cs(δ)], these solitons become resonant with dispersive waves
in the system and emit Cherenkov radiation. As they are no
longer localized the solitons become quasisolitons.

Similar analysis can be applied to the quasisolitons in
regimes B, C, and E. We find that SH dispersion (s1 and s2)
acts as the perturbation in this case. With these terms set to
zero a soliton solution exists. Reinstating these terms produces
resonances between the soliton and dispersive waves in the
system and quasisolitons are predicted. At these resonances
Cherenkov radiation is expected, this can also be interpreted
as the oscillating tails of the soliton. The addition of further
dispersive terms Cf (δ) and Cs(δ) may shift the frequency of
this Cherenkov radiation.
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2. Pumped radiation

Any waves in the system that are not part of the soliton
may perturb the soliton leading to emission of DWs at new
frequencies. Here they are referred to as pump DWs, p f and
ps, in the FF and SH respectively. This includes any deliber-
ately introduced pump into the system or radiation previously
emitted by the soliton in question or other solitons in the
system. In the following analysis pump DWs are assumed to
be continuous wave and are therefore δ functions in frequency.
This allows their convolutions to be evaluated simply giving

[i∂ξ + q f (δ)]ψ̃ f = −p f W̃s(−δ f )e−iq f (δ f )ξ

− ps[W̃f (−δs)]∗eiqs (δs )ξ ,

[i∂ξ + qs(δ)]ψ̃s = − p f W̃f (δ f )eiq f (δ f )ξ , (27)

with the resonant conditions

q f (δ) = −q f (δ f ),

q f (δ) = qs(δs),

qs(δ) = q f (δ f ). (28)

This radiation is produced by the interaction of the soliton
and the pump DWs, and will therefore be referred to as
pumped radiation. For a pump DW with a small detuning from
the FF central frequency two resonant conditions exist, one in
the FF and one in the SH. A pump DW with a small detuning
from the SH central frequency has one possible resonance in
the FF.

Consider the specific case of previously emitted Cherenkov
radiation, where q f (δ f ) = 0 or qs(δs) = 0. Substitution
into Eq. (28) shows that the Cherenkov conditions from
Eq. (26) are reproduced. This shows that previously emitted
Cherenkov radiation cannot produce new frequencies when
interacting with the soliton it was emitted from. In general,
Cherenkov radiation emitted by one soliton interacting with
a different soliton (with different central frequency, μ or ν)
would produce new frequencies.

IV. SOLITONS IN NANOWAVEGUIDES

A. Waveguide simulation

In the previous section we have seen that existence of
soliton and quasisoliton solutions depends strongly on the
waveguide parameters. In this section we present simulated
data for two waveguide structures. These data are analyzed
from the point of view of soliton and quasisoliton existence
as discussed in the previous section. This section is intended
to clearly show how the generic theory presented so far maps
onto specific waveguide geometries that can be experimen-
tally realized.

Figures 2(a)–2(c) present simulated data for a lithium nio-
bate on insulator (LNOI) structure [11,20,21]. The structure of
this waveguide is shown in the inset of Fig. 2(b) and consists
of a ridge of lithium niobate on a silica substrate. Figure 2(a)
shows the neff data for simulated FF and SH modes in the
structure. The insets show the transverse mode profiles of
the chosen modes. A fundamental mode was chosen for the
FF where a higher-order mode was selected for the SH, this
allows phase matching between the modes. Phase-matching

occurs when both modes have the same propagation constant
β(ω) and from Eq. (1), the same effective index neff . The
phase-mismatch parameter κ is shown in Fig. 2(b) and is zero
at phase matching. It is clear that in this waveguide, phase
matching occurs at around 1550 nm.

Another important waveguide parameter to consider is the
group velocity mismatch parameter s1. This is plotted in
Fig. 2(b). In this waveguide it is clear that s1 rapidly decreases
as wavelength increases but does not reach zero for the
wavelengths shown. Figure 2(c) shows the GVD parameters
β2 for both FF and SH modes. Both modes show slowly
varying GVD and with no zero-GVD points, the GVD of both
modes remains normal for the wavelength range shown. The
regimes of soliton existence outlined in the previous chapter
are indicated in Fig. 2(c) by shaded areas and labeled with
their corresponding letters. This waveguide supports regimes
B and D for a broad range of wavelengths. From this we would
expect solitons to be possible in this waveguide structure
but with soft or hard thresholds depending on the regime
(determined by wavelength).

Simulated data for the hybrid waveguide structure are
shown in Figs. 2(d)–2(f). This hybrid structure consists of a
suspended LN core and a silica microfiber; the cross section is
given as an inset in Fig. 2(e). More details about this structure
can be found in previous work [14,15,22]. Figure 2(d) shows
simulated neff data for FF and SH modes in this waveguide.
Insets are included showing the transverse mode profiles. The
phase mismatch and group-velocity mismatch parameters are
plotted in Fig. 2(e). The GVD parameters for both modes are
plotted in Fig. 2(f).

Comparison with the data from the LNOI structure shows
clear differences. The hybrid structure shows a broad wave-
length range where both κ and s1 are low. The GVD parameter
for the SH also changed much more rapidly in the hybrid
structure, exhibiting a zero-GVD point near the center of the
wavelength range shown here. This zero-GVD point results
in a change of sign of the SH dispersion making regimes in
which FF and SH have opposite signs of dispersion available.
Again the soliton regimes in this structure are plotted as
shaded areas in Fig. 2(f). This structure provides three broad
wavelength ranges where regimes A, C, and E exist. Therefore
we would expect to find solitons and quasisolitons without
any threshold in regimes A and C respectively. Quasisolitons
with a hard threshold are expected in regime E. These two
waveguide structures are therefore expected to exhibit all five
of the predicted soliton regimes.

B. Pulse propagation

Using the data for the example nanowaveguides, we can
simulate the propagation of pulses in these structures using
the split-step Fourier method. In these simulations dispersion
has been taken as a Taylor expansion truncated to third order
such that the corrections to constant GVD are Cf (δ) = −r3δ

3

and Cs = −s3δ
3. This approximation of dispersion as a trun-

cated Taylor expansion is accurate close to the pulse central
frequencies and allows the effects of correction terms Cf and
Cs to be demonstrated.

In this section we present cross-correlation frequency-
resolved optical gating (XFROG) spectrograms of pulses
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FIG. 2. For a lithium niobate on insulator (LNOI), neff (a), κ and s1 (b), and β2 (c) plotted against the FF wavelength λ f . Insets in (a) show
the FF (upper) and SH (lower) mode profiles. Inset in (b) shows the LNOI waveguide cross section, h and w label the height and width of the
waveguide respectively. Data shown are for a LNOI structure with height of 350 nm and width of 500 nm. For free-standing LN and microfiber
(hybrid) structure, neff (d), κ and s1 (e), and β2 (f). Insets in (d) show the FF (upper) and SH (lower) mode profiles. Inset in (e) shows the cross
section of the hybrid waveguide, h and w label the height and width of the waveguide respectively. Data shown are for a waveguide height of
300 nm, width of 470 nm, and a microfiber diameter of 1100 nm. Solid and dashed curves (red and blue) are for FF and SH modes respectively.
Dotted black lines mark κ = 0, s1 = 0, and β2 = 0. Shaded regions mark the different soliton supporting regimes labeled A–E.

after propagation. An XFROG spectrogram is a well-known
method for resolving both temporal and spectral features of
a pulse [5,6]. Here the XFROGs were produced with the
numerical integration of

I (t, ω) = ln

∣∣∣∣
∫ +∞

−∞
dt ′Aref (t ′ − t )U (t ′)e−iωt ′

∣∣∣∣, (29)

where Aref is the envelope of a Gaussian reference pulse, and
U is either the FF or SH field envelope. The plots for the
analytic predictions of Cherenkov radiation are included for
comparison using μ values estimated from the simulations.
In all the simulations presented here, the emitted Cherenkov
radiation matches closely with the resonance predictions.

In Fig. 3 the waveguides and wavelengths have been cho-
sen such that each panel (a)–(e) represents each regime A–E.
The input pulse for each simulation was set as in Eq. (12) for
the FF field and zero in the SH field.

Figure 3(a) shows a soliton formed after propagation of
a FF pulse in regime A in the hybrid structure. Although
the input pulse used to generate the soliton here had a peak
power of 1.1 kW we found soliton generation was possible
for all peak powers attempted (lowest attempted was 15 W
peak power). The resonance predictions in this figure show
the dispersion truncated to both second order and third or-
der. As expected for a localized soliton there are no reso-
nances present when dispersion is truncated to second order.
With third-order dispersion added there is a single resonance
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FIG. 3. XFROG plots of pulses after simulated propagation in nanowaveguide structures. Each panel consists of FF (right) and SH (left).
Resonance predictions are included above XFROG plots for comparison. Wave vectors of dispersive waves are shown as solid lines (blue
and red in color, truncated to third- and second-order dispersion respectively). Soliton wave vectors are shown as dot-dashed line (green).
Resonances occur where these lines intersect and are marked by vertical dotted lines. (a), (c), and (e) are in the hybrid structure; (b) and (d) are
in the LNOI structure. Input pulse parameters: (a) 1.1 kW peak power, 140 fs duration, central wavelength 1525 nm, propagation distance
20 mm. (b) 1.9 kW peak power, 560 fs duration, central wavelength 1530 nm, propagation distance 10 mm. (c) 760 W peak power, 180 fs
duration, central wavelength 1460 nm, propagation distance 10 mm. (d) 14 kW peak power, 560 fs duration, central wavelength 1580 nm,
propagation distance 30 mm. (e) 1.2 kW peak power, 120 fs duration, central wavelength 1430 nm, propagation distance 10 mm.

predicted far from the center of the soliton where low-
intensity Cherenkov radiation is observed.

Figures 3(b) and 3(c) show quasisolitons formed in the
LNOI and hybrid structures respectively. In both cases soliton
component in the FF is localized but the SH is strongly
emitting Cherenkov radiation. The wavelength of this radia-
tion matches closely with that expected from the resonance
predictions. This type of quasisoliton is predicted below the
threshold in regime B and for all powers in regime C. At high
powers solitons localized in both FF and SH are expected
in regime B but due to the large walk-off (s1) in the LNOI
structure this threshold is estimated to be 500 MW peak power

and therefore experimentally unattainable. Both these qua-
sisolitons are expected to emit Cherenkov radiation without
the inclusion of third-order dispersion which was verified.
With the addition of third-order dispersion the wavelength
of the resonances were shifted, and in the case of regime C
one resonance was removed entirely leaving the quasisoliton
shown in Fig. 3(c).

Figures 3(d) and 3(e) show pulses after propagation in
regimes D and E respectively. Both of these regimes exhibit
a hard threshold under which no solitons or quasisolitons
are expected. In simulations in both of these regimes we
were unable to find either solitons or quasisolitons at low
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FIG. 4. XFROG plots of pulses after simulated propagation in nanowaveguide structures. Each panel consists of FF (right) and SH (left).
Resonance predictions are included above XFROG plots for comparison. Wave vectors of dispersive waves are shown as blue solid lines
(truncated to third-order dispersion). Soliton wave vectors are shown as green dot-dashed lines. Dashed red lines show the wave vectors of
solitons interacting with pump frequencies. Resonances occur where these lines intersect. Vertical dotted lines mark the resonance wavelengths.
(b) and (c) are in the hybrid structure; (a) is in the LNOI structure. Initial pulse parameters: (a) 6.3 and 19 MW peak power in the FF and
SH respectively, 16 fs duration, central wavelength 1580 nm, propagation distance 10 mm. (b) 17 and 21 kW peak power in the FF and
SH respectively, 25 fs duration, central wavelength 1430 nm, propagation distance 15 mm. (c) 2.7 kW peak power, 390 fs duration, central
wavelength 1530 nm, propagation distance 26 mm.

powers. Typically we found that a nonlinear pulse would
form having components in the FF and SH. This pulse would
exhibit some aspects of a soliton and quasisoliton such as
Cherenkov radiation and the SH component staying locked to
the FF component. These nonlinear pulses are, however, not
solitons because they disperse as they propagate. Nonsolitonic
pulses emitting resonant radiation have been predicted before
in previous work [23,24]. In these regimes we did not observe
formation of solitons at low powers even with the addition of
SH pulses in the initial conditions.

Figure 4(a) shows a soliton after propagation in regime D.
The initial conditions for this simulation was a numerically
calculated soliton solution. This was necessary since the an-
alytical solution [Eq. (12)] is no longer a good approximate
solution in this regime. This result shows that for extremely
high powers, solitons can exist in regime D. This high power
is set by the hard threshold in this region.

It has not been possible to generate a quasisoliton in
regime E. Attempts to excite quasisolitons in this regime have
resulted in quasisolitons with a different central frequency,
in a range that is not in regime E. An example of this type
of soliton is shown in Fig. 4(b). We expect that exciting
solitons in this regime is particularly difficult due to strong
Cherenkov radiation expected from the quasisolitons in this

regime destabilizing any potential solitons. The nearby exis-
tence of different regimes where soliton existence was more
favorable is also expected to make soliton generation here
more challenging.

Figure 4(c) shows the result after propagation of a broad
higher-power pulse in regime A. The input field in the FF
was of the form of the analytic soliton solutions [Eq. (12)]
increased by a scale factor and zero in the SH. Multiple
solitons are visible near t = 0 with one of them emitting
Cherenkov radiation. A soliton/pulse at around t = 12 ps can
be seen emitting its own Cherenkov radiation which is labeled
“pump”. This radiation interacts with one of the solitons near
t = 0, perturbing it and acting as a pump for further radiation.
This further radiation can be seen labeled as “pumped radia-
tion”, and coincides with the resonance predictions. We can
be sure that this pumped radiation is distinct from Cherenkov
radiation because it begins to be formed as the soliton begins
to interact with the pump waves. We find that the closely
grouped solitons shown in Fig. 4(c) gradually separate and
remain stable solitons after more than 100 mm of propagation.

Previous literature in this area suggests peak input powers
of a few kW [20] are experimentally achievable for similar
waveguides and wavelengths. This suggests that it should be
experimentally possible to generate many of the solitons and
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quasisolitons observed here. It is important to highlight that
the solitons predicted and simulated in Fig. 3(a) experience
normal GVD (β2 > 0) in both the FF and SH. As Kerr solitons
cannot exist for normal GVD [4] any experimentally observed
solitons in this frequency range could only be due to χ (2)

nonlinearity.

V. CONCLUSION

The existence of temporal solitons in generic χ (2) waveg-
uides has been investigated. Conditions for the existence of
localized solitons have been analyzed and five distinct regimes
of soliton and quasisoliton existence have been identified. Two
nanowaveguide structures were simulated and all five regimes
were found to exist for different wavelengths in these two
waveguides. Predictions for soliton and quasisoliton existence
have been confirmed by pulse propagation simulation in the
proposed nanowaveguide structures.

The interaction of solitons with higher-order dispersion
terms has been predicted to produce Cherenkov radiation
from both FF and SH soliton components. Soliton propaga-
tion simulations have confirmed these predictions. Radiation
due to dispersive wave pumps has also been predicted and

simulated. The wavelengths of this radiation in simulation
coincides closely with those expected from analytic predic-
tions. The generation of multiple solitons and quasisolitons
under opposite signs of dispersion has also been simulated for
experimentally attainable peak powers.

This model is intended to provide a useful theoretical
basis for low-power soliton generation in χ (2) waveguides.
We hope that our analysis provides the possibility of optimiz-
ing soliton-assisted frequency conversion in lithium niobate
nanowaveguides. Future work on the problem considered
above can include analytical calculations of the amplitude
of resonant radiation as has been done previously in Kerr
systems [6,25,26].

All data supporting this study are openly available from the
University of Bath Research Data Archive [27].
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