
PHYSICAL REVIEW RESEARCH 1, 033142 (2019)

Analysis of the relation between quadratic unconstrained binary optimization
and the spin-glass ground-state problem

Stefan Boettcher
Department of Physics, Emory University, Atlanta, Georgia 30322, USA

(Received 24 June 2019; published 3 December 2019)

We analyze the transformation of quadratic unconstrained binary optimization (QUBO) from its conventional
Boolean presentation into an equivalent spin-glass problem with coupled ±1 spin variables exposed to a site-
dependent external field. We find that in a widely used testbed for QUBO, these fields tend to be rather large
compared to the typical coupling and many spins in each optimal configuration simply align with the fields
irrespective of their constraints. Thereby, the testbed instances tend to exhibit large redundancies—seemingly
independent variables which contribute little to the hardness of the problem, however. We demonstrate various
consequences of this insight for QUBO solvers as well as for heuristics developed for finding spin-glass ground
states. To this end, we implement the extremal optimization (EO) heuristic in a new adaptation for the QUBO
problem. We also propose a novel way to assess the quality of heuristics for increasing problem sizes based on
asymptotic scaling.
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I. INTRODUCTION

Quadratic unconstrained binary optimization (QUBO) is a
versatile NP-hard combinatorial problem with applications in
operation research [1] and financial asset management, for
example. It has recently been studied also as a benchmark
challenge for the D-Wave quantum annealer [2] or for a new
generation of classical optimizers based on GPU technology
[3]. Cutting-edge classical algorithms for QUBO, developed
in the engineering literature, are based on TABU search [1,4–
7] and a variety of other heuristics [8]. From a statistical
physics perspective, these developments are tantalizing for
the fact that the generic formulation of QUBO appears to be
identical to that of the Ising spin-glass Hamiltonian. While
this connection has long be realized [9], it poses a conun-
drum that has not be commented on previously, and whose
resolution could be of importance for both, the study of the
low-energy structure of spin glasses as well as the under-
standing of its combinatorial hardness, for example, to assess
the capabilities of the aforementioned solvers, classical and
quantum.

Short of a real quantum computing solution, our only hope
to find approximate solutions of reasonable quality for large-
size instances of many NP-hard combinatorial optimization
problems stems from the design of heuristic methods [10–13].
From that perspective, it is somewhat surprising to find that
seemingly equivalent instances of QUBO are routinely solved
with well up to N ≈ 104 variables [1,4,5,7] while solvers for
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comparable spin glasses already struggle with instances of
N ≈ 103 variables to converge without incurring unacceptable
systematic errors [14–18]. Could adapting those highly devel-
oped QUBO solvers from the operations research literature
provide a significant new inroad into investigations of spin
glasses? What we find instead, unfortunately, is that there is an
inherent weakness in the definition of the typical testbeds em-
ployed to assess QUBO solvers, which is revealed when these
testbed instances are expressed as mean-field spin glasses.
Exploiting this weakness, we apply a novel implementation
of the extremal optimization (EO) heuristic [10,19–21] to the
QUBO problem that performs on par with QUBO solvers for
such large instances. In turn, we demonstrate that a naive
application of a typical QUBO solver performs poorly for
the spin glass. However, it would be of considerable physics
interest to harness the power of TABU search and have experts
in the design of QUBO solvers tune their implementations for
spin-glass problems for a fair comparison.

Besides of the caution against overinterpreting the signifi-
cance of solving “large” instances, our study also produces a
number of positive results. Our new implementation of EO not
only serves as an alternative QUBO solver, but its design also
provides insights that will advance the future exploration of
the low-energy landscape of Ising spin glasses in the presence
of external fields. Furthermore, we propose a powerful test
for heuristic solvers that, in contrast with traditional testbed
instances, unambiguously reveals the scalability of solvers
asymptotically with problem size.

This paper is organized as follows. In Sec. II, we revisit
the well-known relation between QUBO and spin glasses,
with the added twist of a gauge transformation. In Sec. III,
we adapt a sophisticated implementation of TABU search to
study ground states of mean-field (Sherrington-Kirkpatrick)
spin glasses. In Sec. IV, we employ EO to study the QUBO
problem in a manner that incorporates well-known testbeds
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while also arguing for a novel way of quantifying the scalabil-
ity of heuristics. In Sec. V, we conclude with an assessment of
the state of the art for solving QUBO problems with heuristics
and provide an outlook on future work.

II. RELATION BETWEEN SPIN GLASSES AND QUBO

Disordered Ising spin systems in the mean-field limit have
been investigated extensively as models of combinatorial
optimization problems [22,23]. Particularly simple are such
models on (sparse) α-regular random graphs (“Bethe lattice”),
where each vertex possesses a fixed number α of bonds to
randomly selected other vertices [24,25], or on a (dense) fully
connected graph, referred to as the Sherrington-Kirkpatrick
model (SK) [18,22,26]. Instances in an ensemble are formed
via a matrix Ji j of bonds between adjacent vertices i and j,
typically drawn randomly from a symmetric distribution such
as N (0, 1) (normal, Gaussian) or ±1 (bimodal). (Accord-
ingly, it is Jii ≡ 0, as there are no “self-bonds.”) A dynamic
variable σi ∈ {−1,+1} (“spin”) is assigned to each vertex. In-
terconnecting loops of existing bonds lead to competing con-
straints and “frustration” [27], making optimal (minimal en-
ergy) spin configurations hard to find. In addition, we will al-
low for each spin to experience an external torque due to local
magnetic fields hi, which may also be drawn randomly or be
of uniform fixed value. In the SK problem discussed here, we
will merely consider the case of field-free instances (hi ≡0).
However, in the discussion of the relation between QUBO and
SK, we will have to provide for the possibility of nonzero
fields. Hence, as our cost function of this generalized problem,
we endeavor to minimize the energy H of the system,

H = −
N∑

i=1

N∑
j=i+1

Ji jσiσ j −
N∑

i=1

hiσi, (1)

over the variables σi.
In turn, for QUBO, we minimize the cost function1

E = −
N∑

i=1

N∑
j=1

qi jxix j (2)

over a set of N Boolean variables xi ∈ {0, 1}. Note that in this
case it is qii �= 0, unlike for spin-glass couplings in Eq. (1). A
generalized form of the QUBO cost with a term linear in the
variables, similar to SK with an external field in Eq. (1), is not
necessary, since we can use the identity xi ≡ x2

i , valid for xi ∈
{0, 1}, to write any linear terms as cxi = cx2

i and add weights c
to that on the diagonal, qii. The test instances often considered
for QUBO are created by choosing symmetric weights qi j ,
drawn from a uniform (typically flat) distribution of zero
mean, such as −100 < qi j < 100 filling N × N matrices with
10%–100% density [1,5,28]. (It seems that samples of sparse
instances comparable to Bethe lattices have not yet been dis-
cussed for QUBO.) In that literature, there is a distinct focus
on specific testbeds of a few instances that are referenced for

1In the operations research literature, QUBO is usually defined as
a maximization problem for E without the sign; the conversion is
trivial.

every new method applied to the problem, in an attempt to
facilitate comparisons between the methods. Here, we merely
consider a set of ten such testbed instances from each of the
sets “bqp1000” and “bqp2500,” of size N = 1000 and 2500,
respectively, to also allow for such a comparison. However, as
we will see, significant insight, especially about the scaling
with N of each problem, can be gained by instead taking
an ensemble perspective, i.e., we will make cost averages
obtained over a larger number of instances taken at random
from the ensemble at various sizes N .

Both problem statements, Eqs. (1) and (2), appear to be
rather similar, including the symmetric distribution of weights
and variables of a binary type, and one may wonder whether a
detailed comparison between QUBO and SK as distinct opti-
mization problems is warranted. Yet, the fact that spin glasses
are defined for Ising variables, σi ∈ {±1}, while QUBO has
Boolean variables, xi ∈ {0, 1}, proves quite consequential.

A. Spin glass as a QUBO problem

For using a QUBO solver to optimize the SK spin-glass
problem in Sec. III, we have to rewrite the spin-glass cost
function in Eq. (1) in terms of the Boolean variables a QUBO
solver operates on. To that end, we assume given bonds Ji j

and fields hi and set σi = 2xi − 1 to obtain

H = 2E + C, (3)

with C = −∑N
i=1

∑N
j=i+1 Ji j + ∑N

i=1 hi as some fixed con-
stant for each instance. Now, E takes on exactly the form of
Eq. (2) but with weights

qi j =
{

Ji j, i �= j,

hi − ∑N
l=1 Jil , i = j.

(4)

Thus, by solving the QUBO problem for E with these weights,
we easily extract the spin-glass ground state H via Eq. (3).
Note that although all qi j for i �= j are still simply random
numbers drawn from a symmetric distribution, the diagonal
elements qii instead become extensive sums of such numbers,
unless all hi �= 0 and are specifically chosen as counterbal-
ance. Such qii are still symmetrically—but far more broadly—
distributed (by a factor ∼√

N) and always determined such
that each row-sum and column-sum vanishes. Since x2

i ≡
xi, those diagonal elements are apparently equivalent to a
linear term supplementing the QUBO cost function, Eq. (2).
However, the properties of such a term are quite different
from the magnetic field term in Eq. (1), as we will discuss
in Sec. IV B 1.

B. QUBO problem as a spin glass

Using a spin-glass solver to optimize the QUBO problem
in Sec. IV, correspondingly, we take the QUBO weights qi j as
given and rewrite the QUBO variables xi as spins σi ∈ {±1}
via xi = 1

2 (1 + σi ). With that, in full analogy with Eq. (3), we
find

E = 1
2 H − 1

2C (5)
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with a Hamiltonian as given in Eq. (1) when using the bonds
and fields as

hi =
N∑

j=1

qi j, (6)

Ji j =
{

qi j, i �= j,

0, i = j.
(7)

Here, C = ∑N
i=1

∑N
j=i+1 qi j + ∑N

i=1 qii again is an inert con-
stant that is easily evaluated for each instance. Note that
each single field hi itself becomes a symmetrically distributed
random variable of width ∼√

N , a sum over an entire row
of the qi j matrix, if qi j is such a random variable of unit
width. Such a strong biasing field, as we will argue in detail
below, poses a serious problem for the design of truly hard
QUBO instances. We will discuss in more detail how to find
approximate ground states of such a spin-glass Hamiltonian
with an external field in Sec. IV. However, given that, the cost
for the QUBO problem follows simply from Eq. (5).

C. Gauge transformation

While the existence of a relation between QUBO and spin
glasses is not a novel observation [8,9], the following consid-
eration, albeit simple, allows for a pertinent insight into the
nature of optimal configurations of QUBO that seems to have
escaped prior notice. In general, a spin-glass Hamiltonian as
in Eq. (1) retains all its spectral properties (here, in particular,
its ground-state energy) under the transformation

σi → σ ′
i = ξiσi, ξi = ±1, (8)

for all i. Then,

H ({σ ′
i }) = −

∑
i

∑
j

ξiξ jJi jσiσ j −
∑

i

ξihiσi,

= −
∑

i

∑
j

J ′
i jσiσ j −

∑
i

h′
iσi, (9)

when we identify

J ′
i j = ξiξ jJi j, h′

i = ξihi. (10)

Thus the transformation in Eq. (8) leaves the spin-glass
Hamiltonian invariant. We note that such an invariance does
not exist for the (Boolean) QUBO problem, as the corre-
sponding transformation xi → x′

i = 1 − xi on only select sites
i modifies the QUBO Hamiltonian in Eq. (2).

Via Eq. (10), we are now free to “gauge” our spin variables
in any form desirable. For our purposes, it is enlightening here
to choose the set {ξi} such that all external fields are non-
negative, h′

i � 0 for all i in Eq. (10). We can easily obtain the
solution of the original problem via H ({ξiσi}) = H ′({σi}), in
particular, for the optimal configuration. It is now intuitive to
ask: To what extend do spins in the optimal configuration align
with their external field, irrespective of the mutual couplings
Ji j? We will address that question in Sec. IV. First, we will
explore how a QUBO solver fares in finding SK ground states.

III. USING QUBO SOLVERS FOR SK

Here, we will apply a freely available QUBO solver,
namely, the iterated Tabu search (ITS) designed by Palubeckis
[29]. In Ref. [7], this implementation of ITS was used to
reproduce the best-known results for various QUBO testbed
instances (such as those discussed in Sec. IV) of up to
N = 7000 variables. Similar results were found with other
implementations of Tabu-based QUBO solvers [8], and we
assume the following observations to be generic for that class
of solvers. We modify the ITS implementation only in so far
as to input a large number of instances drawn from the SK en-
semble with bimodal bonds and to convert those into QUBO,
as introduced in Sec. II A. Experts in Tabu search will note
that no effort has been undertaken to tune the heuristic for the
different ensemble, for which we have insufficient experience
to accomplish. Thus the following results are meant to serve
as an illustration that a successful application to large QUBO
instances does not imply the same for spin glasses.

This optimization problem of finding ground states of SK
has been tackled previously using genetic algorithms [30],
hysteretic optimization [16,31], extremal optimization (EO)
[18,32], as well as various METROPOLIS methods [33,34]. In
particular, in Refs. [18,32], an asymptotic extrapolation was
determined from finite-N data with significant accuracy for
the ensemble-averaged ground-state energy,

〈e0〉N = 〈e0〉∞ + A

Nω
(11)

with 〈e0〉∞ = −0.76323(5), A = 0.70(1), and with ω = 2
3

conjectured to be exact. It provides a powerful reference—
alternative to the results obtained from testbeds—for the
quality of heuristic solvers, as shown in Fig. 1. There, we plot
the results of our simulations where we have averaged over
1000 instances each for a range of sizes N . Those results are
also listed in Table I.

As we will compare below with data obtained for QUBO
instances in dilute systems, we supplement this discussion
further with a brief study of SK on a diluted graph. To be
comparable with the QUBO instances, we consider SK in
Eq. (1) with a symmetric bond matrix Ji j whose off-diagonal
elements are only to 10% nonzero (i.e., ±1). Again, we have
no external fields. Those results are also listed in Table I.
These results, also shown in Fig. 1, are practically indistin-
guishable from those of the full SK. At around N ≈ 500,
ITS exhibits noticeable deviations from the apparent scaling.
Novel to this case is the fact that we can arrive at this
conclusion even though we have no knowledge a priori about
its asymptotic behavior, which further serves to demonstrate
the value of such an extrapolation in assessing the ability
of a heuristic. [The fact that the extrapolation based on our
τ -EO data according to Eq. (11) here requires an anomalous
exponent of ω ≈ 0.82 is a novel result in itself and will be
studied in more detail elsewhere.]

In either case, for small N � 512, the data obtained with
Tabu search track the prediction in Eq. (11) quite closely, thus
demonstrating the consistency with the scaling in Eq. (11).
However, systematic errors become increasingly apparent for
larger system sizes. This raises the following conundrum: why
is a heuristic like ITS that routinely solves QUBO instances
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FIG. 1. Extrapolation of the average ground-state energy approx-
imation for the SK, either at full (top) or diluted bond density
(bottom), as obtained by iterated Tabu search [7], see data listed in
Table I. For the full SK on top, the predicted scaling (red-dashed
line) according to Eq. (11) was previously obtained from a fit
to an extensive data set obtained with a different heuristic [17].
(For example, for N → ∞, it extrapolates with high accuracy to
the exactly known ground-state energy density of the SK model,
〈e0〉N=∞ = –0.763166 . . . [35,36], marked by a blue arrow.) The
dilute system on the bottom has not been studied before, so we have
used τ -EO to provide reference data (black circles), on which the
predicted scaling is based via a fit (red-dashed line) to Eq. (11).

with ten times as many variables failing to optimize SK
instances beyond 500 variables, considering the rather similar
formulations of both problems? A few immediately obvious
explanations come to mind. For one, the ITS implementation
has been tuned for a certain ensemble, as discussed in Sec. II,
while the transformation of SK to QUBO provides a similar
but not identical ensemble. (In fact, ITS specifically employs
the strength of the diagonal qii weights, which are very distinct
in the SK problem, to initiate its restarts [7].) Experts in
Tabu-based heuristics could justifiably argue that with some
small adjustments big improvements can be achieved. In fact,
simply increasing the duration and the number of restarts in
ITS leads to a decrease, albeit slowly, in the systematic error
at larger N . Yet, the performance is never quite as impressive
as the results obtained by Tabu solvers for the typical testbed

TABLE I. Average ground-state energy obtained for the SK spin
glass, both at full bond density (left columns) as well as at a 10%
dilute bond density (right columns), using the iterated Tabu search
heuristic (ITS), as developed for QUBO in Ref. [7], by sampling
about 1000 instances at each size N , and applying default settings. In
the dilute case, we also listed results for τ -EO, which were generated
here just for this comparison. These data points are also plotted in
Fig. 1.

Full SK SK at 10%

ITS ITS τ -EO

N 〈e0〉N N 〈e0〉N N 〈e0〉N

15 −0.644(2) 63 −0.2203(3) 63 −0.2204(1)
31 −0.692(1) 85 −0.2248(3) 85 −0.2248(1)
63 −0.7178(7) 127 −0.2291(2) 127 −0.2292(1)
127 −0.7358(5) 165 −0.2314(2) 165 −0.2314(1)
255 −0.7458(3) 255 −0.2342(1) 255 −0.2342(1)
511 −0.7519(2) 355 −0.2355(1) 355 −0.2357(1)
1023 −0.7520(1) 511 −0.2365(1) 511 −0.2371(2)
2047 −0.7491(1) 1023 −0.2366(1) 1023 −0.2389(3)

instances of QUBO. We believe that the discrepancy is the
sign of an inherent weakness in the design of the QUBO
testbeds. This is made apparent by showing that heuristics
trained on spin glasses in turn are easily adapted to solve much
large samples of QUBO, as the following discussion suggests.

IV. USING τ-EO TO SOLVE QUBO PROBLEMS

In this section, we proceed to apply heuristic methods
developed for the approximation of spin-glass ground states to
the QUBO problem, specifically, τ -EO [10,19,20]. According
to our prior experience, and in contrast to the preceding,
somewhat naive application of the ITS heuristic, we are in a
position to study this implementation in depth and develop a
highly tuned heuristic. On one level, the equivalent spin-glass
problem derived from QUBO, see Sec. II, raises additional
challenges for EO, as the emergence of external fields add
new, competing energy scales to reckon with. However, in the
end, the comparison with the QUBO problem leads us to an
understanding and, ultimately, to means to systematically in-
corporate these new scales into the search process. Moreover,
an analysis of the solutions obtained for the QUBO problem as
spin glass resolves the conundrum about the size discrepancy
in the solvability of either problem mentioned in the previous
section in physical terms.

A. Extremal optimization (EO) heuristic

EO performs a local search [11] on an existing configura-
tion of N variables by changing preferentially those of poor
local arrangement. For example, in case of the spin-glass
model in Eq. (1), but without an external field (i.e., hi ≡ 0),
one usually sets [20] λi = σi

∑
j Ji, jσ j to assess the local

“fitness” of variable σi. Then, H = −∑
i λi represents the

overall energy (or cost) to be minimized. EO simply ranks
variables,

λ�(1) � λ�(2) � . . . � λ�(N ), (12)
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where �(k) = i is the index for the kth-ranked variable σi.
Basic EO [19] always selects the lowest rank, k = 1, for an
update. Instead, τ -EO selects the kth-ranked variable accord-
ing to a scale-free probability distribution

P(k) ∝ k−τ . (13)

The selected variable is updated unconditionally, and its fit-
ness and that of its neighboring variables are reevaluated. This
update is repeated as long as desired, where the unconditional
update ensures significant fluctuations, with sufficient incen-
tive to return to near-optimal solutions due to selection against
variables with poor fitness, for the right choice of τ . Clearly,
for finite τ , this version of EO never “freezes” into a single
configuration; it is able to return an extensive list [25,37] of
the best configurations visited (or simply their cost) “on the
go” instead.

For τ = 0, the distribution in Eq. (13) becomes flat over
the ranks and τ -EO simply becomes a random walk through
configuration space, for which poor search results are to be
expected. Conversely, for τ → ∞, the process approaches a
deterministic local search, only updating the lowest-ranked
variable, k = 1, and is likely to get trapped. However, for
finite values of τ , the choice of a scale-free distribution for
P(k) in Eq. (13) ensures that no rank k gets excluded from
further evolution, while maintaining a bias against variables
with bad fitness. Fixing τ − 1 ∼ 1/ ln(N ) provides a simple,
parameter-free strategy, activating avalanches of adaptation
[38].

B. τ-EO implementation for QUBO

In light of previous applications to spin glasses, where
fitness is defined via the local field exerted on each spin (see,
for example, Sec. IV A), it would seem straightforward to
simply add the external field hi to the local field to obtain a
definition of fitness as λi = σi(hi + ∑

j Ji, jσ j ), so that again
H = −∑

i λi, in accordance with Eq. (1). This canonical
approach leads to a problem in which the heuristic is trying to
satisfy two, in principle distinct, scales: that of the distribution
of the bonds Ji j , and that of the distribution of the fields
hi. Since in the QUBO problem both scales derive from the
one distribution of the weights qi j , they are correlated in this
case. Yet, in the optimization runs with τ -EO on the testbed
instances [39], for example, this definition of fitnesses λi fails
to provide reasonable results. Only when the external fields
were slowly turned on, in those trials, via a ramp γ that is
linear in time,

λi = σi

⎡
⎣ N∑

j=1

Ji jσ j + γ (t )hi

⎤
⎦, γ (t ) = t

tmax
, (14)

the best-known results for that testbed were readily repro-
duced, albeit at significant overhead in CPU time.

In Fig. 2, we plot the evolution of the error relative to
that best-known result for each of the ten instances of the
testbed “bqp2500,” together with the corresponding magne-
tization.(“Magnetization” here refers to the excess of spins
aligned with their external fields hi, whether those are positive
or negative. Alternatively, it may refer to the actual mag-
netization, m = 1

N

∑N
i=1 σi, due to the excess of spins with

FIG. 2. Plot of the evolution of EO in single runs for τ = 1.3 and
tmax = N3/10 updates, (top) for the magnetization and (bottom) the
relative error 
ε with respect to the best-known value from Ref. [5]
for the instances of size N = 2500 in the bqp testbed. Starting with a
random assignment of spins at 
ε ≈ 40%, better solutions are only
obtained after the external fields are ramped up somewhat, according
to Eq. (14). However, note that the optimal solution is already found
typically when the relative field strength reaches merely γ ≈ 50%.
The fact that the magnetization of those optimal states reaches m ≈
60%, i.e., up to 80% of spins simply align with their external field
hi, indicates a high degree of redundancy within those instances, see
Fig. 3. A heuristic merely needs to sort out which 20% spins have to
resist their external field.

σi = +1 after applying the gauge transformation in Sec. II C
that renders all fields h′

i > 0. Both formulations are equiva-
lent!) At least, two aspects of those results are remarkable.
For one, in each case, the best-found solution is found at least
when those fields are “turned on” by 50%. Secondly, in that
best-found solution there is a high degree of ordering imposed
on the instance due to those external fields. We consider the
importance of the latter observation first.

1. Magnetization of QUBO instances

Representing each testbed instance of QUBO as a spin
glass, following Sec. II B, we actually find that the magne-
tization reaches ≈60%, i.e., the alignment of the variables
σi with their external fields is to 80% a predictor of the
optimal arrangement within the lowest-energy solution. Thus
irrespective of the mutual constraints spins impose on each
other through the bonds Ji j , in many cases those constraints
are simply overwritten by the torque exerted by the external
fields hi alone. Clearly, a larger local field imposes a larger
torque that is more likely coercive than a smaller one, as
Fig. 3 illustrates. In fact, we find that a simple O(N ) “greedy
alignment” algorithm that aligns spins sequentially, selected
based on having the largest remaining local field (consisting
of the torque exerted by the external field and those of any pre-
viously assigned spins), typically reaches a cost that is within
3% of the best-known solutions (see Fig. 6). Still, it likely
remains an NP-hard task to sort out which 20% of the fields
are to be disobeyed, although for each N this is a problem of
much reduced complexity compared to the corresponding SK
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FIG. 3. Analysis of the magnetization of the best-known solution
to one of the bqp2500 instances from the QUBO testbed. Here, the
rank-ordered list of N = 2500 local fields hi defined in Eq. (6), corre-
sponding to the row/column sum of the weights qi j , are plotted (blue
line). Marked (by red vertical lines) are fields where the associated
spin σi in the configuration with the lowest energy is not aligned with
hi, i.e., when σihi < 0. As the results for the magnetization in Fig. 2
suggest, only a small fraction (≈20%) of variables do not align,
in particular, most of those associated with the (absolute) highest
fields (and, thus, largest contributions to the energy) are aligned
(unmarked) with high probability.

ground state problem with all hi ≡ 0, hence, explaining the
discrepancy in “hardness” between QUBO and SK.

It is instructive to consider2 the—seemingly—equivalent
representation of an SK-instance (without external field) as a
QUBO problem. As mentioned in Sec. II A, such a conversion
produces a linear term in the QUBO cost-function of similar
appearance to the magnetic field above. In particular, its
strength, given by qii in Eq. (4), appears to be as extensive
as we found for the hi. However, the coupling of each variable
xi to qii is somewhat arbitrary and, hence, fails to coerce xi in a
significant manner, as is demonstrated in Fig. 4. To show this,
we employ the freedom to gauge the SK instance in question,
following Sec. II C, leaving open the choice for the entire set
of gauge parameters {ξi}. In the absence of an external field,
Eq. (4) then yields

qii = −
N∑

l=1

Jilξiξl . (15)

Alas, different choices of ξi = ±1 create quite arbitrary linear
couplings qii for each individual xi (although overall the
hardness of the problem is not affected)! In contrast, no
such invariance exists for QUBO and, thus, the linear terms
hi emerging in its conversion into a spin-glass problem are
unique and render the coercive force on their coupled variable
σi consequential, see Fig. 3.

2We thank the referee for insisting on this consideration.
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FIG. 4. Analysis of the coercion of the diagonal element qii in
the QUBO matrix obtained from an SK spin-glass instance of size
N = 511 on the Boolean variables xi in the best-known solution. As
in Fig. 3, the qii, obtained via Eq. (4), are plotted (in blue) in rank
order. Marked (by red vertical lines) are fields where the associated
variable xi in the configuration with the lowest cost is not aligned
to render xiqii optimal, i.e., when xi = 0 although qii > 0 or xi = 1
while qii < 0. Unlike the local fields hi in Fig. 3, the strength of qii

here provides no distinguishable coercive force of the xi.

2. Optimization of the EO implementation

We now return to the earlier observation about τ -EO satu-
rating the best-known results in the testbed when the ramped
fields in Eq. (14) reach 50% with striking consistency. As
it turns out, this observation pins down an arbitrary choice
in the design of EO that allows us to implement a more
efficient version of τ -EO. This choice in the definition of
fitness attributed to individual variables has been discussed
previously in Ref. [10]. It is here where the interpretation
of spin glasses as a QUBO problem has its most significant
impact. Unlike for a spin glass, where the combined local field
offers itself as the canonical fitness for each spin, in QUBO
we would naturally construct a fitness as follows instead. By
assigning a variable xi, its instantaneous contribution to the
cost of ri = ∑N

j=1 qi jx j is either suppressed (xi = 0) or added
(xi = 1), hence, the fitness λi should be ri if xi = 1 or −ri if
xi = 0, penalizing the unactualized potential when ri > 0 but
xi = 0. Thus, for QUBO, the apparent choice for fitness can
be summarized as

λi = σi

N∑
j=1

qi jx j . (16)

Note that in this case,
∑

i λi itself does not add up to the
actual cost of an instance, E or H , which is not a necessity,
as is discussed in Ref. [10]. Amazingly, using the definitions
in Sec. II, for the spin glass, this translates into

λi = σi

⎡
⎣ N∑

j=1

Ji jσ j + 1

2
hi

⎤
⎦, (17)
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FIG. 5. Study of the γ dependence of the error ε produced by
τ -EO relative to the best-known results, averaged over the two
QUBO gqp testbeds with N = 1000 and 2500, when using the
fitnesses λi = σi[

∑N
j=1 Ji jσ j + γ hi] with fixed γ during a run, as

generalization of Eq. (17). For τ -EO, as described in Sec. IV A, we
set τ = 1.3 and tmax = N3/100. The results clearly indicate γ = 50%
as an especially useful case, as implemented in Eq. (17).

i.e., favoring a fixed value of γ = 50%. This result is indeed
borne out with a more systematic study at various fixed values
of γ , as shown in Fig. 5. Accordingly, we will use this
more effective version of τ -EO in the following, with τ = 1.3
and tmax = N3/100, and fitnesses as defined in Eq. (17), to
study the QUBO problem as a spin glass. As such, τ -EO
has a complexity of O(N3 ln N ), where the logarithmic de-
pendence is due to dynamic sorting of fitnesses, as introduced
in Ref. [18].

C. Ensemble results for the QUBO problem

Based on the implementation of τ -EO described in the
previous section, we have run extensive simulations for the
QUBO problem, similar to those we have employed previ-
ously for SK [17,18]. And in analogy with those, we propose
here to evaluate the capabilities of the implementation using
an extrapolation plot of the ensemble results, as also shown
in Fig. 1. The results validate our expectation that QUBO
problems in this ensemble can be solved to much larger sizes
than the corresponding SK spin glass.

In Table II, we summarize the results of the simulations for
the range of instance sizes from N = 31, . . . , 4095. For each
size, we have selected a sufficiently large number of instances
from the ensemble to be able to keep the statistical errors
small and relatively comparable in magnitude. From SK, it
is well-known that, if the matrix elements are drawn from a
distribution of fixed width, scale-invariant (intensive) costs are
obtained when H is rescaled by a factor of N

3
2 [22], thus, we

define 〈e0〉N = H/N
3
2 , in accordance with Eq. (11). Listed are

also the corresponding results for the described O(N ) greedy
alignment algorithm, which turn out to be consistently 3%
above the best EO predictions, another sign of their systematic
quality.

TABLE II. Results from applying τ -EO to the QUBO ensemble
defined in Sec. II, with qi j drawn randomly from a flat distribution
over the integers on [−100 . . . + 100] at 10% filling. Listed are the
system sizes N considered, the number of instances I simulated from
the ensemble, the measured ground-state energy density 〈e0〉N =
H/N

3
2 according to Eq. (1), and the corresponding approximation

obtained with the greedy alignment algorithm. Note that the result for
N = 1000 and N = 2500 specifically refer only to the gap testbeds
(underlined). These data are plotted as an extrapolation plot in Fig. 6.

N I 〈e0〉N Greedy

31 105 −9.67(1) −9.46(1)
44 105 −10.074(5) −9.81(1)
63 105 −10.318(5) −10.036(5)
80 105 −10.426(4) −10.125(4)
100 105 −10.501(4) −10.190(5)
127 105 −10.564(3) −10.245(3)
160 2 × 104 −10.611(7) −10.298(7)
255 104 −10.68(1) −10.34(1)
511 104 −10.750(5) −10.404(4)
1000 10 –11.4(1) –11.1(1)

1023 4 × 103 −10.776(6) −10.44(1)
2500 10 –11.84(7) –11.45(7)

4095 600 −10.79(1) −10.48(2)

These data are also plotted in Fig. 6, in extrapolated form,
which should yield an asymptotically linear graph, according
to Eq. (11), if we choose N−ω with the correct value of ω

as our x axis. Such a linear extrapolation is achieved here for
ω = 1, suggesting that finite-size corrections in QUBO dimin-
ish much faster than for SK, where corrections are conjectured
to decay only as N− 2

3 , i.e., ω = 2
3 [18,34,41], as shown in

Fig. 1. Weaker corrections provide more evidence for the rela-
tive simplicity of approximating QUBO. As for the SK data in
Refs. [17,18], these data are also readily fitted asymptotically
(for N small enough that there a few systematic errors but
large enough, here N > 44, to ignore finite-size corrections)
with the linear form provided by Eq. (11). Note that the
specific values obtained for this fit, 〈e0〉∞ = −10.8(1) and
A = 30(1), are not of any significance by themselves. All we
care about is a deviation from that line for large N as a likely
sign of a systematic breakdown in the heuristic we care to
assess. Up to the sizes accessible with this implementation
within reasonable CPU time, EO does not show any signifi-
cant systematic error, as discussed in Fig. 7.

As a curious side note, we observe that the ten instances
from the gap testbeds of sizes N = 1000 and 2500 (also listed
in Table II and plotted as red dots in Fig. 6) apparently are
highly atypical for the ensemble they were supposedly drawn
from, with much lower average costs. This does not signal a
shortcoming of EO, as all averages were obtained uniformly
with the same implementation, and the greedy results are
equally untypical but remain 3% above the best-found costs.
We can only speculate about the origin of this effect, but it
seems likely that a poor random number generator was used
to make the testbed.
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FIG. 6. Extrapolation of the average optimal cost approximation
for the QUBO problem as obtained by τ -EO. All data displayed
here can also be found in Table II. We can fit the EO data (black
circles) for sufficiently small N (which is more likely exact!), but
N � 50 to be asymptotic, to obtain a scaling prediction (red-dashed
line) for all large N . A deviation from that scaling, which would
signal the onset of systematic errors in the heuristic (as seen in
Fig. 1), is not apparent here for the data up to N = 4095. Shown
are also the corresponding data for the greedy alignment algorithm
mentioned in the text (blue squares), which remain systematically
3% above the optimal results for all N , another indication that the EO
data maintain their systematic accuracy. Strikingly, the averages for
the best-found solutions for both testbeds, gqp1000, and gqp2500,
are uncharacteristically low and far from their expected ensemble
average (red-dashed line), but so are their greedy approximations
(not shown here, but see Table II), which are again 3% higher, yet,
much below the ensemble. It seems likely that those gap testbed
instances, originating in 1996 from Ref. [40], were generated with
a poor random number generator.

V. CONCLUSIONS

In our discussion, we have analyzed the relation between
the SK spin glass ground-state problem and the classical
NP-hard combinatorial problem of QUBO. We have argued
that a widely used form of the QUBO problem, with weights
drawn from a symmetric distribution of finite width, leads
to rather simple testbeds with a high degree of redundancy.
Those instances correspond to a spin-glass problem where
a large fraction of spins are independently determined by a
large biasing field. As Eq. (6) shows, those biasing fields
can only be avoided when in the QUBO problem the sum
of the weights in each row (or column) vanishes, or at least
grows less that O(

√
N ) for increasing problem size N . We will

explore more systematic approaches to generate matrices Q
that have random entries but are constraint to vanishing row-
sums elsewhere. Since such problems have recently been used
to assess the quality of dedicated quantum annealers [2] such
as D-Wave, which claims advantages due to quantum effects,
a careful analysis of actual hardness of classical problems
is timely. In terms of the physical description of the QUBO
problem as a Ising spin glass, we find that a large fraction

100 1000
N
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105

106

107

108

U
pd

at
es

EO-Updates
tmax

N3/400

FIG. 7. Measure of the computational cost for the τ -EO imple-
mentation in terms of the average number of update steps needed to
first encounter the best-found solutions listed in Table II as a function
of instance size N . The cubic line (dotted) of N3/400 is merely
included to guide the eye. The approach of the measured updates
suggests that EO typically finds its best solution within a quarter
of the allotted number of updates, tmax = N3/100 (red-dashed line).
Since the actual computational complexity for an NP-hard problem
such as QUBO is expected to rise exponentially in size, we would
expect EO to eventually exhibit systematic errors. However, up to
this size, there is no sign of upward pressure on the total runtime.

of variables in those instances are trivially coerced by large
external fields. The impact of this redundancy is illustrated
first by applying a standard QUBO solver that provides good
results for large QUBO instances but in turn fails for much
smaller and seemingly similar SK instances. We then pro-
posed an implementation of τ -EO, previously well-trained on
the SK problem, and show that it can solve comparatively
much larger instances of the QUBO problem. Along the way,
we have shown that a systematic, ensemble-based study to
test the capabilities of heuristics via an extrapolation plot
provides a self-contained and quite stringent measure of their
performance for large N , superior to any ad hoc assembly of
testbeds.

In the future, we will explore whether the definition of
fitness used in Eq. (17) for spin glasses in an external field,
which our calculations show to remain valid when the external
field is varied independently (unlike for the SK obtained from
QUBO here), will allow to apply τ -EO also to interesting
ground-state problems of spin glasses in such fields. A number
of questions about the low-temperature glassy state of spin
glasses are connected with its stability under coercion with
external fields [42–45].
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