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The cumulant representation is common in classical statistical physics for variables on the real line and the
issue of closures of cumulant expansions is well elaborated. The case of phase variables significantly differs from
the case of linear ones; the relevant order parameters are the Kuramoto-Daido ones, but not the conventional
moments. One can formally introduce circular cumulants for Kuramoto-Daido order parameters, similar to the
conventional cumulants for moments. The circular cumulant expansions allow us to advance beyond the Ott-
Antonsen theory and consider populations of real oscillators. First, we show that truncation of circular cumulant
expansions, except for the Ott-Antonsen case, is forbidden. Second, we compare this situation to the case of the
Gaussian distribution of a linear variable, where the second cumulant is nonzero and all the higher cumulants
are zero, and elucidate why keeping up to the second cumulant is admissible for a linear variable, but forbidden
for circular cumulants. Third, we discuss the implication of this truncation issue to populations of quadratic
integrate-and-fire neurons [E. Montbrió, D. Pazó, and A. Roxin, Phys. Rev. X 5, 021028 (2015)], where, within
the framework of macroscopic description, the firing rate diverges for any finite truncation of the cumulant series,
and discuss how one should handle these situations. Fourth, we consider the cumulant-based low-dimensional
reductions for macroscopic population dynamics in the context of this truncation issue. These reductions are
applicable where the cumulant series exponentially decay with the cumulant order, i.e., they form a geometric
progression hierarchy. Fifth, we demonstrate the formation of this hierarchy for generic distributions on the
circle and experimental data for coupled biological and electrochemical oscillators. Our main conclusion for
applications is that, if the first and second circular cumulants are nonzero, there must be infinitely many nonzero
higher cumulants. However, these higher cumulants can be small, in which case one can construct approximate
equations for the dynamics of a finite number of leading cumulants.
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I. INTRODUCTION

The problem of cumulant representation and closure of cu-
mulant expansions is likely one of the most generic problems
in nonequilibrium statistical physics. For instance, starting
with the Boltzmann kinetic equation governing the dynamics
of the one-particle probability density function, one can find
an infinite chain of equations for moments of the probability
density with respect to velocity: mass density, momentum
density, the second moment, etc. [1]. For an isotropic medium,
one deals with the convolution of the second moment, which
is the net mechanical energy. Equations for these moments
are nothing but the conservation laws for mass, momentum,
and net mechanical energy. Moreover, it is conventional to
deduct the macroscopic velocity contributions from the sec-
ond moment and obtain the energy conservation equation
in terms of the internal energy; mathematically, this deduc-
tion corresponds to switching from moments to cumulants.
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Closure of the equation chain is a trivial task: For incom-
pressible flows one makes this closure by assuming a constant
density and discarding the energy equation (the second cumu-
lant); for compressible flows the third cumulant is neglected
and an algebraic relation between pressure and internal energy
is adopted. These closures are correct for weakly nonequi-
librium systems (mathematically, the limit of small Knudsen
number), which is relevant for nearly all macroscopic pro-
cesses on the earth’s surface with excellent accuracy. Thus,
the equations of continuous media mechanics are actually an
example of the cumulant expansion and its closure.

The two-cumulant representation corresponding to the case
of continuous medium mechanics is actually a Gaussian ap-
proximation for the microscopic velocity distribution. How-
ever, in statistical physics, one can address the problem of a
macroscopic description for exotic systems, where particles
are not actual molecules or atoms but macroscopic objects:
grains, stones, asteroids, etc. For these systems, not only
may the limit of small Knudsen number not be relevant, but
also the reversibility of interparticle collisions is lost, leading
to essentially non-Gaussian distributions of the microscopic
velocity [2]. In this case, one has to deal with higher-order
cumulants and look for non-Gaussian closures.

The problem of adiabatic velocity elimination for Brow-
nian particles belongs to the same class of problems [3,4].
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Indeed, the derivation of the enhanced Smoluchowski equa-
tion for the probability density can be conducted by construct-
ing an expansion in cumulants with respect to velocity and
closure for higher-order cumulants within the limit of small
inertia. Cumulant expansions and closures either with Gaus-
sian approximation or accounting for the higher cumulants
are quite abundant in theoretical studies on stochastic systems
(e.g., [3,5–8]).

Simultaneously, it turns out that one has to be subtle with
high-order cumulant approximations. The only physically
meaningful case with a finite number of nonzero cumulants is
the case of the Gaussian distribution, where the first and sec-
ond cumulants can be nonzero. With any nonzero cumulant of
higher order, the series of nonzero elements becomes infinite
[9]. Furthermore, one can derive the Fokker-Planck equation
for white Gaussian noise [4], but an analogous equation for
any other finite number of nonzero cumulants will exhibit
unphysical dynamics. Nonetheless, it is possible and quite
common to be able to benefit from accounting for the impact
of third and fourth cumulants on the dynamics of the first and
second ones, while the corrections owned by the higher-order
cumulants are neglected.

Classical statistical physics deals with variables on the
real line. Studies on self-organization in active media and
control theory, however, revealed the practical and theoretical
importance of phase variables defined on the circle [10–12].
With the phase variable ϕ, the conventional moments are poor
representatives of the macroscopic order, while the Kuramoto-
Daido parameters Zm = 〈eimϕ〉 [13] become a natural measure
of the order.

A significant breakthrough in the theory of collective
phenomena in populations of phase elements, which can be
limit-cycle oscillators or excitable elements, was based on the
Ott-Antonsen (OA) theory [14,15] related to an important par-
ticular case of the Watanabe-Strogatz theory [16–19]. The OA
theory provided the closure Zm = (Z1)m for infinite equation
chains for the Kuramoto-Daido order parameters and allowed
one to obtain a self-contained dynamics equation for Z1. This
closure can be referred to as the Ott-Antonsen ansatz; the
issue of the attractivity of the manifold Zm = (Z1)m was also
elaborated within the theory. Recently [20], it was proposed
to treat the order parameters Zm as moments and deal with
the formally corresponding circular cumulants. The circular
cumulant approach allowed one to go beyond the OA ansatz
[20–23] and handle cases where the genuine OA theory is
inapplicable [20,21]. Within the framework of the circular
cumulant approach, the OA theory turned out to be the case
where only the first circular cumulant is nonzero. In [20,21],
corrections possessed by the second cumulant allowed one to
achieve accurate results where the OA ansatz was significantly
inaccurate. The cumulant approach can be applicable also
for a theoretical analysis of the non-OA situations, e.g., in
[24–29]. The circular cumulant approach can be employed
also in statistical physics problems of directional systems
[30]: magnetic nanoparticle ensembles, liquid crystals, active
Brownian particles, optomechanical systems, etc.

The retrospective on the statistical physics experience with
linear variables suggests that the progress in the theory of
collective phenomena and self-organization in oscillatory and
excitable media can be closely interwoven with implementa-

tion of the circular cumulant representations. The practical
application of the circular cumulant approach and closures
with a finite number of cumulants raises the questions of (i)
physically admissible truncations of the cumulant series and
(ii) dealing with closures where a finite number of circular
cumulants is kept.

In this paper, we derive that, in contrast to the linear
variable case, the only physically meaningful truncation is
the single-cumulant one, which corresponds to the wrapped
Cauchy distribution of phases and lies at the basis of the
Ott-Antonsen ansatz. With more than one nonzero circular
cumulant, the cumulant series of physically meaningful distri-
butions must be infinite. Nonetheless, similarly to the case of
linear variables, where for non-Gaussian cases one can benefit
from corrections owned by a finite number of higher-order
cumulants, closures with more than one circular cumulant
are useful. We also show that in some physical systems
the macroscopic variables driving collective dynamics (e.g.,
neuron firing rate [28,31–35]) can depend on the Kuramoto-
Daido order parameters in such a way that a careless rep-
resentation of these variables in terms of circular cumulants
can be always diverging. Further, we discuss how the issue
of approximations with a finite number of circular cumulants
should be handled in a regular way in the cases where the
cumulants form a decaying geometric progression. We report
the presence of this progression for important generic distri-
butions and demonstrate it with experimental data for coupled
biological and electrochemical oscillators.

II. TRUNCATED CIRCULAR CUMULANT SERIES

A. Ott-Antonsen ansatz as a one-cumulant truncation

In this section we give a brief introduction to the Ott-
Antonsen theory and reformulate it in terms of circular cumu-
lants. Basically, it is formulated for populations of identical
phase elements governed by equations

ϕ̇ j = ω(t ) + Im[2h(t )e−iϕ j ], (1)

where ω(t ) and h(t ) are arbitrary real- and complex-valued
functions of time. The theory is valid in the thermodynamic
limit of an infinitely large population, where the system state
is naturally represented by the probability density function of
phases w(ϕ, t ). The master equation for w(ϕ, t ) reads

∂w

∂t
+ ∂

∂ϕ
{[ω(t ) − ih(t )e−iϕ + ih∗(t )eiϕ]w} = 0. (2)

In Fourier space, where

w(ϕ, t ) = 1

2π

[
1 +

∞∑
m=1

[Zm(t )e−imϕ + Z∗
m(t )eimϕ]

]
, (3)

the master equation (2) takes the form

Żm = imωZm + mhZm−1 − mh∗Zm+1, (4)

where Z0 = 1 and Z−m = Z∗
m by definition. Ott and Antonsen

[14] noticed that Eq. (4) admits the solution Zm(t ) = [Z1(t )]m,
with the order parameter Z1 = 〈eiϕ〉 obeying a simple self-
contained equation

Ż1 = iωZ1 + h − h∗Z2
1 . (5)
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The OA manifold Zm = (Z1)m is neutrally stable for per-
fectly identical population elements, but becomes weakly
attracting for typical cases of imperfect parameter identity,
where the parameter distribution is continuous [15,36,37].
Equation (5) is an exact result, which provides a closed equa-
tion for the dynamics of order parameter Z1 and establishes
a foundation for a significant advance in various studies on
collective phenomena.

For Zm = (Z1)m with Z1 = Reiψ , R = |Z1|, one can calcu-
late the probability density (3),

wOA(ϕ) = 1 − |Z1|2
2π |1 − Z1e−iϕ |2 = (2π )−1(1 − R2)

1 − R cos(ϕ − ψ )
, (6)

and find that it is a wrapped Cauchy distribution

wwC(ϕ) =
+∞∑

n=−∞

π−1γ

(θ + 2πn)2 + γ 2
= 1

2π

1 − e−2γ

1 − e−γ cos θ
,

with θ = ϕ − ψ and Z1 = e−γ+iψ .
Let us now consider Zm as moments of eiϕ and formally

introduce corresponding cumulants [20]. The latter quantities
are not conventional cumulants of the original variable ϕ;
hence, we are free to choose the normalization for them and
will refer to them as circular cumulants. With the moment
generating function

F (k) ≡ 〈exp(keiϕ )〉 = 1 + Z1k + Z2
k2

2!
+ Z3

k3

3!
+ · · · , (7)

we define circular cumulants κm via the generating function


(k) ≡ k
∂

∂k
ln F (k) ≡ κ1k + κ2k2 + κ3k3 + · · · . (8)

For instance, the first three circular cumulants are

κ1 = Z1, κ2 = Z2 − Z2
1 , κ3 = Z3 − 3Z2Z1 + 2Z3

1

2
.

In terms of circular cumulants, the OA manifold Zm = (Z1)m

acquires a simple form

κ1 = Z1, κm�2 = 0. (9)

Thus, the Ott-Antonsen ansatz or the case of a wrapped
Cauchy distribution of phases can be considered as the one-
cumulant truncation of a circular cumulant series.

The system of equations (4) turns into

κ̇m = imωκm + hδ1m − mh∗
(

mκm+1 +
m∑

j=1

κm− j+1κ j

)
, (10)

where δ1m = 1 for m = 1 and 0 otherwise [20]. One can
employ Eq. (10) to study the population dynamics beyond
the OA ansatz and derive analytically solvable extensions of
the OA solution [22]. For the systems where the OA form
(1) of equations is violated, within the framework of the
circular cumulant approach, one can derive modified versions
the system of equations (10) and low-dimensional equation
systems for order parameters (e.g., [20,28,29]).

B. Two-cumulant truncation

It is instructive to start the analysis with the truncation
where only two first circular cumulants are nonzero. For a

detailed step-by-step derivation, see Appendix A; here we
identify the principal points of the derivation and present its
results.

With only two first nonzero κm, the circular cumulant gen-
erating function 
(k) = κ1k + κ2k2 and ln F = κ1k + κ2

k2

2 .
Thus,

F = eκ1keκ2(k2/2) =
∞∑

m1=0

κ
m1
1

km1

m1!

∞∑
m2=0

(
κ2

2

)m2 k2m2

m2!
. (11)

Gathering the terms with km in the product (11), one finds

Zm =
int(m/2)∑

j=0

m!

(m − 2 j)! j!

κ
m−2 j
1 κ

j
2

2 j
≡

int(m/2)∑
j=0

sm; j, (12)

where int(·) returns the integer part of a number and sm; j is
shorthand notation for the sum terms.

For arbitrary nonzero κ1 and κ2, one can specify suffi-
ciently large m such that the dominating contribution to the
sum will be made by summands sm; j which are far from the
sum edges. Moreover, the absolute value of the summands
|sm; j | will be modulated by a Gaussian function of index
j. For large m, j, and m − 2 j, the Stirling approximation
n! ≈ √

2πn(n/e)n can be employed for calculation of the
summands.

Calculations take the simplest form for

m 	 M3 ≡ a−3 + a3, a ≡ |κ1|2
2|κ2| .

In this case, one finds the summand with the maximal absolute
value at j = l:

2l = m −
√

2ma + a + 1
2 + o(1). (13)

The absolute value

|sm;l | = 1 + o(1)√
π (2ma)1/4

(
m|κ2|

e

)m/2

e
√

2ma−a/2, (14)

and for the neighboring terms, one can calculate
sm;l+r

sm;l
≈ ei�r−√

2/mar2
, (15)

where

ei� ≡ κ2

|κ2|
|κ1|2
κ2

1

.

As the Gaussian function in Eq. (15) is localized on the
scale (ma)1/4 	 1, the summand magnitude slowly varies
with the index r, and one can assess the order of magnitude
of the sum in Zm as an integral,

Zm ≈ sm;l

∫ +∞

−∞

sm;l+r

sm;l
dr = √

π

(
ma

2

)1/4

e−√
2ma�2/16sm;l .

Although the transition from a sum to an integral introduces
inaccuracy for finite �, the results with an integral match the
exact sum (12) surprisingly well (see Fig. 6 in Appendix A).
Substituting |sm;l | from Eq. (14), one obtains

|Zm| ≈ 1√
2

(
m|κ2|

e

)m/2

exp

[√
m|κ1|√|κ2|

(
1 − �2

16

)
− |κ1|2

4|κ2|
]
.

(16)
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From Eq. (16), which is valid for m 	 M3, one can see that
for m > e/|κ2|, the absolute value |Zm| becomes larger than
1. However, this is not possible for the average value 〈eimϕ〉
of a phase ϕ on the circle. Technically, for the distribution
density w(ϕ), the condition | ∫ 2π

0 w(ϕ)eimϕdϕ| > 1 under the

normalization condition
∫ 2π

0 w(ϕ)dϕ = 1 requires negativity
of w(ϕ) for some ϕ.

C. Truncation of κm for m > N

Similarly to the preceding section, a detailed step-by-step
derivation is provided in Appendix B; here we identify the
principal points of the derivation and present its results. For
nonzero κm, m = 1, 2, . . . , N ,

F (k) = exp

(
N∑

m=1

κm
km

m

)
=

N∏
m=1

eκmkm/m

=
N∏

m=1

∞∑
jm=0

(
κm

m

) jm km jm

( jm)!
;

therefore,

Zm=
∑

j1+2 j2+···
+N jN =m

m!

j1! j2! · · · jN !

(
κ1

1

) j1(κ2

2

) j2

· · ·
(
κN

N

) jN

. (17)

For sufficiently large m, the principal contributions are
possessed by the summands which are far from the boundaries
of the summation domain in the index space. For large m and
j1, j2, . . . , jN , one can use the Stirling formula and replace the
summation with integration over the hyperplane j1 + 2 j2 +
3 j3 + · · · + N jN = m,

Zm ≈
∫

d j2

∫
d j3 · · ·

∫
d jN sm; j1 j2··· jN , (18)

where j1 = m − 2 j2 − 3 j3 − · · · − N jN . The summand mag-
nitude will be modulated as well by a Gaussian function of the
indices.

One can find the maximum of |sm; j1 j2··· jN | on the hyperplane
by means of the method of Lagrange multipliers. To the
leading order, one finds the maximum position

nln ≈ |κn|
|κN |n/N

mn/N − n

N

|κn||κN−1|
|κN |(N+n−1)/N

m(n−1)/N (19)

and∣∣sm;l1l2···lN
∣∣ ≈

√
m

(2π )N−1l1l2 · · · lN

(
m1−1/N |κN |1/N

e1−1/N

)m

× exp

[
m1−1/N |κN−1|

(N −1)|κN |1−1/N
+ O(m1−2/N )

]
.

(20)

For the neighboring terms, one can calculate

sm;l1+r1···lN +rN

sm;l1···lN
≈

N−1∏
n=1

ei�nrn−r2
n /2ln+···, (21)

where �n = ψn − (n/N )ψN . Recasting Eq. (18) as

Zm ≈ sm;l1l2···lN
N

∫ +∞

−∞
drN−1 · · ·

∫ +∞

−∞
dr1

sm;l1+r1···lN +rN

sm;l1···lN

and evaluating integrals, one finds

Zm ≈ sm;l1l2···lN
N

N−1∏
n=1

√
2π lne−ln�2

n/4.

Substituting Eq. (20), one finally obtains

|Zm| ≈ 1√
N

(
m1−1/N |κN |1/N

e1−1/N

)m

exp

[
m1−1/N |κN−1|

(N − 1)|κN |1−1/N

×
(

1 − �2
N−1

4

)
+ O(m1−2/N )

]
. (22)

Equation (22) for N = 2 is in agreement with Eq. (16)
(by definition, �2 = �/2). According to Eq. (22), for suffi-
ciently large m (specifically, m 	 |κN−1|N

|κN |N−1 + |κN |N−1

|κN−1|N ) and m >

e/|κN |1/(N−1), one finds |Zm| > 1, which is not admitted for
〈eimϕ〉 of a phase variable ϕ.

III. COMPARISON TO THE CASE OF A VARIABLE
ON THE LINE

Let us compare the circular cumulant expansions for vari-
ables on the circle with the conventional cumulant expansions
for variables on the line.

The distribution of a variable x on the line can be fully
characterized by its real-valued cumulants Km, m = 1, 2, . . .,
or moments μm = 〈xm〉. The case of K1 
= 0 and Km>1 = 0
corresponds to a δ-function probability density w(x) = δ(x −
K1) (notice that it is sufficient to assume K2 = 0, which dic-
tates all Km>2 = 0). The case of two first nonzero cumulants,
i.e., the mean value K1 
= 0 and the variance K2 
= 0, and
Km>2 = 0 corresponds to the Gaussian distribution w(x) =
(2πK2)−1/2e−(x−K1 )2/2K2 . Thus, one can deal with one- and
two-cumulant truncations of the random variable represen-
tation. It is important that no higher-order truncations are
admitted [9]. For instance, assuming K3 
= 0 (which enforces
as well a nonzero variance K2), one cannot set Km>3 = 0;
physically sensible distributions will require at least some
higher-order cumulants to be nonzero (even though they can
be small and rapidly decay as the order m increases).

For circular cumulants of a phase variable ϕ on the circle,
the situation is different; one must have either only one
nonzero circular cumulant1 or an infinite series of nonzero
cumulants. This dissimilarity requires explanations, since the
algebraic relations between cumulants Km and moments μm

are equivalent to the algebraic relations between circular cu-
mulants κm and order parameters Zm [up to a multiplier κm ↔
Km/(m − 1)!]. We derived that having two nonzero circular
cumulants results in large values of high-order Zm, |Zm| > 1,
while it is not admitted by the physical meaning of Zm. One
observes the same situation for the Gaussian distribution with
arbitrary nonzero variance K2. Indeed, for K2 > 0, there is
always a finite probability of |x| > 1; therefore, for large
enough m = 2n, 〈x2n〉 > 1 (the case of odd m also yields
|〈xm〉| > 1 if K1 
= 0). However, |μm| > 1 are admitted for
a line variable. Thus, the fundamental reasons forbidding

1It is not necessarily that the nonzero cumulant is the first one.
Indeed, if the first cumulant κ1 is the only nonzero cumulant, the
transformation ϕ → nϕ makes κn 
= 0 and κm 
=n = 0.
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(a) (b)

FIG. 1. Black solid lines show the (a) Gaussian and (b) wrapped
Cauchy distributions characterized by {K1, K2} and κ1, respectively.
Red dashed lines show the perturbed distributions with symmetry
breaking for (a) K3 
= 0 and (b) arg κ2 − 2 arg κ1 
= 0. Blue dash-
dotted lines show the perturbed distributions without symmetry
breaking, with (a) K4 
= 0 and (b) |κ2| 
= 0 and arg κ2 − 2 arg κ1 = 0.

finite-number truncations for circular cumulants essentially
differ from that for conventional cumulants of line variables.

To summarize, the only admitted truncation for a phase
variable is the one-cumulant one and it corresponds to the
wrapped Cauchy distribution (or Ott-Antonsen ansatz), while
for a line variable, the only admitted nontrivial truncation
is the two-cumulant one and it corresponds to the Gaussian
distribution.

Further, we compare the characterization of a distribution
by the cumulants for admitted truncations and the meaning
of higher-order cumulants. For a line variable, the cumulants
are real valued and two first cumulants quantify the centering
of the distribution K1 and its width

√
K2 [see Fig. 1(a)]. The

asymmetry of the distribution is quantified by K3 and its
kurtosis K4 measures the deviation of tails from the Gaussian
law. For a phase variable, the circular cumulants are complex
valued, the argument of the first cumulant arg κ1 features the
distribution centering, and the absolute value |κ1| features the
distribution width [see Fig. 1(b)]. In particular, |κ1| = 1 for a
δ-function distribution and |κ1| = 0 for a uniform distribution.
The second complex-valued circular cumulant κ2 quantifies
the distribution asymmetry with arg κ2 − 2 arg κ1 and defor-
mation of tails with |κ2|. Thus, in both cases, the reference
distribution is characterized by two primary quantities and the
principal correction to it has to be characterized by another
pair of quantities. However, these quantities involve different
numbers of real- and complex-valued cumulants.

IV. MACROSCOPIC VARIABLES FOR POPULATIONS
OF QUADRATIC INTEGRATE-AND-FIRE NEURONS

While a plain discarding of higher-order cumulants in
cumulant equation chains can frequently be a reasonable
approximation, one can encounter situations which require a
more subtle treatment. In these situations, a formal adopting
of finite cumulant truncations can lead to the divergence of
the mean fields mediating the interaction between population
elements. Below we consider an example of such a system.

The population of quadratic integrate-and-fire neurons
(QIFs) (e.g., [32–34]) obeys

V̇j = V 2
j + I j, (23)

I j = η j + Js(t ) + I (t ), (24)

where Vj and I j represent a neuron’s membrane potential
and an input current, respectively, η j and I (t ) are individual
and common parts of the input current, respectively, s(t ) is a
common field proportional to the firing rate r(t ), and J is the
synaptic weight. One can introduce a phase variable ϕ,

Vj = tan
ϕ j

2
, (25)

and rewrite Eq. (23) in its terms:

ϕ̇ j = (1 − cos ϕ j ) + (1 + cos ϕ j )[η j + Js(t ) + I (t )].

For this system the variable

W (t ) = 1 − 2Z1 + 2Z2 − 2Z3 + 2Z4 − · · · (26)

is important. Indeed, one can show [32] that the voltage mean
field

v = 〈V 〉 = P.V.

∫ π

−π

dϕ tan
ϕ

2
w(ϕ) = −Im(W )

(where P.V. denotes principal value) and the firing rate r(t ) in
terms of ϕ is

r(t ) = 2w(π ) = Re(W )/π.

Thus,

W (t ) = πr(t ) − iv(t ); (27)

the population dynamics is essentially controlled by s(t ) ∝
r(t ) = Re(W )/π and Im(W ) is an important macroscopic
observable. The variable r(t ) is generally important for pop-
ulations of pulse-coupled oscillators [31–35]. On the Ott-
Antonsen manifold Zm = (Z1)m, the sum in (26) can be readily
calculated:

WOA = 1 − Z

1 + Z
.

A. Divergence of firing rate for any two-cumulant truncation

If only two first cumulants κ1 and κ2 are nonzero, the
circular cumulant generating function 
(k) = κ1k + κ2k2 and
[see Eq. (11)] the moment generating function

F =
∞∑

m=0

κm
1

km

m!

(
1 + κ2

2
k2 + κ2

2

8
k4 + · · ·

)
.

Since
∑∞

m=0 κ2κ
m
1

km+2

m! = ∑∞
m=0 m(m − 1)κ2κ

m−2
1

km

m! , etc., one
finds

Zm = κm
1 + m(m − 1)

2
κ2κ

m−2
1

+ m(m − 1)(m − 2)(m − 3)

8
κ2

2 κm−4
1 + · · ·

=
(

1 + κ2

2

∂2

∂κ2
1

+ κ2
2

8

∂4

∂κ4
1

+ · · ·
)

κm
1

= exp

(
κ2

2

∂2

∂κ2
1

)
κm

1 .
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Here the exponential exp(Q̂) of an operator Q̂ is defined as
1 + Q̂ + 1

2 Q̂2 + 1
3! Q̂

3 + · · · . Hence,

W = 1 − 2Z1 + 2Z2 − 2Z3 + · · ·

= exp

(
κ2

2

∂2

∂κ2
1

)(
1 − 2κ1 + 2κ2

1 − 2κ3
1 + · · · )

= 2exp

(
κ2

2

∂2

∂κ2
1

)
1

1 + κ1
− 1. (28)

One can calculate
∂n

∂κn
1

1

1 + κ1
= (−1)nn!

(1 + κ1)n+1
, (29)

and Eq. (28) yields a series

W = 2
∞∑

m=0

1

m!

κm
2

2m

∂2m

∂κ2m
1

1

1 + κ1
− 1

= 1 − κ1

1 + κ1
+ 2

1 + κ1

∞∑
m=1

(2m − 1)!!

[
κ2

(1 + κ1)2

]m

, (30)

where (2m − 1)!! ≡ 1 × · · · × (2m − 3) × (2m − 1).
The series (30) diverges for arbitrary κ2. Indeed, for m >

|1+κ1|2
2|κ2| , the sum terms grow with m.

B. Untruncated circular cumulant expansions

Now we rewrite W [Eq. (26)] in terms of circular cu-
mulants for untruncated expansions. The circular cumulant
generating function 
(k) = κ1k + κ2k2 + κ3k3 + · · · and

F = eκ1keκ2(k2/2)+κ3(k3/3)+···

= eκ1k

(
1 + κ2

2
k2 + κ3

3
k3 + κ2

2

8
k4 + · · ·

)

=
∞∑

m=0

κm
1

km

m!

(
1 + κ2

2
k2 + κ3

3
k3 + κ2

2

8
k4 + · · ·

)
.

Since
∑∞

m=0 κ2κ
m
1

km+2

m! = ∑∞
m=0 m(m − 1)κ2κ

m−2
1

km

m! , etc., one
finds

Zm = κm
1 + m(m − 1)

2
κ2κ

m−2
1 + m(m − 1)(m − 2)

3
κ3κ

m−3
1

+ m(m − 1)(m − 2)(m − 3)

8
κ2

2 κm−4
1 + · · ·

=
(

1 + κ2

2

∂2

∂κ2
1

+ κ3

3

∂3

∂κ3
1

+ κ2
2

8

∂4

∂κ4
1

+ · · ·
)

κm
1

= exp

(
κ2

2

∂2

∂κ2
1

+ κ3

3

∂3

∂κ3
1

+ · · ·
)

κm
1 .

Hence,

W = 1 − 2Z1 + 2Z2 − 2Z3 + · · ·

= exp

(
κ2

2

∂2

∂κ2
1

+ κ3

3

∂3

∂κ3
1

+ · · ·
)

× (
1 − 2κ1 + 2κ2

1 − 2κ3
1 + · · · )

= 2 exp

(
κ2

2

∂2

∂κ2
1

+ κ3

3

∂3

∂κ3
1

+ · · ·
)

1

1 + κ1
− 1, (31)

where one can use formula (29).

C. Finite-N cumulant approximations

In this section we address the question whether one can
use approximations with a finite number of cumulants in ap-
plications. For approximations, a small parameter is required.
References [20,21,29,38] reveal theoretically the importance
and persistence of the case where circular cumulants obey
hierarchy κn ∝ εn−1 with a small number ε. Below, in Sec. V,
we will discuss this hierarchy and report it to be highly
relevant for experimental data as well.

The hierarchy κn ∝ εn−1 is essentially important for a rig-
orous approach to constructing approximations. One should
construct an expansion with respect to a small parameter ε,
which means that if one introduces κ2

2 corrections, then κ3

should also be taken into account to achieve the accuracy
o(κ2

2 ), etc. In particular, up to the first-order corrections,
Eq. (31) yields

W = 1 − κ1

1 + κ1
+ 2κ2

(1 + κ1)3
+ O(ε2), (32)

and up to the second-order corrections,

W = 1 − κ1

1 + κ1
+ 2κ2

(1 + κ1)3
− 4κ3

(1 + κ1)4
+ 6κ2

2

(1 + κ1)5
+ O(ε3).

(33)

Quite often in applications, one adopts a certain approxi-
mation instead of constructing a rigorous expansion. Such an
approximation has a rigorously guaranteed order of accuracy.
Additionally, the approximation can not only ease analytical
calculations but also effectively yield a much higher accuracy
than the rigorously guaranteed one. In the case of a circular
cumulant representation, one should be careful with such
approximations; while one can introduce a finite number of
corrections related to higher cumulants, one cannot adopt
approximations which correspond to exact formal expressions
for a finite number of nonzero circular cumulants. For in-
stance, in Sec. IV A, for two nonzero cumulants, the macro-
scopic variable W exactly corresponding to these cumulants
diverges for arbitrary nonzero κ2. In detail, the first correction
with the κ2 term is accurate; the further κn

2 contributions
for moderate n introduce smaller corrections which do not
enhance the accuracy for a specific distribution w(ϕ); for large
n, these excessive corrections start to diverge.

V. CIRCULAR CUMULANT HIERARCHIES

A. Wrapped Gaussian and von Mises distributions

Let us consider two important particular distributions: (i)
the wrapped Gaussian distribution

wwG(ϕ) =
+∞∑

n=−∞

1√
2πσ

e−(ϕ−ψ+2πn)2/2σ 2
(34)

of half-width σ around ψ , which is relevant for some phase
ensembles [6–8,39], and (ii) the von Mises distribution

wvM(ϕ) = ecos(ϕ−ψ )/σ 2

2π I0(σ−2)
(35)
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(a) (b)

FIG. 2. (a) Order parameters Zn and (b) circular cumulants κn

plotted for the wrapped Gaussian distribution (34) with blue circles
(the solid line shows σ = 0.5 and the dashed line σ = 1.5) and for
the von Mises distribution (35) with red squares (the solid line shows
σ = 0.5 and the dashed line σ = 1).

of half-width σ around ψ , where In(·) is the nth-order modi-
fied Bessel function of the first kind. The von Mises distribu-
tion features the steady states of ensembles of identical phase
elements subject to additive intrinsic noise and common static
field (see, e.g., [40] or [21]).

With these distributions one can calculate the macroscopic
variable W . For the wrapped Gaussian distribution (34), Zn =
e−σ 2n2/2einψ , and the series (26) obviously possesses good
convergence properties:

WwG = 1 + 2
+∞∑
n=1

ein(ψ+π )e−σ 2n2/2. (36)

For the von Mises distribution (35), with the Jacobi-Anger
expansion ea cos(ϕ−ψ ) = ∑+∞

n=−∞ In(a)ein(ϕ−ψ ), one finds Zn =
[In(σ−2)/I0(σ−2)]einψ , and the series (26) reads

WvM = 1 + 2
+∞∑
n=1

ein(ψ+π ) In(σ−2)

I0(σ−2)
. (37)

In Fig. 2, one can see that series |Zn| decay fast for
both distributions, providing a good convergence of W . Si-
multaneously, circular cumulants form a clearly pronounced
geometric progression even for moderate values of parameter
σ . Thus, for these two distributions the macroscopic variable
W obviously converges, while the calculations with a finite
number of cumulants has to be performed as discussed in
Sec. IV C. In Appendix C, the formulas for W , Eqs. (36), (37),
and (39), are confirmed with an alternative approach to the
calculation of r.

B. Wrapped non-Cauchy distributions with heavy tails

The phenomenon of synchronization by common noise
is an important case where the Cauchy distribution forms
in populations of general limit-cycle oscillators subject to a
weak intrinsic noise additionally to the common noise driving
[cf. Eq. (16) in [41]]. Noticeably, the distribution of phase
deviations in high-synchrony regimes is Cauchy even though
both the common and intrinsic noises are Gaussian. When
the common-noise synchronization mechanism is affected by

σ

κ

σ

κ

(a) (b)

FIG. 3. Circular cumulants κn plotted vs distribution half-width
σ for the wrapped non-Cauchy heavy-tail distribution (38) for the
parameter (a) μ = −0.25 and (b) +0.25; the cumulant order n
changes from 1 to 15 (from top to bottom on the right-hand side
of the panels).

global coupling, the distribution changes to

w(θ ) = �(1 + μ)√
πσ�

(
1
2 + μ

)(
1 + θ2

σ 2

)−(1+μ)

[cf. Eq. (18) in [42]], where θ is the phase deviation from
the cluster center; the distribution half-width σ is propor-
tional to the intrinsic noise strength and σ ∝ (−λ)−1/2, with
λ the Lyapunov exponent of an oscillator without intrin-
sic noise; μ = (coupling strength)/(−2λ). Perfect synchrony
of identical oscillators without intrinsic noise occurs for
μ > −1/2.

For nonhigh synchrony, nonsmall deviations of θ not
only make the distribution w(θ ) wrapped within the interval
(−π, π ], but also affect the distribution shape due to nonlin-
earities. Nonetheless, one can consider wrapped non-Cauchy
distributions

wwnC(θ ) =
+∞∑

n=−∞

�(1 + μ)
√

πσ�
(

1
2 + μ

)(
1 + (θ+2πn)2

σ 2

)1+μ
(38)

as generic ones for synchronization by common noise where
it interplays with the coupling between oscillators.

For the wrapped non-Cauchy distribution (38) one can
calculate order parameters

Zn = (nσ )1/2+μK1/2+μ(nσ )

2−1/2+μ�
(

1
2 + μ

) ,

where Kn(·) is the modified Bessel function of the sec-
ond kind. For μ > −1/2, Zn decays with n exponen-
tially [in detail, for nσ 	 1 + μ2, (nσ )1/2+μK1/2+μ(nσ ) ≈√

π/2(nσ )μe−nσ ], and the sum (26),

WwnC = 1 +
+∞∑
n=1

4(−1)n
(

nσ
2

)1/2+μK1/2+μ(nσ )

�
(

1
2 + μ

) , (39)

possesses good convergence properties.
Circular cumulants can be now calculated from Zn. For

μ > 0, cumulants always form a geometric progression
[Fig. 3(b)]; for −1/2 < μ < 0, the geometric progression
is somewhat distorted by passings of cumulants through

033139-7



GOLDOBIN AND DOLMATOVA PHYSICAL REVIEW RESEARCH 1, 033139 (2019)

(a)

(b)

(c)

κ

(d)

κ

FIG. 4. Order parameter |Z1| plotted with the bold black lines
for (a) 383 SCN1 cells and (b) 264 SCN2 cells; light-color lines
show the bioluminescence raw data for 20 arbitrarily chosen cells
[43]. (c) The first 15 circular cumulants for SCN1 at t = 268 (blue
circles), 330 (red up-pointed triangles), and 385 (magenta down-
pointed triangles); the time instants are marked with vertical dashed
lines in (a). (d) The first 15 circular cumulants for SCN2 at t = 280
(blue circles), 368 (red up-pointed triangles), and 430 (magenta
down-pointed triangles); the time instants are marked with dashed
lines in (b).

zero, where they change their signs [cusps in Fig. 3(a)], but
their reference order of magnitude obeys the same geometric
progression hierarchy. The calculations with a finite num-
ber of cumulants have to be performed as discussed in
Sec. IV C.

C. Networks of coupled biological oscillators

Abel et al. [43] reported hourly experimental data on
resynchronization of cells in several biologically distinct
mammalian suprachiasmatic nucleus (SCN) explants; mea-
surements were performed with single-cell resolution. For il-
lustration, we analyze the bioluminescence oscillation data of
individual cells after application of tetrodotoxin for temporary
inhibition of intercellular couplings. In Fig. 4, the results of
analysis of the experimental data for the first (SCN1) and
second (SCN2) data sets from [43] are presented. Protophase
is calculated via the Hilbert transform of the individual cell
signal. The phases are calculated on the basis of the assump-

(a)

(b)

κ

FIG. 5. Data processing for the population of 46 electrochemical
oscillators presented in Fig. 1(c) of Ref. [46]. (a) Order parameter
|Z1| plotted with the bold black line; light green lines show the
reconstructed signals of each fifth oscillator. (b) The first 15 circular
cumulants plotted for t = 10.7 (blue circles), 12.9 (green squares),
16.4 (red up-pointed triangles), and 18.6 (magenta down-pointed
triangles); the time instants are marked with dashed lines in (a).

tion of an identical functional relation between the protophase
and the phase for all cells. The distribution of phases of all
oscillators averaged over the integer number of revolutions
should be uniform; hence, the corresponding distribution of
protophases yields the functional relation between the pro-
tophase and the genuine phase [44].

One can see that the circular cumulants form geometric
progressions and decay quite rapidly with order n. During
transitions between different regimes of collective behavior,
a defect of the progression multiplier propagates along the
series from low- to high-order cumulants [see the series for
SNC1 at t = 268 in Fig. 4(c)].

D. Networks of coupled electrochemical oscillators

As another example, let us consider experimental data
for electrochemical oscillators [45,46]. For illustration, we
intentionally analyze the data of a different type as compared
to the previous example. Instead of using raw measurement
data, we digitize the shadowgraph in Fig. 1(c) of [46] with an
oscillation pattern of a population of 46 coupled oscillators,
where grayscale indicates the instantaneous current of an
individual oscillator. The color is a one-to-one function of
the current; therefore, such data are sufficient for calculation
of the protophase (via Hilbert transform), the genuine phase,
and the order parameters. In Fig. 5, the reconstructed signals,
the order-parameter |Z1(t )|, and circular cumulant series are
presented. The circular cumulant series clearly exhibit rapidly
decaying geometric progressions.

033139-8



OTT-ANTONSEN ANSATZ TRUNCATION OF A CIRCULAR … PHYSICAL REVIEW RESEARCH 1, 033139 (2019)

VI. CONCLUSION

For a variable on the circle we have derived that the
circular cumulant series has either one nonzero element or
an infinite number of them. The former corresponds to the
wrapped Cauchy distribution or the Ott-Antonsen ansatz.
With two or a larger but finite number of nonzero elements,
the high-order Kuramoto-Daido order parameters 〈eimϕ〉 tend
to infinity, while their absolute value is not allowed to exceed
1. This should be taken into account when one deals with the
systems governed by nontrivial macroscopic variables like
the firing rate in a network of quadratic integrate-and-fire
neurons [32]. Specifically, this firing rate [Eqs. (27) and (26)]
possesses good convergence properties on the Ott-Antonsen
manifold and for all considered generic distributions on the
circle, while it always diverges for any finite number of
nonzero circular cumulants.

One can compare this situation with the case of a variable
on the line, where the cumulant series has either only two
first nonzero cumulants or an infinite number of them. The
case of two nonzero cumulants corresponds to the Gaussian
distribution. This apparent dissimilarity between linear and
phase variables actually preserves a concordance between
them: In both cases, the admitted truncation is characterized
by two quantities. On the line, the first and second real-valued
cumulants determine the centering and the width of a distri-
bution, respectively, and on the circle, the argument and the
absolute value of the first complex-valued circular cumulant
determine the same characteristics of a distribution. On the
line, the third and fourth cumulants quantify the distribution
asymmetry and the deviation of tails from a reference law
(kurtosis); on the circle, the argument and the absolute value
of the second cumulant do the same.

For linear variables, in some cases, one is strictly bound
to the Gaussian reduction; e.g., the Fokker-Planck equation
corresponds to the white Gaussian noise and the analogs of
this equation for a white noise accounting for a finite number
of nonzero higher cumulants exhibit unphysical behavior.
Meanwhile, in a wide range of problems, one can construct
approximations accounting for corrections possessed by a
finite number of higher cumulants and benefit from them
or quantify the deviation from a Gaussian distribution with
the third and forth cumulants (see, e.g., [47]). Similarly, for
phase variables, in some cases, one is allowed to deal with
no finite circular cumulant truncation except the Ott-Antonsen
ansatz; see the example of neuron firing rate. Simultaneously,
in a range of problems, the approximations accounting for
higher cumulant contributions yield accurate solutions where
the Ott-Antonsen ansatz fails [20,21].

Strictly speaking, the example of neuron firing rate does
not match the example of the Fokker-Planck equation and
its analogs for a finite number of higher cumulants. With
the latter, the issue cannot be handled, while the former case
can be handled in a regular way for practical situations. For
the case of a geometric progression |κn| ∝ εn−1, ε � 1, one
should not use the exact formulas for a finite number N
of circular cumulants, but use expansions with terms up to
κ (N−1)/(n−1)

n and n � N .
We have examined the relevance of the geometric pro-

gression allowing for a regular approach to constructing ap-

proximations of a prescribed accuracy or with a predefined
number of circular cumulants. This progression is always
present for wrapped Gaussian, von Mises, and non-Cauchy
heavy-tail distributions (38) and is typical in experiments,
as demonstrated with data for coupled biological [43] and
electrochemical oscillators [45,46].

The first (SCN1) and second (SCN2) experimental data
sets analyzed in Fig. 4 are publicly available [48].
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APPENDIX A: DERIVATION OF
TWO-CUMULANT TRUNCATION

When only two first circular cumulants are nonzero,
the circular cumulant generating function 
(k) = κ1k + κ2k2

and, since 
(k) = k∂k ln F (k), where the moment generat-
ing function F (k) = 1 + Z1k + Z2

k2

2! + Z3
k3

3! + · · · (see [20]),

ln F = κ1k + κ2
k2

2 . Thus,

F = eκ1keκ2(k2/2) =
∞∑

m1=0

κ
m1
1

km1

m1!

∞∑
m2=0

(
κ2

2

)m2 k2m2

m2!
. (A1)

Gathering the terms with km in the product (A1) for m = 2n,
one finds

Z2n

(2n)!
= κ2n

1

(2n)!
+ κ2n−2

1

(2n − 2)!

κ2

2 × 1!
+ · · · + κn

2

2nn!
and

Z2n =
n∑

j=0

(2n)!

(2n − 2 j)! j!

κ
2n−2 j
1 κ

j
2

2 j
. (A2)

For m = 2n + 1,

Z2n+1

(2n + 1)!
= κ2n+1

1

(2n + 1)!
+ κ2n−1

1

(2n − 1)!

κ2

2 × 1!
+ · · · + κ1

1!

κn
2

2nn!
and

Z2n+1 =
n∑

j=0

(2n + 1)!

(2n + 1 − 2 j)! j!

κ
2n+1−2 j
1 κ

j
2

2 j
. (A3)

For m 	 |κ1|/
√|κ2|, the second term in the sums (A2) and

(A3) is large compared to the first one. For m 	 √|κ2|/|κ1|,
the penultimate term in these sums is large compared to
the last one. Hence, for m 	 max(

√|κ2|/|κ1|, |κ1|/
√|κ2|) ∼√|κ2|

|κ1| + |κ1|√|κ2| , the leading contributions to the sum are pos-
sessed by the terms which are far from the sum edges.
For large n, j, and n − j, one can employ the Stir-
ling approximation n! ≈ √

2πn(n/e)n and find m!
(m−2 j)! j! ≈√

m
2π (m−2 j) j

mm

(m−2 j)m−2 j j j e j and

Zm ≈
m/2∑
j=0

sm; j, (A4)

sm; j ≡
√

m

2π (m − 2 j) j

mmκ
m−2 j
1 κ

j
2

(m − 2 j)m−2 j (2e j) j
. (A5)
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The largest contribution to Zm is made by the summand sm;l ,
for which d

d j ln |sm; j | = 0:

d

dl

[
−

(
m − 2l + 1

2

)
ln(m − 2l ) −

(
l + 1

2

)
ln(2l )

− l + l ln |κ2| + (m − 2l ) ln |κ1|
]

= ln

(
(m − 2l )2

2l

|κ2|
|κ1|2

)
+ 1

m − 2l
− 1

2l
= 0. (A6)

Recall that these evaluations are valid for m 	 a−1/2 + a1/2,
where we introduce the notation

a = |κ1|2
2|κ2| .

For simplicity of calculations, we conduct further considera-
tion for even larger m,

m 	 M3 = a−3 + a3,

which allows one to rigorously neglect as many contributions
in expansions as possible.

For large m, one can solve Eq. (A6) iteratively. At the first
iteration, one can assume the logarithm argument to be 1 and
find

2l (1) = m + a −
√

a2 + 2ma = m −
√

2ma + a + o(1).

Substitution of l = l (1) into the second and third terms of
Eq. (A6) yields

(m − 2l )2 = 2a

[
1 + 1

2l (1)
− 1

m − 2l (1)

+ 1

2

(
1

2l (1)
− 1

m − 2l (1)

)2

+ · · ·
]

2l

= 2

[
a −

√
a

2m
+ a

2m
+ 1

4m
+ O

(
a3/2

m3/2

)]
2l

and

2l = m −
√

2ma + a + 1
2 + o(1). (A7)

Further,

|sm;l | ≈ 1√
π (2ma)1/4

(
m

m − 2l

)m−2l( m2

2el

)l

|κ1|m−2l |κ2|l

= |κ1|m√
π (2ma)1/4

(
m√

2ma − a − 1
2 − o(1)

)m−2l(
m2

m − √
2ma + a + 1

2 + o(1)

|κ2|
|κ1|2

)l

= |κ1|mmm/2

√
π (2ma)1/4(2a)(m−2l )/2

(
1 −

√
a

2m
−

1
2 + o(1)√

2ma

)−m+2l(
1 −

√
2a

m
+ a

m
+

1
2 + o(1)

m

)−l( 1

2ea

)l

.

For (1 + ε)N , one can employ

ln(1 + ε)N = εN − ε2

2
N + ε3

3
N − · · · (A8)

and calculate(
1 −

√
a

2m
−

1
2 + o(1)√

2ma

)−√
2ma+a+1/2+o(1)

= exp

(
a + 1

2
+ o(1) −

√
a3

2m
+ · · · +

√
a3

8m
+ · · ·

)
= ea+1/2+o(1),

(
1 −

√
2a

m
+ a

m
+

1
2 + o(1)

m

)−(m−√
2ma+a+1/2+o(1))/2

= exp

{√
ma

2
− a +

√
a3

2m
+ · · · − a

2
+

√
a3

2m
+ · · ·

− 1

4
− o(1) + · · · + 1

2

[
2a

m
−

(
2a

m

)3/2

+ · · ·
]

m − √
2ma + · · ·
2

+ 1

3

√
2a3

m
+ · · ·

}
= e

√
ma/2−a−1/4+o(1).

Hence,

|sm;l | = |κ1|mmm/2

√
π (2ma)1/4(2a)m/2em/2−√

2ma+a/2
[1 + o(1)] = 1√

π (2ma)1/4

(
m|κ2|

e

)m/2

e
√

2ma−a/2[1 + o(1)]. (A9)

Let us now consider the vicinity of j = l . From Eq. (A5),

sm;l+r

sm;l
=

√
(m − 2l )l

(m − 2l − 2r)(l + r)

κ−2r
1 κr

2 (m − 2l )m−2l (2el )l

(m − 2l − 2r)m−2l−2r[2e(l + r)]l+r

=
(

1 − 2r

m − 2l

)−1/2(
1 + 2r

2l

)−1/2(
κ2

κ2
1

)r

(m − 2l )2r

(
1 − 2r

m − 2l

)−m+2l+2r

(2el )−r

(
1 + r

l

)−l−r

.
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Employing the expansion (A8), one can find

sm;l+r

sm;l
≈

(
κ2

κ2
1

(m − 2l )2

2el

)r

exp

[
2r(m − 2l − 2r)

m − 2l
+ 1

2

4r2(m − 2l − 2r)

(m − 2l )2
+ · · · − r(l + r)

l
+ 1

2

r2(l + r)

l2
+ · · ·

]

≈
(

κ2

κ2
1

(m − 2l )2

2l

)r

exp

(
− 2r2

m − 2l
− r2

2l

)
≈ ei�r−√

2/mar2
, (A10)

where we used that the logarithm argument in Eq. (A6) is
close to 1 and introduced the notation

ei� ≡ κ2

|κ2|
|κ1|2
κ2

1

.

With Eq. (A10), one can assess the order of magnitude of
the sum in Zm as an integral,

Zm ≈ sm;l

∫ +∞

−∞

sm;l+r

sm;l
dr = √

π

(
ma

2

)1/4

e−√
2ma�2/16sm;l .

Substituting |sm;l | from Eq. (A9), one finally finds

|Zm| ≈ 1√
2

(
m|κ2|

e

)m/2

exp

[√
2ma

(
1 − �2

16

)
− a

2

]

= 1√
2

(
m|κ2|

e

)m/2

exp

[√
m|κ1|√|κ2|

(
1 − �2

16

)
− |κ1|2

4|κ2|
]
.

(A11)

The transition from a sum to an integral introduces inaccuracy.
However, one can see in Fig. 6 that, for large m, the results
with an integral match the exact sum satisfactorily not only
for � = 0 (where the accuracy is high already for nonlarge
m), but also for � as large as ∼π .

From Eq. (A11), which is valid for m 	 M3, one can see
that for m > e/|κ2|, the absolute value |Zm| becomes larger
than 1. However, this is not possible for the average value
〈eimϕ〉 of a phase ϕ on the circle.

APPENDIX B: DERIVATION OF TRUNCATION
OF κm FOR m > N

For nonzero κm, m = 1, 2, . . . , N ,

F (k) = exp

(
N∑

m=1

κm
km

m

)
=

N∏
m=1

eκmkm/m

=
N∏

m=1

∞∑
jm=0

(
κm

m

) jm km jm

( jm)!
.

Hence,

Zm =
∑

j1+2 j2+···
+N jN =m

m!

j1! j2! · · · jN !

(
κ1

1

) j1(κ2

2

) j2

· · ·
(

κN

N

) jN

.

(B1)
Again, for sufficiently large m, the principal contributions are
possessed by the summands which are far from the boundaries
of the summation domain in the index space. In this Appendix
we assume m to be large compared to any reference value
for it. For large m and j1, j2, . . . , jN , one can use the Stirling

formula and replace the summation with integration over the
hyperplane j1 + 2 j2 + 3 j3 + · · · + N jN = m. Thus,

Zm ≈
∫

d j2

∫
d j3 · · ·

∫
d jN sm; j1 j2··· jN , (B2)

sm; j1 j2··· jN ≡
√

m

(2π )N−1 j1 j2 · · · jN

× mmκ
j1

1 κ
j2

2 · · · κ jN
N

( j1) j1 (2e j2) j2 · · · (NeN−1 jN ) jN
,

j1 = m − 2 j2 − 3 j3 − · · · − N jN . (B3)

One can find the maximum of |sm; j1 j2··· jN | on the hyper-
plane by means of the method of Lagrange multipliers. The

(a) (b)

(c) (d)

FIG. 6. Asymptotic formula (16) and the exact sum (12) plotted
with lines and symbols, respectively, for a two-cumulant truncation
for (a) � = 0 and (b)–(d) finite � 
= 0. (a) For the wrapped heavy-
tail non-Cauchy distribution (38) with μ = −0.25 [Fig. 3(a)], � = 0;
σ = 0.1 (blue circles), 0.32 (green squares), and 1 (red triangles).
(b) For the wrapped Gaussian distribution (34), the even-order cir-
cular cumulants are negative, which means � = π ; σ = 0.25 (blue
circles), 1 (green squares), and 2 (red triangles). (c) SCN2 data set for
biological oscillators [Figs. 4(b) and 4(d)] at t = 280 (blue circles)
and 368 (red triangles), where � ≈ −0.93π . (d) Electrochemical
oscillators (Fig. 5) at t = 10.7 (blue circles) and 16.4 (red triangles),
where � ≈ −0.75π and −0.97π , respectively.
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equations

∂

∂ln

(
ln |sm;l1l2···lN | + λ

N∑
n′=1

n′ln′

)
= 0, n = 1, . . . , N,

N∑
n=1

nln = m

take the form
1

2ln
− ln

|κn|
nln

= n(λ − 1), n = 1, . . . , N,

N∑
n=1

nln = m.

To the leading order, one finds

nln ≈ |κn|�n − n

2
, (B4)

where � ≡ eλ−1 obeys

|κN |�N + |κN−1|�N−1 + · · · + |κ1|� = m + N (N − 1)

4
;

therefore,

� ≈
(

m

|κN |
)1/N(

1 + N − 1

4m
− 1

Nm1/N

|κN−1|
|κN |1−1/N

)
. (B5)

Hence, Eq. (B4) yields

nln ≈ |κn|
|κN |n/N

mn/N − n

N

|κn||κN−1|
|κN |(N+n−1)/N

m(n−1)/N (B6)

and

|sm;l1l2···lN | ≈
√

m

(2π )N−1l1l2 · · · lN

N∏
n=1

(
1

en−1�n

)ln(
1 + n

2|κn|�n

)ln

≈
√

m

(2π )N−1l1l2 · · · lN

exp
(∑N

n=1 ln
)

em�m
eN/2

≈
√

m

(2π )N−1l1l2 · · · lN

(
m1−1/N |κN |1/N

e1−1/N

)m

exp

[
m1−1/N |κN−1|

(N − 1)|κN |1−1/N
+ O(m1−2/N )

]
. (B7)

Further,

sm;l1+r1···lN +rN

sm;l1···lN
≈

N∏
n=1

κrn
n

(nen−1ln)ln

[nen−1(ln + rn)]ln+rn
≈

N∏
n=1

(
κn

en−1nln

)rn
(

1 + rn

ln

)−(ln+rn )

,

where r1 is dictated by r2, . . . , rN by virtue of the condition
∑N

n=1 nrn = 0. Employing the expansion (A8) and condition∑N
n=1 nrn = 0, one can obtain

sm;l1+r1···lN +rN

sm;l1···lN
≈

N∏
n=1

(
κn

en−1nln

)rn

exp

(
− rn

ln
(ln + rn) + r2

n

2l2
n

(ln + rn) + · · ·
)

=
N∏

n=1

(
κn

nln

)rn

e−r2
n /2ln+··· =

N∏
n=1

(
κn

|κn|
)rn

�−nrn e−r2
n /2ln+··· =

N∏
n=1

eiαnrn−r2
n /2ln+···, (B8)

where eiαn ≡ κn/|κn|.
In the integral (B2) over the hyperplane

∑N
n=1 n jn = m

one can replace
∫

d jN with N−1
∫

d j1. Substituting rN =
−∑N−1

n=1
n
N rn into Eq. (B8) and employing Eq. (B6) to find

1/ln<N 	 1/lN , one can obtain

sm;l1+r1···lN +rN

sm;l1···lN
≈

N−1∏
n=1

ei�nrn−r2
n /2ln+···, (B9)

where �n = αn − (n/N )αN . Recasting Eq. (B2) as

Zm ≈ sm;l1l2...lN

N

∫ +∞

−∞
drN−1 · · ·

∫ +∞

−∞
dr1

sm;l1+r1···lN +rN

sm;l1···lN

and evaluating integrals, one finds

Zm ≈ sm;l1l2···lN
N

N−1∏
n=1

√
2π lne−ln�2

n/4.

Substituting Eq. (B7), one finds

|Zm| ≈ 1√
N

(
m1−1/N |κN |1/N

e1−1/N

)m

exp

[
m1−1/N |κN−1|

(N − 1)|κN |1−1/N

×
(

1 − �2
N−1

4

)
+ O(m1−2/N )

]
. (B10)

Equation (B10) for N = 2 is in agreement with Eq. (A11)
(by definition, �2 = �/2). According to Eq. (B10), for
sufficiently large m (specifically, m 	 |κN−1|N

|κN |N−1 + |κN |N−1

|κN−1|N ) and

m > e/|κN |1/(N−1), one finds |Zm| > 1, which is not admitted
for 〈eimϕ〉 of a phase variable ϕ.

APPENDIX C: CALCULATION OF FIRING RATE
FOR GENERIC DISTRIBUTIONS

The calculation of the firing rate for several generic distri-
butions we provide in Sec. V is based on the representation
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of distribution w(ϕ) by Fourier amplitudes Zm, with emphasis
on the convergence issue for series of Zm. In this Appendix we
verify the results of calculations in Sec. V with an alternative
approach, not involving Zm.

For QIFs, the probability density of the voltage variable V ,

w̃(V ) = w(ϕ)

∣∣∣∣ dϕ

dV

∣∣∣∣ = w(2 arctan V )
2

1 + V 2

[cf Eq. (25)], and the firing rate (see, e.g., [32])

r(t ) = lim
V →∞

w̃(V )V 2 = 2w(π ). (C1)

For the wrapped Gaussian distribution (34), the firing rate
reads

rwG =
+∞∑

n=−∞

√
2√

πσ
e−(2πn−ψ−π )2/2σ 2

; (C2)

for the von Mises distribution (35),

rvM = e−cos ψ/σ 2

π I0(σ−2)
; (C3)

for the wrapped non-Cauchy distribution (38),

rwnC =
+∞∑

n=−∞

2�(1 + μ)
√

πσ�
(

1
2 + μ

)(
1 + π2(2n+1)2

σ 2

)1+μ
. (C4)

Equation (C3) for the von Mises distribution, with the Jacobi-
Anger expansion of ea cos(α), becomes identical to the real part
of Eq. (37): πrvM = ReWvM. Note that, for the imaginary part
of Eq. (37), such a simple representation of the sum in terms
of elementary functions is not possible.

For the wrapped Gaussian distribution, the sum (C2) and
the real part of Eq. (36) are different sums; the former is
a summation over branches of a wrapped function, while
in the latter the summation is over Fourier modes. Both
formulas involve the Gaussian function, because the Fourier
transform of a Gaussian function is a Gaussian function. The
multipliers ahead of n2/2 in these sums are different, (2π/σ )2

and σ 2, resulting in opposite dependences of the convergence
rate on the distribution width σ . This is natural: For sharp
distributions with σ � 1, the wrapped branches introduce
small corrections, but the Fourier series converges slow; for
wide distributions, the contributions by wrapped branches
decay slowly, but the Fourier series converges fast. An ana-
lytical demonstration of the equivalence between Eqs. (C2)
and (36) [as well as between (C4) and (39)] is technically
the derivation of Zm as provided in Sec. V. However, the
numerical calculation of (C2), (C3), (36), and (39) provides
us with a reliable test of the correctness of the presented
formulas. For the wrapped non-Cauchy distribution (38), the
convergence of the sum (39) corresponding to the Fourier
representation is exponential, while the convergence of the
sum (C4) corresponding to the physical-space representation
is very slow; as μ tends to −1/2 + 0, the convergence of the
sum (C4) becomes infinitely slow.
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