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Predicting charge transport in the presence of polarons:
The beyond-quasiparticle regime in SrTiO3
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In materials with strong electron-phonon (e-ph) interactions, the electrons carry a phonon cloud during their
motion, forming quasiparticles known as polarons. Predicting charge transport and its temperature dependence
in the polaron regime remains an open challenge. Here, we present first-principles calculations of charge
transport in a prototypical material with large polarons, SrTiO3. Using a cumulant diagram-resummation
technique that can capture the strong e-ph interactions, our calculations can accurately predict the experimental
electron mobility in SrTiO3 between 150–300 K. They further reveal that for increasing temperature the
charge transport mechanism transitions from bandlike conduction, in which the scattering of renormalized
quasiparticles is dominant, to a beyond-quasiparticle transport regime governed by incoherent contributions
due to the interactions between the electrons and their phonon cloud. Our work reveals long-sought microscopic
details of charge transport in SrTiO3, and provides a broadly applicable method for predicting charge transport
in materials with strong e-ph interactions and polarons.
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I. INTRODUCTION

Understanding charge transport in complex materials is
a grand challenge of fundamental and technological rele-
vance. The interactions between electrons and phonons (the
quanta of lattice vibrations) set an intrinsic limit for the
conductivity and typically control charge transport near room
temperature. When electron-phonon (e-ph) interactions are
weak, charge transport is well described by the scattering
of quasiparticles (QPs) [1], leading to the well-known ban-
dlike conduction regime. As the e-ph interactions become
stronger, the electrons are dressed by a cloud of phonons,
forming composite charge carriers known as polarons [2–4].
In the limit of strong e-ph coupling, the electrons are self-
trapped by the lattice distortions, and the conduction mech-
anism becomes the thermally activated hopping of localized
polarons [5].

Many oxides and organic crystals exhibit e-ph coupling
strengths intermediate between the bandlike and polaron hop-
ping limits [6,7]. In this so-called “large polaron” regime, the
charge transport mechanisms and their temperature depen-
dence are not well understood. The transition from bandlike
to hopping conduction for increasing e-ph coupling strength
is also unclear, and recent work on the Holstein model uncov-
ered an incoherent transport regime at intermediate coupling
[8]. Yet, predictive calculations and microscopic understand-
ing of charge transport in the intermediate e-ph coupling
regime remain an open challenge.
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Strontium titanate (SrTiO3), which is stable in the cubic
phase above 105 K, is a prototypical material with interme-
diate e-ph coupling in which large-polaron effects are clearly
seen in experiments [9–12]. Charge transport in SrTiO3 is a
decades-old problem [13–18], yet its underlying microscopic
mechanisms are still debated [19]. The electron mobility in
cubic SrTiO3 exhibits a roughly T −3 temperature dependence
above 150 K [17,18], which is commonly attributed to the
scattering of electron QPs with phonons [13–16]. Different
phenomenological models based on QP scattering have been
proposed that can fit the experimental transport data [15,20].
However, the carrier mean free paths extracted from experi-
ment in SrTiO3 fall below the interatomic distance [18], vio-
lating the Mott-loffe-Regel (MIR) criterion for the applicabil-
ity of the QP scattering picture [21]. While there is consensus
that large polarons are present in SrTiO3 [9–12,22], charge
transport in this regime cannot yet be predicted, and detailed
microscopic understanding has remained elusive [19].

First-principles calculations based on lowest-order e-ph
scattering plus the Boltzmann transport equation (BTE) [23]
can accurately predict the conductivity in simple metals and
semiconductors [24–28]. We have recently shown [29] that
when this approach is applied to SrTiO3, one can obtain an
accurate temperature dependence for the electron mobility if
all the phonons (including the soft modes) are taken into ac-
count. However, the absolute value of the computed electron
mobility is an order of magnitude greater than experiment
[29]. It is clear that QP scattering alone cannot explain charge
transport in SrTiO3, consistent with the MIR limit violation;
a fully quantum mechanical framework is needed to predict
charge transport in this beyond-QP regime.

Here we show first-principles calculations of charge trans-
port in cubic SrTiO3 using a finite-temperature retarded cu-
mulant approach that includes higher-order e-ph interactions
and goes beyond the QP scattering picture. Our calculations
can accurately predict the experimental electron mobility in
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SrTiO3 between 150–300 K, and further shed light on its
microscopic origin. We show that the weight of the QP peak
in the electron spectral function is strongly renormalized, with
significant weight transfer to the incoherent phonon satellites.
While the renormalized QPs control transport at low temper-
ature, the incoherent contributions from the phonon satellites
and large momentum states are significant at room tempera-
ture, indicating a transport regime beyond the QP scattering
paradigm. Consistent with these trends, our analysis shows
that near room temperature the scattering rate (extracted from
the optical conductivity) breaks the Planckian limit of kBT for
semiclassical transport [30], clearly indicating a beyond-QP
charge transport regime. Our work opens new avenues for
computing charge transport in complex materials with large
polarons and beyond the QP scattering regime.

II. ELECTRON SPECTRAL FUNCTION

Central to our approach for computing charge transport is
the electron spectral function, A(ω), which can be seen as the
density of states at energy ω of a single electron. Due to the
interactions with the phonons, the spectral function consists
of a QP peak representing a single-electron-like excitation and
an incoherent part including both phonon satellite peaks and a
background contribution [31,32]. While the spectral weights
of the QP peak and incoherent part may vary, they always
add up to one due to the sum rule

∫
dωA(ω) = 1, which

amounts to a conservation of the electron. To investigate
the dynamics of the electrons and their interactions with the
phonons, we compute the spectral function with a finite-
temperature retarded cumulant approach that can account for
higher-order e-ph interactions (see Appendix A), and use it
directly to predict transport, without relying on QP scattering
approaches.

We focus on the electron spectral function in cubic SrTiO3

above 110 K. Leveraging our recently developed approach
[29], which combines density functional theory (DFT), its
linear response extension [33] and the temperature dependent
effective potential (TDEP) method [34], we compute the
band structure, lattice vibrations and e-ph interactions for all
phonon modes, including the soft modes due to the lattice
anharmonicity (see Appendix B). Using these quantities, we
calculate the spectral function using a retarded cumulant
formalism [35,36]. The retarded cumulant approach is based
on an exponential ansatz for the retarded Green’s function of
an electronic state |nk〉 (with band index n and momentum k)
in the time domain:

GR
nk(t ) = −iθ (t )e−iεnkt eCnk (t ), (1)

where t is time, θ (t ) is the Heaviside step function, and εnk is
the noninteracting electron energy from DFT. The e-ph inter-
actions are included in the cumulant Cnk(t ); an approximate
expression derived in Ref. [35] computes Cnk(t ) using the
off-shell lowest-order e-ph self-energy, �nk(ω) [23] as input:

Cnk(t ) =
∫ ∞

−∞
dω

βnk(ω)

ω2
(e−iωt + iωt − 1), (2)

where βnk(ω) ≡ |Im�nk(ω + εnk)|/π . The spectral function
can be obtained for each state from the retarded Green’s func-
tion in the frequency domain, using Ank(ω) = −ImGR

nk(ω)/π .

FIG. 1. (a) Combined spectral functions Ank(ω) for the three
lowest conduction bands in cubic SrTiO3, for k along the �-X and
�-M Brillouin zone directions at 110 K. (b) The energy-momentum
dispersion of the QP peaks of the spectral function, shown at
110 and 300 K, compared with the electronic band structure from
DFT. The zero of the energy axis is set to the conduction band
minimum.

Our scheme to compute the retarded Green’s function
at finite-temperature (see Appendix A) further allows us to
compute the spectral function as a function of temperature.
The retarded cumulant approach includes higher-order e-ph
Feynman diagrams beyond the Migdal approximation [37],
and it produces accurate spectral functions (see below) that
can capture the strong e-ph interactions. On the other hand,
we have verified that the lowest-order Dyson-Migdal approxi-
mation generates spectral functions with large errors in the QP
spectral weight and satellites energies, consistent with recent
results at zero temperature [38].

The computed electron spectral functions for the three low-
est conduction bands in cubic SrTiO3 at 110 K are combined
in a color map and shown in Fig. 1(a). Each state exhibits
a rather sharp QP peak at low energy and broader phonon
satellite peaks at higher energies (∼60 meV or more above the
QP peak). By tracking the low-energy QP peaks, we map the
energy-momentum dispersion of the QPs. Figure 1(b) shows
that the interacting QPs exhibit a heavier effective mass than
in the DFT band structure calculations, in which the e-ph in-
teractions are not included. The mass enhancement is a factor
of 1.8–2.6 for different bands and directions, and it increases
only slightly with temperature. Taking the lowest bands along
�-M as an example, the DFT effective mass is roughly 0.75me

(me is the electron mass), compared to a QP effective mass
of 1.4me at 110 K and a slightly heavier mass of 1.6me at
300 K. The mass enhancement is thus roughly a factor of
2, in excellent agreement with experimental results at low
doping [9,12].

The interactions with the surrounding phonons not only
make the electron QPs heavier, they also significantly reduce
the QP spectral weight to a value well below one, transfer-
ring weight to the higher-energy incoherent phonon satellites.
The QP peak even disappears at large electron momenta,
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FIG. 2. Computed electron spectral functions Ak(ω) for the lowest conduction band in cubic SrTiO3. In each panel, the zero of the ω energy
axis is set to the energy of the QP peak at the � point. (a) The spectral function Ak(ω) at three temperatures between 110–300 K, for k = �.
The energies of the two LO phonons that couple strongly with the electrons are labeled ωLO-1 and ωLO-2, and the arrows point to the second set
of satellites at 2ωLO-1 and ωLO-1 + ωLO-2. (b) The spectral weight N (ω) obtained by integrating the spectral function up to an energy ω. (c) The
spectral function Ak(ω) at 110 K for different values of k along the �-M Brillouin zone line, and (d) The corresponding integrated spectral
weight N (ω).

leaving a spectral function made up entirely by the incoherent
background. These trends are analyzed in detail below and in
Fig. 2, focusing on how the spectral function of the lowest
conduction band changes as a function of temperature and
momentum.

The spectral function at the conduction band minimum at �
exhibits a QP peak, two main satellites (also known as phonon
sidebands or replicas), and weaker additional satellites at
higher energy [see Fig. 2(a)]. The two main satellite peaks
are at an energy ωLO-1 = 98 meV and ωLO-2 = 57 meV above
the main QP peak; these values correspond, respectively, to
the energies of the two longitudinal optical (LO) modes with
long-range e-ph interactions that exhibit the strongest cou-
pling with electrons [29]. Note also the presence in Fig. 2(a)
of weak phonon sideband peaks at energies of 2ωLO-1 and
ωLO-1 + ωLO-2. These higher-order replicas, which are known
to occur in the strong coupling limit of the Holstein model
[39], are akin to the higher harmonics observed in phonon
Floquet states [40] and are a signature of strong coupling with
the LO modes.

The main phonon sidebands are associated with the po-
laron plus one-phonon continuum, and are a hallmark of the
large polaron regime [41]. Note that our calculations are per-
formed on lightly n-doped SrTiO3, with the chemical potential
lying below the lowest QP peak; therefore, as expected, the
phonon satellites appear at energy higher than the QP peak
as they correspond to the excitation of an “electronlike” QP
plus one LO phonon [31,38]. On the other hand, recent angle-
resolved photoemission measurements on heavily n-doped
samples, in which the chemical potential is above the QP peak,
revealed a phonon sideband roughly ∼100 meV below the
QP peak, which corresponds to the excitation of a “holelike”
QP plus one LO phonon [11,12,31]. The energy difference
between the QP peak and phonon sideband observed in exper-
iments is in very good agreement with the ωLO-1 = 98 meV
energy difference between the QP peak and the most intense

satellite peak found in our computed spectral function. We
have verified that at high doping our approach also gives satel-
lites with energies lower than the QP peak, consistent with
experiment. The fact that the satellite position can be higher
or lower than the QP peak depending on doping is well known
[31,42], but since inverse photoemission measurements are
challenging, the low doping regime we compute here is rarely
probed experimentally.

To compute the spectral weights of the QP peak and inco-
herent part, we integrate the spectral function up to an energy
ω, obtaining the spectral weight N (ω) = ∫ ω

−∞ A(ω′)dω′ given
in Fig. 2(b). We find that the spectral weight of the QP peak
is ∼0.4 at 110 K, and thus much less than the unit value of
the weak e-ph interaction limit. As the temperature increases
from 110 to 300 K, both the QP peak and the phonon satellites
are broadened and smeared out [see Fig. 2(a)], but the QP
spectral weight changes only slightly, primarily due to an
overlap between the QP peak and the phonon satellites near
300 K. At all temperatures between 110–300 K, the QP weight
is strongly renormalized to a value of ∼0.4, implying that
(pictorially) only half of the electron resides in the QP state,
while the other half contributes to the incoherent dynamical
interactions with the phonons.

Figure 2(c) reveals the disappearance of the QP peak at
large enough momentum k by showing how the spectral
function changes as we increase k along the �-M Brillouin
zone line. We find that the QP spectral weight decreases with
increasing momentum [see Fig. 2(d)] and that the QP peak
ultimately disappears at k = 0.12M, leading to a fully inco-
herent spectral function at larger momenta. These so-called
end points of the QP peak, which have been predicted in both
the Fröhlich [43] and Holstein models [44], are yet another
signature of the strong e-ph interactions. The decrease of the
QP spectral weight and the disappearance of the QP peak at
large momentum have a significant impact on transport, as we
discuss below.
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FIG. 3. (a) Electron mobility as a function of temperature, computed using the retarded cumulant approach plus the Kubo formula (red
circles) and compared with experimental values taken from Refs. [17,18]. The mobility computed in Ref. [29] using lowest-order e-ph
scattering plus the BTE is also shown (blue pentagons). (b) The combined conduction-band spectral functions at T = 150 K are shown
together with the TDF defined in Eq. (5), which quantifies the contribution to the dc conductivity as a function of electron energy ω. (c) The
same quantities as in (b) shown at T = 300 K. The zero of the energy axis is set to the energy of the lowest QP peak.

III. ELECTRON MOBILITY

Large polaron transport is commonly believed to be the
bandlike conduction of QPs with enhanced effective mass.
However, this simplified picture neglects the fact that the QP
weight can drop to values much smaller than one (here, to
roughly 0.4, as discussed above), and that the contribution to
transport from the incoherent part of the spectral function can
be significant. Temperature also plays a primary role. At low
temperature, the electrons occupy the low-energy QP states,
and there are only few LO phonons due to their relatively high
energy. As the temperature increases, thermal fluctuations
push the electrons to higher energies, exciting the electrons
outside of the QP peak into the incoherent regime. In addition,
the number of LO phonons grows rapidly with temperature,
leading to strong dynamical interactions between the electron
and its phonon cloud. The incoherent contributions are thus
expected to significantly influence transport at higher temper-
atures.

To investigate these points quantitatively in SrTiO3,
we compute the conductivity directly from the spectral
functions—therefore including both the QP and incoherent
contributions—using the Kubo formula [41]. In the absence of
current-vertex corrections, the conductivity can be expressed
as [45,46]

σαβ (ω) = π h̄e2

Vuc

∫
dω′ f (ω′) − f (ω′ + ω)

ω

×
∑

nk

vα
nk v

β

nk Ank(ω′) Ank(ω′ + ω), (3)

where vnk is the band velocity of the electronic state |nk〉,
f (ω) is the Fermi-Dirac distribution, Vuc is the unit cell vol-
ume, and α and β are Cartesian directions. We also compute
the dc conductivity, using σ dc = σ (ω → 0), and the electron
mobility as μ = σ dc/nce, where the carrier concentration nc

is computed as

nc =
∑

nk

∫ ∞

−∞
dω f (ω)Ank(ω). (4)

We perform mobility calculations in the lightly n-doped
regime, with electron concentrations ranging between
1017–1018 cm−3, and find that the computed mobility is nearly
independent of the chosen concentration above 150 K, consis-
tent with experimental data [17,18].

Our computed electron mobility in SrTiO3 as a function of
temperature is shown in Fig. 3(a) and compared with experi-
mental data taken from Refs. [17,18]. Both the absolute value
and the temperature dependence of the computed mobility
are in excellent agreement with experiments. Our computed
mobility at 300 K is about 8 cm2 V−1 s−1 versus an experi-
mental value of ∼5 cm2 V−1 s−1 [17,18]. For comparison, the
mobility obtained using lowest-order e-ph scattering plus the
BTE is an order of magnitude higher than experiments [29],
as also shown in Fig. 3(a).

The order-of-magnitude mobility drop from the BTE to
the cumulant approach in SrTiO3 is due to both the QP
renormalization and the incoherent contributions. The cumu-
lant approach clearly shows that the QP peak is strongly
renormalized with significant weight transfer to higher energy
incoherent satellites, and the QP peak even disappears as
momentum k goes beyond the end points [see Figs. 2, 3(b),
and 3(c)]. However, the BTE inherently assumes that the QP
states are well defined for all bands and momentum values, so
it fails to capture the contributions from the incoherent part
of the spectral function, thus placing all the weight in the QP
peak and significantly overestimating the mobility. Our results
show unambiguously that the established lowest-order e-ph
plus BTE approach [23–28] is accurate only in the case of
weak e-ph interactions. Including higher-order e-ph processes
and incoherent polaron effects via the cumulant approach
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greatly improves the computed mobility in materials with
strong e-ph coupling.

Correctly taking into account the contributions from all the
phonon modes, including the soft modes [29], is also essential
for predicting the electron mobility and its temperature depen-
dence in SrTiO3. Neglecting the soft mode in the calculations
leads to significant errors in the computed mobility and its
temperature dependence (see Fig. 5 in Appendix C), both
in the BTE and in the cumulant approach. These results
show that the soft modes, and not just the LO phonons as
is widely believed, also contribute to charge transport in the
large polaron regime.

Lastly, note also that in the weak e-ph coupling limit, in
which the spectral function consists only of a sharp QP peak
and no incoherent contributions, the expression we use for σ dc

reduces to the conductivity obtained from the relaxation time
approximation (RTA) of the BTE [45,47]. For a material with
weak e-ph interactions and negligible polaron effects, one
thus expects that the cumulant and BTE approaches predict
the same transport results. We perform this sanity check for
GaAs, showing that its mobility curves computed with the
cumulant and BTE-RTA are in close agreement (see Fig. 6
in Appendix D). In the case of SrTiO3, on the other hand, it is
apparent that the BTE cannot predict the mobility correctly.

IV. COHERENT AND INCOHERENT CONTRIBUTIONS

Our approach for computing the conductivity in the pres-
ence of polarons further allows us to resolve the coherent and
incoherent contributions to transport and to uncover different
transport regimes as a function of temperature. We write the
dc conductivity as σ dc = ∫

�(ω)dω, where the integrand

�(ω) = π h̄e2

Vuc

∑
nk

vα
nk v

β

nk|A(nk, ω)|2
(

−∂ f (ω)

∂ω

)
, (5)

is referred to as the transport distribution function (TDF),
and is employed here to quantify the contributions to the dc
conductivity as a function of electron energy ω. We analyze
the TDF between 150–300 K in Figs. 3(b) and 3(c), and find
that both the coherent QP peak and the incoherent part con-
tribute to transport. At temperatures below ∼200 K, the TDF
spans primarily the QP peaks [see Fig. 3(b)], implying that
transport is dominated by the scattering of QPs with a strongly
renormalized spectral weight. As the temperature increases,
the high-energy tail of the TDF extends into the incoherent
contributions [see Fig. 3(c)], which become important and
contribute by as much as 40% to the conductivity at 300 K, as
discussed below. Therefore, transport near room temperature
is governed not only by the weight-renormalized QPs, but
also by the incoherent phonon satellites above the QP peaks
and by the polaron states at large momenta beyond the end
points, where the QP peaks disappear. The picture of QP scat-
tering is inadequate to describe transport at room temperature
in SrTiO3, and a more complex picture emerges in which
transport is an interplay between the QP renormalization and
the contributions from the incoherent phonon sidebands and
from the polaron states beyond the end points, all of which
are consequences of the dynamical interactions between the
electrons and the phonon cloud.

FIG. 4. (a) Comparison between the computed optical conduc-
tivities at 150 and 300 K. The curves were normalized to possess
the same integral. (b) Computed optical conductivity divided by the
dc conductivity at each temperature. (c) The inverse of the effective
transport relaxation time, τ ∗ −1

tr , extracted from σ (ω) and shown
as a function of temperature. The Planckian limit kBT is shown
with a dashed line. (d) The incoherent contribution to charge trans-
port, quantified by the dc conductivity ratio σ dc

inc/σ
dc defined in the

text.

These conclusions are supported by experiments on the
optical conductivity. Recent experiments in SrTiO3 show that
the Drude peak at low frequency in the optical conductivity,
which is associated with the coherent bandlike transport of
QPs, loses weight for increasing temperatures up to 300 K
[9,10]. Figure 4(a) compares the low-energy optical conduc-
tivities at 150 and 300 K, both computed with Eq. (3) and
normalized to possess the same integral, consistent with the
optical sum rule. The optical conductivities exhibit a Drude-
like peak centered at zero frequency, and an incoherent shoul-
der structure consisting of phonon sidebands plus a broad
background. We find a significant weight transfer from the
Drude peak to the incoherent shoulder as the temperature
increases from 150 to 300 K, in agreement with experiments
[9]. The Drude peak is sharp at 150 K, but it broadens rapidly
as the temperature increases [see Fig. 4(b)]. These trends
confirm the transition seen in our transport results from a
renormalized QP regime at low temperature to an incoherent,
beyond-QP regime near room temperature.

We also extract an effective transport relaxation time, τ ∗
tr ,

from the optical conductivity through the extended Drude
analysis of Ref. [48]:

τ ∗
tr = − 2

πσ dc

∫ ∞

0

1

ω′
∂σ (ω′)

∂ω′ dω′. (6)
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Figure 4(c) shows the inverse of τ ∗
tr , namely, the effective

scattering rate characterizing the width of the Drude peak.
We find that this effective scattering rate increases rapidly
with temperature, reaching values much greater than the QP
scattering rate extracted from the QP peak of the spectral
function in Fig. 2(a). Due to the uncertainty principle, in
a semiclassical transport regime the scattering rate cannot
exceed the so-called Planckian limit of kBT [30]. We find that
the effective scattering rate in SrTiO3 exceeds the Planckian
limit kBT above 250 K, highlighting the beyond-quasiparticle
nature of charge transport in SrTiO3 near room temperature.
The breaking of the Planckian limit in SrTiO3 at room tem-
perature is consistent with very recent results obtained by
Mishchenko et al. using a model Hamiltonian [49].

Finally, one expects the incoherent contributions to trans-
port to be significant at temperatures where the scattering
rate exceeds the Planckian limit, namely above ∼250 K in
our calculations. We quantity the incoherent contribution to
transport by defining the conductivity ratio σ dc

inc/σ
dc, where

the incoherent contribution to the conductivity σ dc
inc is ob-

tained by integrating the TDF at energies greater than all QP
peaks (ω > 32 meV in our calculations). Figure 2(d) shows
that above 250 K the beyond-QP incoherent contributions
amount to up to ∼40% of the total dc conductivity, confirming
that the Planckian limit breaking is associated with a fully
quantum mechanical transport regime beyond the QP scatter-
ing paradigm. While the Planckian limit breaking has been
typically associated with strange metals and other strongly
correlated phases of matter [50–52], our results highlight
that strong e-ph interactions can also lead to this quantum
mechanical transport regime.

V. CONCLUSION

In summary, we developed a broadly applicable approach
for computing charge transport in the large polaron regime
in materials with intermediate e-ph coupling strength. Our
calculations on SrTiO3 unveil a transition from bandlike trans-
port of strongly weight-renormalized QPs at low temperature
to an incoherent transport regime beyond the QP picture
near room temperature. Our approach can shed new light on
broad classes of materials with polaron effects, ranging from
perovskites [53] and transition metal oxides [54,55] to high-Tc

superconductors [56,57].
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APPENDIX A: FINITE TEMPERATURE RETARDED
CUMULANT APPROACH

We implement and employ a retarded cumulant approach
[35,36] to compute the electron spectral function at finite
temperature. The retarded cumulant approach [see Eqs. (1)
and (2)] was recently employed to study the electron spectral
function near the band edge in insulators at zero temperature
[38]. However, the separation scheme used in Ref. [38] to
compute the cumulant and the spectral function is not well
behaved at finite temperature [35], where βnk(0) > 0. Here,
we develop a new scheme to compute the retarded Green’s
function at finite temperature. We rewrite Eq. (2) as

Cnk(t ) = P
∫ ∞

−∞
dω

β̃nk(ω)

ω2
(e−iωt − 1) − it�nk(εnk), (A1)

where β̃nk(ω) ≡ βnk(ω) − βnk(0) and P denotes the Cauchy
principal value of the integral. The following two relations are
used to derive Eq. (A1) :∫ ∞

−∞

(e−iωt + iωt − 1)

ω2
dω = −πt,

P
∫ ∞

−∞

β̃nk(ω)

ω
dω = −Re�nk(εnk).

We evaluate β̃nk(ω) on a discrete frequency grid, ωl = l�ω

with l an integer. We label the first term in Eq. (A1) as Cs
nk(t )

and compute it from β̃nk(ωl ),

Cs
nk(t ) =

∑
ωl 	=0

β̃nk(ωl )

ω2
l

(e−iωl t − 1)�ω. (A2)

Substituting Eqs. (A1) and (A2) into Eq. (1), the retarded
Green’s function becomes

GR
nk(t ) = −iθ (t )e−it (εnk+�nk (εnk ))eCs

nk (t ). (A3)

We then evaluate the spectral function by Fourier transforming
to the frequency domain, and obtain

Ank(ω) = A0
nk(ω) ∗ As

nk(ω)/2π, (A4)

where ∗ denotes a convolution operation; the two quantities
entering this formula are

A0
nk(ω) = −Im�(εnk)/π

(ω − εnk − Re�(εnk))2 + Im�(εnk)2 (A5)

and As
nk(ω), which is the Fourier transform of eCs

nk (t ).
Note that Cs

nk(t ) defined in Eq. (A2) is periodic with a
period of T = 2π/�ω; we compute eCs

nk (t ) on a discrete time
grid t j = j�t with j ∈ [−N, N] and �t = T /(2N + 1). It is
seen from Eq. (A2) that Cs

nk(−t j ) = Cs
nk(t j )∗ and Cs

nk(0) = 0,
which allows us to compute Cs

nk(t j ) only for j ∈ [1, N] and
obtain eCs

nk (t j ) on the full time grid. We then obtain As
nk(ω)

on a frequency grid with the same step �ω as β̃nk(ω) via
a discrete Fourier transform of eCs

nk (t j ). The value of As
nk(ω)

is guaranteed to be real. We have carefully checked the
convergence of As

nk(ω) with respect to the range and step
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size of both the time and frequency grids. Specifically, we
employed ω values ranging from −0.8 to 0.8 eV with a small
step �ω of 0.05 meV and N = 32 000 for the time grid in our
calculations.

APPENDIX B: COMPUTATIONAL DETAILS

We carry out ab initio calculations on cubic SrTiO3 with
a lattice parameter of 3.9 Å. The ground-state electronic
structure is computed within the Perdew-Burke-Ernzerhof
generalized gradient approximation [58] of density functional
theory (DFT) using the QUANTUM ESPRESSO code [59]. We
employ fully-relativistic norm-conserving pseudopotentials,
which include spin-orbit coupling (SOC) [60,61], together
with a plane-wave basis set with a kinetic energy cutoff
of 85 Ry. The anharmonic lattice-dynamical properties of
cubic SrTiO3 are computed using the temperature-dependent
effective potential (TDEP) method [34] with 4×4×4 super-
cells, together with a scheme we recently developed [29] to
accurately include the long-range dipole-dipole contributions
in the interatomic force constants.

We use our in-house developed PERTURBO code [62] to
compute the lowest-order e-ph self-energy at temperature T
for the Bloch state |nk〉 with band n and crystal momentum k,

�nk(ω, T ) =
∑
m,νq

|gmn,ν (k, q)|2

×
[

Nνq + fmk+q

ω − εmk+q + ωνq + iη
+ Nνq + 1 − fmk+q

ω − εmk+q − ωνq + iη

]
,

(B1)

where εnk is the DFT band electron energy, ωνq is the energy
of a phonon with branch index ν and wave vector q, fnk and
Nνq are, respectively, the Fermi and Bose occupation numbers
evaluated at temperature T , and η is a small broadening.
The key quantities are the e-ph coupling matrix elements,
gmn,ν (k, q), defined as

gmn,ν (k, q) =
√

h̄

2ωνq

∑
κα

eκα
νq√
Mκ

〈mk + q|∂qκαV |nk〉, (B2)

where ∂qκαV ≡ ∑
p eiqRp∂pκαV , with ∂pκαV the variation of

the Kohn-Sham potential for a unit displacement of the atom
κ (with mass Mκ and in the unit cell at Rp) in the α direction,
and eνq is the phonon displacement eigenvector. We obtain the
e-ph matrix elements with the method described in our recent
work [29]. Briefly, we first compute the electronic wave func-
tions |nk〉 on an 8×8×8 k-point grid using DFT, construct
Wannier functions for the Ti-t2g orbitals from the three lowest
conduction bands using the WANNIER90 code [63], compute
∂qκαV on an 8×8×8 q-point grid with density functional
perturbation theory [33], and compute renormalized phonon
energies ωνq(T ) and eigenvectors eνq(T ) with TDEP. Using
these ingredients, we first evaluate the e-ph matrix elements in
Eq. (B2) on coarse grids. Wannier interpolation together with
a long-range e-ph correction for the polar modes [64–66] is
then employed to interpolate gmn,ν (kq) for k and q points on
very fine Brillouin zone grids, which are needed to converge
the e-ph self-energy in Eq. (B1). An approach we recently
developed [25] is employed to converge the imaginary part

of the self-energy, Im�nk(ω), which is computed off-shell
on a fine energy ω grid, and the real part of the self-energy,
Re�nk, which is evaluated on-shell at the electron energy εnk.
The spectral functions Ank(ω) are then obtained using the
finite temperature retarded cumulant approach described in
Appendix A, using Im�nk(ω) and Re�nk(εnk) as input.

We compute spectral functions Ank(ω) on fine k-point grids
with up to 1003 points in the Brillouin zone, which are then
employed in the conductivity and mobility calculations using
Eqs. (3) and (4). Note that the spectral functions depend
on both the temperature T and chemical potential μ. For
each temperature and carrier concentration nc considered in
our calculations, we determine self-consistently the chemical
potential μ(T, nc) using Eq. (4); this means that the spectral
functions computed using the chemical potential μ(T, nc)
give a consistent carrier concentration nc.

APPENDIX C: SOFT MODE CONTRIBUTION
TO TRANSPORT

To highlight the contribution from the soft modes to charge
transport in SrTiO3, we compare the electron mobility com-
puted with and without the soft mode contribution, as shown
in Fig. 5. Our recent calculations using the BTE show that the
ferroelectric soft mode plays an important role in transport, es-
pecially at low temperatures below 250 K, and that including
the soft mode contribution is critical to obtaining an accurate
temperature dependence of the electron mobility [29]. The
results from the cumulant approach exhibit the same trend—
neglecting the soft mode contribution leads to a significant
overestimate of the mobility below 250 K and to an inaccurate
temperature dependence. Although the phonon satellites in
the spectral function is primarily due to the strong coupling

FIG. 5. Electron mobility in SrTiO3 computed using the BTE
within the RTA and the cumulant approach plus the Kubo formula,
compared with experimental data [17]. For both the BTE-RTA and
the cumulant approach, the electron mobility obtained by excluding
the contribution from the ferroelectric soft phonon mode is also
shown.
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between the electron and LO phonons, the ferroelectric soft
mode can impact the width of the QP peak, thus contributing
to charge transport.

APPENDIX D: COMPUTED ELECTRON MOBILITY
IN GaAs: BTE VERSUS CUMULANT APPROACH

The method we developed in this work, which uses
the retarded cumulant approach plus the Kubo formula
to compute charge transport, is general and can be applied
broadly in materials with e-ph interactions ranging from weak
to strong. To illustrate this point, we apply our approach to
GaAs, a high-mobility semiconductor in which large-polaron
effects are very weak. We have recently computed the
temperature dependent electron mobility in GaAs using
the BTE approach within the RTA [25]. With the same
computational settings for the DFT and DFPT calculations as
in Ref. [25], we compute the electron mobility at temperatures
between 250–400 K using the cumulant approach. Figure 6(a)
compares the electron mobility from the cumulant and
BTE-RTA calculations with experimental data. Due to the
weak e-ph coupling, the spectral function in GaAs consists of
a sharp QP peak with near-unit spectral weight [see Fig. 6(b)],
plus a weak phonon sideband at energy ωLO = 36 meV above
the QP peak, where ωLO is the LO phonon energy in GaAs.
The cumulant approach and the BTE-RTA give mobility
results in close agreement with each other, as is expected
in materials with weak e-ph coupling. We have thus shown
that our implementation of the cumulant plus Kubo approach
without current-vertex corrections reduces to the RTA
solution of the BTE in the weak e-ph coupling limit [45,47].

For linear-response theory to be consistent with the BTE,
the Kubo formula with current-vertex corrections should re-
duce in the weak e-ph coupling limit to the full solution

FIG. 6. (a) Electron mobility in GaAs as a function of tempera-
ture, computed using the cumulant approach plus the Kubo formula
(red circles), the BTE approach within the RTA (blue pentagons),
and compared with experimental values taken from Refs. [67,68].
(b) Spectral function for the electronic state at the conduction band
minimum in GaAs, computed at 300 K using the cumulant approach.
Note the small phonon sidebands at energy ωLO = 36 meV above the
QP peak.

of the BTE, e.g., the solution obtained in practice with an
iterative method [27]. Our calculation on GaAs in the absence
of current-vertex corrections shows good agreement with
the BTE-RTA, and similarly we expect that including the
current-vertex corrections would give results consistent with
the iterative BTE solution for GaAs. In the case of SrTiO3, the
BTE-RTA and the iterative solution of the BTE produce very
similar results as we have shown previously [29]. Therefore
the current-vertex corrections are not essential for SrTiO3 and
are neglected in our calculations.
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