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Improved estimate of the collisional frequency shift in Al+ optical clocks
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Collisions between background gas particles and the trapped ion in an atomic clock can subtly shift the
frequency of the clock transition. The uncertainty in the correction for this effect makes a significant contribution
to the total systematic uncertainty budget of trapped-ion clocks. Using a nonperturbative analytic framework that
was developed for this problem, we estimate the frequency shift in Al+ ion clocks due to collisions with helium
and hydrogen. Our calculations significantly improve the uncertainties in the collisional shift coefficients and
show that the collisional frequency shifts for Al+ are zero to within uncertainty.
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The present generation of optical atomic clocks, using neu-
tral atoms in optical lattices or atomic ions in ion traps, are the
most stable timekeepers that have ever been constructed [1].
Of all the trapped-ion optical clocks in operation around the
world [2–5], the Al+ clock at the National Institute of Stan-
dards and Technology (NIST) [6–9] is currently the world’s
most accurate. Recent improvements in its accuracy, due to
a reduction in the uncertainty from the blackbody radiation
shift and the second-order Doppler shift [8,9], have resulted in
accuracy better than 10−18. Among the effects that contribute
to its residual systematic uncertainty, the collisional frequency
shift (CFS) is an important one. The CFS arises from col-
lisions between the clock ion and residual background gas
particles in the vacuum chamber. Before this work, the best
estimate of the CFS for the Al+ clock had an associated
uncertainty of 0.5 × 10−18 [6,7], obtained by conservatively
assigning the maximum differential phase shift of π

2 between
the ground (1S0) and excited (3P0) states of the clock transition
per collision. (The fractional frequency uncertainty due to
collisional effects in the Al+ clock was recently re-evaluated
as 0.24 × 10−18, out of which the contribution of scattering
phase shifts—the focus of the present work—is 0.23 × 10−18

[9,10].) Improved methods to evaluate the CFS are essential,
so that the CFS does not stand in the way of continued
improvements to clock performance.

Evaluation of the CFS with improved accuracy requires
knowledge of the scattering phase shifts (or equivalently, scat-
tering amplitudes) in the potential energy curves associated
with each of the clock states during collisions with back-
ground gas particles. The dominant background gas species
in the ultra-high-vacuum environment of a trapped-ion clock
are typically hydrogen molecules and helium atoms. The
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required ground and excited potential energy curves for exotic
systems such as AlHe+ and AlH2

+ (which we shall refer to
as “molecules” in the following) must in general be obtained
from ab initio calculations. The scattering phase shifts must
also be combined with appropriate weights, since the collision
cross sections (and therefore the collision rates) also depend
on the scattering potentials, which are generally quite different
for the two clock states.

In Ref. [11], a quantum-channel description of the collision
between a clock ion and background gas particles was used
to develop a master equation, which allows the CFS to be
evaluated in a straightforward manner. These calculations
were limited to collisions between clock ions and helium
atoms for simplicity; however, the predominant background
gas in trapped-ion clock systems is molecular hydrogen. In
this work, we significantly extend the methods developed in
Ref. [11] and apply it to a problem of immediate relevance:
We develop a master equation that includes both unitary and
nonunitary effects of collisions and use it to calculate the CFS
for Al+ clock ions colliding with hydrogen molecules and
helium atoms. Our results significantly reduce the systematic
uncertainty associated with the CFS for the Al+ clock.

I. ANALYTIC FRAMEWORK

We briefly review the essential steps involved in calculating
the CFS. The effect of a collision can be described by consid-
ering the unitary dynamics of the clock ion and background
gas particle during the collision process, followed by a trace
over the background gas degrees of freedom. We model the
Al+ clock ion as a two-level system with 1S0 and 3P0 states.
Since the hyperfine interaction in the two clock states is
extremely weak, we assume that the nuclear spin degree of
freedom of 27Al+ is decoupled from the problem. Throughout
this paper, we use units where h̄ = 1 for convenience.

For the elastic collisions that we consider in this work,
the effect of a collision on the clock ion’s density matrix is
described by a set of Lindblad jump operators L� associated
with each partial wave collision channel �, and a mean field
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Hamiltonian HM . The matrix elements of these operators in
the clock ion state space are (see Appendix A)

[L�]αβ = δαβ

√
4π

k2
(2� + 1) | sin φ�,α| eiφ�,α ,

[HM]αβ = −δαβ

(π nbgv

k2

)∑
�

(2� + 1) sin 2φ�,α. (1)

Here α, β ∈ {g, e} are indices labeling the clock states, and
φ�,α are the �th partial wave scattering phase shifts for the
clock state |α〉. The collision energy is k2/2μ, μ is the reduced
mass of the colliding particles, v = k/μ is their relative speed,
and nbg is the number density of the background gas.

The Lindblad jump operators and mean field Hamil-
tonian enter the master equation for the density matrix
of the clock states: dρ

dt = −i[H0 + HM, ρ] + ∑
� L�ρL†

� −
1
2

∑
� {L†

�L�, ρ}, where the terms involving L� describe the
dissipative dynamics due to the collision, and H0 is the
Hamiltonian for unitary dynamics due to, e.g., the trapping
potential, probe laser, etc. During their time evolution under
this equation, the off-diagonal density matrix elements incur
extra phase rates compared to their collision-free evolution,
which can be identified with the CFS (see Appendix B). The
resulting expression for the CFS correction is

δωCFS = nbgv
4π

k2

∑
�

(2� + 1)(A� + B�);

A� = 1

4
(sin 2φ�,e − sin 2φ�,g),

B� = | sin φ�,e sin φ�,g| sin(φ�,e − φ�,g), (2)

where we define δωCFS = ω0 − ωm, with ω0 being the un-
perturbed resonance frequency and ωm being the resonance
frequency measured in the presence of collisions. The A�

terms are the shift of the clock frequency due to the mean
field correction HM , while the B� terms originate from the
dissipative part of the master equation described by the jump
operators L�.

II. NUMERICAL RESULTS

The phase shifts required to evaluate the CFS from Eq. (2)
were calculated in the following way. Potential energy curves
(PECs) for the AlHe+ and AlH2

+ molecules were calculated
using the PSI4 package [12], with cc-pVTZ basis sets [13]
for all the atoms. To obtain potential energy curves that
are adiabatically connected to the ground (1S0) and excited
(3P0) clock states, the equation of motion coupled cluster
(EOM-CCSD) method [14,15] was used, as implemented in
PSI4. For AlH2

+, the separation between the H atoms was
fixed at 1.45 a0 [16] for all the energy calculations. Energy
eigenvalues were evaluated at separations between the Al+

ion and the background gas particle ranging from r = 2 a0

to r = 50 a0, and the results were interpolated using cubic
splines to yield continuous PECs.

Despite some recent progress in ab initio methods [17], it
remains challenging to compute excited-state PECs that fully
account for spin-orbit interactions. The PSI4 package does
not implement spin-orbit coupling, and therefore the energy
levels we obtained using the EOM-CCSD method correspond

FIG. 1. Numerically calculated potential energy curves for the
AlHe+ molecule. The excited state potential energy curves for mL =
0, ±1 are averaged with equal weights to obtain an estimate of the
potential energy curve for the 3P0 clock state (dashed curve).

to different azimuthal quantum numbers (mL = 0,±1) of the
3s3p wave function with respect to the collision axis (also the
quantization axis), rather than the spin-orbit-coupled 3P0,1,2

levels. In order to compute the molecular PEC connected to
the 3P0 excited clock state for subsequent scattering calcula-
tions, we used the Clebsch-Gordan decomposition of the 3P0

state,

|3P0〉 =
∑

mL,mS

CmL mS |L, mL〉|S, mS〉

= 1√
3

(|1, 1〉|1,−1〉 − |1, 0〉|1, 0〉 + |1,−1〉|1, 1〉).

Since the |mL = 0,±1〉 states each contribute with equal
probability to |3P0〉, we used the average of the mL = 0,±1
PECs as a reasonable estimate of the correct PEC for the 3P0

state. This procedure leads to the potential curves shown in
Fig. 1 for the AlHe+ molecule.

For Al+-H2 collisions, the rotational degree of freedom of
the hydrogen molecule needs to be considered. We reduced
the resulting potential energy surfaces to potential energy
curves by averaging over the orientation of the H2 molecule,
using the following procedure. Since the H2 molecules are
drawn from a thermal bath, each of the 2J + 1 mJ sublevels
|J, mJ〉 of a rotational state of the molecule have identical
populations. As a result, the probability distribution for the
orientation of the molecular axis is a uniform distribution
over a sphere. We calculated the energy eigenvalues for a set
of polar angles θ ∈ {π

8 , π
4 , 3π

8 , 511π
1024 } (where θ is defined as

shown in Fig. 2), for each value of the Al+-H2 separation r.
By smoothly connecting the resulting energies as a function
of r, we obtained a set of PECs for each value of θ . Since the
interaction of Al+ and H2 is symmetric in the azimuthal angle
φ, the PECs for different values of θ were averaged together
with sin θ weight factors to obtain the spherically averaged
potential curves shown in Fig. 2.

Scattering wave functions were obtained by numerical
integration of the Schrödinger equation for each PEC. The
values of φ�,α (where α labels the PEC) were extracted using
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FIG. 2. Energy eigenvalues of the AlH2
+ molecule were calcu-

lated for fixed values of r, θ, φ, (geometry as shown in the inset)
and spherically averaged to obtain the potential energy curves. The
resulting curves for mL = 0, ±1 are averaged to obtain the 3P0

potential energy curve (dashed line), as with helium.

the formula [18]

φ�,α = tan−1

[
k j′�(kr0) − β� j�(kr0)

kn′
�(kr0) − β�n�(kr0)

]
, (3)

where j� (n�) are spherical Bessel (Neumann) functions
and β� = [R′

�(r)/R�(r)]r=r0
is the log-derivative of the radial

eigenfunction, R�,s(r), evaluated at r0. The phase shifts were
computed with r0 = 50 a0, much larger than the range of
the potentials, so that the phase shifts could be extracted
accurately. A typical distribution of the resulting partial wave
phase shifts for a collision energy of 295 K is shown in
Fig. 3. The scattering phase shifts were computed for PECs
adiabatically connected to the ground (1S0) and excited (3P0)
clock states, for collision energies ranging from 1 to 1200 K
and for 100 partial waves per collision energy. The resulting
collisional frequency shifts, as a function of collision energy,
are shown in Fig. 4. Thermally averaged CFS values were
obtained by performing Boltzmann averages over the collision
energy, with bath temperatures of 295 K (representing a room-
temperature clock apparatus) and 10 K (in consideration of
future cryogenic optical clocks).

The largest systematic uncertainty in the CFS calculation
stems from the neglect of spin-orbit interaction in the ab initio
potential curves for the excited clock state. We conservatively
assign the systematic uncertainty in our CFS calculations to
be the maximum difference between the CFS computed with
the (mL-averaged) 3P0 PEC and the CFS computed using the
individual 3s3p mL = 0,±1 PECs. At 295 K, the thermally
averaged CFS is

〈δω〉He = 2π (14 ± 32) pHz

[
nbg

cm−3

]
,

〈δω〉H2
= 2π (12 ± 161) pHz

[
nbg

cm−3

]
.

The shifts are zero to within uncertainty, and the uncertainties
in the collisional shift coefficients (CFS per unit background
gas density) are markedly smaller than the estimates used for
Al+ clocks to date [6,7,10]. With nbg = 2.7 × 105 cm−3 (cor-
responding to a reference pressure level of 1 nPa at 295 K),

FIG. 3. Partial wave phase shifts for scattering of Al+ with He
and H2, at a collision energy of 295 K. The upper two plots show
phase shifts for the clock states under collisions with He atoms, and
the lower two plots are phase shifts for collisions with H2 molecules.

the fractional frequency uncertainty in the CFS estimated for
helium (hydrogen) collisions is 8 × 10−21 (4 × 10−20).

At 10 K, the thermally averaged CFS is

〈δω〉He = 2π (−7.0 ± 18) pHz

[
nbg

cm−3

]
,

〈δω〉H2
= 2π (−34 ± 66) pHz

[
nbg

cm−3

]
.

FIG. 4. Collisional frequency shifts for the Al+ clock transition
as a function of collision energy, for He and H2 scattering.
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The collisional shift coefficients at 10 K are not very different
from the room-temperature coefficients. Improvements to the
CFS in cryogenic trapped-ion clocks, compared to room-
temperature clocks, are therefore likely to result from im-
proved vacuum levels in a cryogenic environment, rather than
any strong temperature dependence of the CFS coefficients.

We have restricted our attention here to elastic collisions
of the trapped ion with background gas particles. Inelastic
collisions that transfer the ion out of the subspace spanned
by the two clock states can limit its interaction time with the
probe laser and degrade the signal-to-noise ratio of the clock
but do not result in frequency shifts (cf. Ref. [19] for a related
analysis for photon scattering). On the other hand, collisions
that are inelastic in the internal states of background gas parti-
cles (e.g., H2) could affect the scattering phase shifts that enter
the CFS calculations. Vibrational excitations of H2 are frozen
out at all the relevant temperatures, but rotational transitions
are possible in principle. We estimated the probability for
population transfer between the J = 0 and J = 2 states in H2

due to the electric field gradient from the ion, by numerically
solving for the time evolution of the rotational states along
the classical trajectory of the collision (see Appendix C):
The rotational excitation probability is <1% even for head-on
collisions at the collision energies relevant to this work, which
justifies our focus on elastic collisions here.

In summary, Al+ ion collisions with He atoms and H2

molecules have been considered, and the resulting collisional
frequency shifts calculated with improved accuracy. Our work
establishes a systematic method for estimating collisional
frequency shifts in optical clocks, which can be applied to
other trapped-ion optical clocks that are currently in operation
around the world.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with David Leibrandt
and Shira Jackson. We are grateful to Tom Kirchner for stimu-
lating discussions throughout the course of this investigation.
This work is supported by the Branco Weiss Fellowship, the
Sloan Fellowship, and Canada Research Chairs.

APPENDIX A: LINDBLAD JUMP OPERATORS AND MEAN
FIELD HAMILTONIAN FOR COLLISIONS

We will construct the density matrix equation of motion
using a set of Kraus operators [20], obtained by projecting
the scattered wave function onto a basis of orbital angular
momentum eigenstates (partial waves) for the relative motion
degree of freedom of the colliding particles. These Kraus
operators will lead us to a set of Lindblad jump operators and
a mean field Hamiltonian acting on the internal states of the
clock ion. The construction is along similar lines as that in
Ref. [11] and follows the approach laid out by Preskill [21].

The S-matrix for the collision acts on both the relative
motion and clock ion internal degrees of freedom. We write
it as S = I + iT , where T is the on-shell T -matrix. The
matrix element of S between angular momentum eigenstates
results in an operator that acts only on the clock states, whose
elements are

[〈�|S|�′〉]αβ = δαβ δ��′ ei2φ�,α . (A1)

Here α, β are indices denoting the internal states of the
clock ion and take values in {g, e}. We will also need the
overlap of an incident plane wave |k〉 with momentum k
with an outgoing spherical wave (partial wave) |�〉, given by

〈�|k〉 = √
π
k2 (2� + 1) nbgv δt =

√
πnbg

μk (2� + 1) δt . Here nbg is

the background gas density, μ is the reduced mass of the
colliding particles, v is the relative velocity of the collision,
and δt is a coarse-graining timescale (long compared to the
duration of a collision, but short compared to the internal
dynamics of the clock ion). The amplitude of the incident
plane wave is chosen here to be

√
nbgv δt , corresponding to

a choice of normalization to one particle per unit area.
We can now evaluate the required Kraus operators. With

each partial wave �, we associate a Kraus operator K� =
〈�|T |k〉 operating on the internal degrees of freedom of the
clock ion. This represents the effect of the collision on the
clock ion, conditioned on scattering into an outgoing spherical
wave with angular momentum �. The matrix elements of K�,
in the space spanned by the clock ion internal states, are

[K�]αβ =
∑
�′

[〈�|T |�′〉]αβ 〈�′|k〉

= δαβ eiφ�,α sin φ�,α

√
4π

k2
(2� + 1) nbgv δt . (A2)

We also define the “no-scattering” Kraus operator K∅ =
〈k|S|k〉, whose matrix elements in the internal state space are

[K∅]αβ =
∑
� �′

〈k|�〉 [〈�|S|�′〉]αβ 〈�′|k〉

= δαβ + δαβnbgv δt
π

k2

∑
�

(2� + 1)

× [(−2 sin2 φ�,α ) + i sin 2φ�,α]. (A3)

(We note that K∅ was derived incorrectly in Ref. [11], leading
to a neglect of the imaginary term.)

The Kraus operators can be conveniently rewritten in terms
of the scattering rates and scattering amplitudes using stan-
dard partial wave expansions [18]:

[K�]αβ = δαβ eiφ�,α
√

γ�,α δt,

[K∅]αβ = δαβ

[
1 − γα

2
δt + i

(
2πnbg

μ

)
Re fα (0) δt

]

= δαβ

[
1 − γα

2
δt − i�αδt

]
, (A4)

where γ�,α = nbgv
4π
k2 (2� + 1) sin2 φ�,α is the �th partial wave

scattering rate, γα = ∑
� γ�,α is the total scattering rate, and

fα (0) is the forward scattering amplitude corresponding to
the internal state |α〉. In the last line, we have also defined
the quantities �α = −nbgv

π
k2

∑
�(2� + 1) sin 2φ�,α for con-

venience. It is easy to verify that the set of Kraus operators
satisfies the completeness relation, K†

∅ K∅ + ∑
� K†

� K� = I, up
to O(δt2). This ensures that the dynamics of the ion’s reduced
density matrix, after tracing over the motional degree of
freedom, is trace preserving.
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The density matrix for the internal states of the clock ion
evolves due to scattering over the time interval δt as

ρ(t + δt ) = K∅ ρ(t )K†
∅ +

∑
�

K� ρ(t )K†
�

= ρ(t ) − i[HM, ρ(t )] δt

+
(∑

�

L�ρ(t )L†
� − 1

2

∑
�

{L†
�L�, ρ(t )}

)
δt

+O(δt2). (A5)

This allows us to read off the jump operators L� = K�/
√

δt ,
and the mean field Hamiltonian [HM]αβ = δαβ�α , which
leads to the matrix elements given in Eq. (1).

Making the Markovian assumption for the bath of back-
ground gas particles at this point and taking the limit δt → 0
allow us to write the time evolution of the density matrix as a
first-order differential equation in Lindblad form:

dρ

dt
= −i[H0 + HM , ρ] +

∑
�

L�ρL†
� − 1

2

∑
�

{L†
�L�, ρ}.

(A6)

Here we have also included the unitary time evolution of the
clock states under the Hamiltonian H0, which contains the
effect of everything other than the collisions (e.g., the trapping
potential, probe laser, etc.).

APPENDIX B: COLLISIONAL FREQUENCY SHIFT IN
TERMS OF SCATTERING PHASE SHIFTS

Making the rotating-wave approximation for the clock
laser-ion interaction, the Hamiltonian H0 in matrix form is

H0 = 1

2

(
 �

� −

)
, (B1)

where  = ω − ω0 is the detuning, ω is the laser frequency,
ω0 the clock ion’s resonance frequency, and � is the Rabi
frequency for the laser-ion interaction. The equation of mo-
tion for the off-diagonal density matrix element ρge, from
Eq. (A6), is then

dρge

dt
= −i[ + (�g − �e)]ρge

+ i
∑

�

√
γ�,gγ�,e sin(φ�,g − φ�,e) ρge

−
[

(γg + γe)

2
−

∑
�

√
γ�,gγ�,e cos(φ�,g − φ�,e)

]
ρge

+�(ρee − ρgg). (B2)

The real terms on the right-hand side affect the amplitude of
the coherence ρge, whereas the imaginary terms lead to a phase
shift. The resonance frequency ωm is the value of the laser
frequency ω for which there is no phase shift acquired by ρge.
So it is easy to read off ωm by setting the imaginary part of the

above equation to zero, which leads to the CFS correction

δωCFS = ω0 − ωm

= −(�e − �g) +
∑

�

√
γ�,gγ�,e sin(φ�,e − φ�,g).

(B3)

Rewriting �α and γ�,α in terms of the scattering phase shifts
φ�,α results in the expression shown in Eq. (2),

δωCFS = nbgv
π

k2

∑
�

(2� + 1)(sin 2φ�,e − sin 2φ�,g)

+ nbgv
4π

k2

∑
�

(2� + 1)| sin φ�,g sin φ�,e|

× sin(φ�,e − φ�,g). (B4)

APPENDIX C: EXCITATION OF THE J = 0 ↔ J = 2
ROTATIONAL TRANSITION IN H2 DURING COLLISIONS

The transition probability between the J = 0 and J = 2
rotational states in the ground vibrational state in H2 was
calculated for the radial component of the electric field gra-
dient. To the potentials Vα (r) shown in Fig. 2, we added
the centrifugal potential �(�+1)

2μr2 , and numerically calculated
the classical trajectory for the ion-molecule separation r(t )
as a function of time. The resulting time-dependent radial
electric field gradient, ∂Er

∂r = − e
2πε0 r3 , was used to obtain the

time-dependent perturbation to the Hamiltonian for the rota-
tional states, Hefg = Q ∂Er

∂r . Here Q = 0.97 ea2
0 is the electric

quadrupole moment matrix element between the J = 0 and
J = 2 states [22].

Treating the |J = 0〉 and |J = 2, mJ = 0〉 rotational states
(where mJ is quantized along the collision axis) within the

FIG. 5. Calculated transition probability for a hydrogen
molecule from |J = 0〉 → |J = 2, mJ = 0〉 in the 1S0 PEC, for a
classical trajectory with � = 0 and 300 K of collision energy. The
inset shows the calculated variation of the transition Rabi frequency,
using the electric field gradient experienced by the hydrogen
molecule as it collides with the ion. The rotational state population
transferred due to the collision is the value of ρee at large times.
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ground vibrational state as a two-level system with energy
separation Erot = h × 8.9 THz, we numerically solved the
Schrödinger equation for this system with the quadrupole
interaction Hamiltonian Hefg(t ). The resulting probability for
population transfer between J = 0 ↔ J = 2 was studied for
a range of collision energies (between 4 and 400 K) and
partial waves (see Fig. 5). The largest probability was obtained

for high-energy and low-partial-wave collisions as expected,
and never exceeded ≈1%. The transition probabilities are
low because the collision occurs slowly compared to the
timescale for rotations of the molecule: The energy levels
of the molecule are adiabatically shifted by the electric field
gradient from the ion, and there is essentially no population
transfer.
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