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Quantum caustics and the hierarchy of light cones in quenched spin chains
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We show that the light conelike structures that form in spin chains after a quench are quantum caustics. Their
natural description is in terms of catastrophe theory and this implies (1) a hierarchy of light cone structures
corresponding to the different catastrophes, (2) dressing by characteristic wave functions that obey scaling laws
determined by the Arnol’d and Berry indices, and (3) a network of vortex-antivortex pairs in space-time inside
the cone. We illustrate the theory by giving explicit calculations for the transverse field Ising model and the XY
model, finding fold catastrophes dressed by the Airy functions and cusp catastrophes dressed by the Pearcey
functions; multisite correlation functions are described by higher catastrophes such as the hyperbolic umbilic.
Furthermore, we find that the vortex pairs created inside the cone are sensitive to phase transitions in these spin
models with their rate of production being determined by the dynamical critical exponent. More broadly, this
work illustrates how catastrophe theory can be applied to singularities in quantum fields.
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I. INTRODUCTION

According to Lieb and Robinson [1], there is a maximum
speed vLR at which information can propagate in discrete
quantum systems that obey the Schrödinger equation and
have short range interactions. This is a powerful and generic
statement because it implies that, despite the fact there is
no intrinsic speed limit in the (nonrelativisitic) Schrödinger
equation, the response of these many-particle systems to a
sudden quench should be in terms of a light conelike time evo-
lution of spatial correlations [2]. Physically, the “light cone”
arises from the maximum group velocity of quasiparticles that
are excited by the quench and that subsequently propagate
through the sample [3]. Sophisticated methods of analysis
have been applied to these quench problems including confor-
mal field theory and tensor networks [3–16], and the theory
has been tested in experiments on ultracold atoms [17–19]
and ions [20,21] where quantum spin models [18,22–25], the
Bose-Hubbard (BH) model [26–29], 1D systems [30–32], and
quantum walks on a lattice [33,34] can all be realized. The
long coherence times of atomic systems make them particu-
larly suited to studying such dynamics [35,36], and the ability
to perform single-site manipulation and detection [37–40] has
enabled unprecedented preparation and visualization of the
relevant local observables.

In this paper, we show that light cones in quenched spin
chains are quantum caustics. These are quantum versions of
wave focusing phenomena that occur widely in nature in the
form of rainbows [41], ship wakes [42–44], tsunamis and tidal
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bores [45], and Cherenkov radiation [46] (including superfluid
analogs [47–49]). In the geometric ray theory, caustics occur
where two or more rays coalesce, giving regions in space
where the intensity diverges. By virtue of their singular nature,
the natural mathematical description of caustics is via catas-
trophe theory which partitions them into a hierarchy of equiv-
alence classes, each of which is structurally stable and has its
own set of scaling relations [50–52]. To show specifically how
this approach can be applied to spin chains, we consider the
exactly solvable 1D XY model [53,54], as well as the special
case of the 1D transverse-field Ising model (TFIM) [55,56].
While both cases display light conelike behavior, the more
general XY model allows for an anisotropic coupling giving
rise to a double cone [57,58]. Although we limit our calcula-
tions to these exactly solvable models, the structural stability
of catastrophes (insensitivity to small perturbations) guaran-
tees they must survive in the presence of weak nonintegrabil-
ity. This includes weak interactions between quasiparticles or
disorder and therefore our results also apply to more general
systems than just exactly solvable models.

Wave interference softens caustics and leads to structure
on three scales [52]: at large scales, we see divergent ray
caustics, whereas at wavelength scales interference smoothes
the divergences and dresses each caustic with a characteristic
wave function which in the simplest case of two coalescing
rays is the Airy function, and finally at subwavelength scales
there are networks of vortex-antivortex pairs. These robust
features, including vortex-antivortex networks, have been ob-
served in optical fields [41], and more recently in electron
microscopy [69]. They have also been discussed theoretically
in the context of Bose-Einstein condensates [73,74] and var-
ious aspects seen experimentally in these systems [70–72].
Furthermore, the association between the Airy function (and
its related kernels) and light cones has previously been noted
by various authors [8,14,15,59–64], and recent work has con-
jectured similar universal forms for wavefronts of out-of-time-
ordered correlators [65–68] by examining asymptotic limits of
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TABLE I. The seven elementary catastrophes and their generating functions �Q(s; C), organized by corank n, and dimension Q of control
space [86]. The associated Arnol’d exponents βQ and Berry exponents ςm governing the scaling of the wave catastrophes’ amplitudes and
phase, respectively, are also listed.

Generating function Scaling exponents

Catastrophe n Q �Q(s; C) βQ {ςm}
Fold 1 1 s3/3 + Cs 1/6 ς = 2/3
Cusp 1 2 s4/4 + C2s2/2 + C1s 1/4 ς1 = 3/4, ς2 = 1/2
Swallowtail 1 3 s5/5 + C3s3/3 + C2s2/2 + C1s 3/10 ς1 = 4/5, ς2 = 3/5, ς3 = 2/5
Butterfly 1 4 s6/6 + C4s4/4 + C3s3/3 + C2s2/2 + C1s 1/3 ς1 = 5/6, ς2 = 2/3, ς3 = 1/2, ς4 = 1/3
Hyperbolic Umbilic 2 3 s3

1/3 + s3
2/3 + C3s1s2 + C2s2 + C1s1 1/3 ς1 = 2/3, ς2 = 2/3, ς3 = 1/3

Elliptic Umbilic 2 3 3s2
1s2 − s3

2 + C3(s2
1 + s2

2 ) + C2s2 + C1s1 1/3 ς1 = 2/3, ς2 = 2/3, ς3 = 1/3
Parabolic Umbilic 2 4 s4

2 + s2
1s2 + C4s2

2 + C3s2
1 + C2s2 + C1s1 3/8 ς1 = 5/8, ς2 = 3/4, ς3 = 1/2, ς4 = 1/4

the Airy function. However, to the best of our knowledge, the
present paper is the first to study the hierarchy of universal
wave functions that dress light cones, of which the Airy
function is only the first, and also point out that light cones
should generically contain networks of vortices which in the
case of 1D chains appear as space-time vortices.

A fourth scale appears in quantum fields due to discretiza-
tion of excitations leading to “quantum catastrophes” [75–80]
(rippling mirrors give analogous effects [81]). Going to the
continuum (classical field) limit returns us to a wave catas-
trophe. As we shall show, light cones in spin chains have all
the features of quantum catastrophes, including discretized
versions of wave catastrophes and vortices which are regu-
lated by the lattice constant. Although the cone itself is mildly
affected by the presence of a quantum critical point (QCP) in
the spin models we study, we find by contrast that the vortices
are strongly affected and we use this feature to extract the
dynamical critical scaling.

The rest of this paper is organized as follows. In Sec. II, we
outline the relevant aspects of catastrophe theory, emphasizing
the hierarchy of structures and their scaling properties. In
Sec. III, we show that light cones are in fact (quantum) caus-
tics and hence their natural mathematical description is via
catastrophe theory. In Sec. IV, we introduce the XY and TFIM
spin chains focusing on the quasiparticle dispersion relation
which is the key ingredient we need to apply catastrophe
theory. This program is implemented in Sec. V where we
obtain the Airy and Pearcey functions for the wave functions
dressing the fold and cusp catastrophes/cones in these models.
In Sec. VI, we verify the self-similar scaling properties of
light cones that catastrophe theory predicts and in Sec. VII, we
describe how higher-order catastrophes arise in the context of
correlation functions. In Sec. VIII, we identify and discuss the
presence of vortex-antivortex pairs within light cones, while
in Sec. IX we touch on the relevance of the theory to quench
experiments, and in Sec. X we conclude with a discussion of
the broader significance of the results. In order to make this
paper self-contained, we have included in Appendices A–F
the specifics of quantum spin chain diagonalization methods
and various other details of our calculations.

II. GEOMETRIC AND WAVE CATASTROPHES

In what follows, we will not need the full mathematical
machinery behind catastrophe theory, but we will make use

of a number of key results and for this reason we give a brief
overview here. Our treatment is informal, but we emphasize
that these results can be proved rigorously. The main idea
can be stated simply: catastrophe theory classifies structurally
stable singularities of functions and shows that such singular-
ities can only take on certain characteristic shapes [50]. In up
to four dimensions, these are René Thom’s seven elementary
catastrophes which are listed in Table I.

Each catastrophe arises from two or more coalescing/
bifurcating stationary points of its generating function �Q, the
normal forms for which are given in the table. In the physical
applications given in this paper, �Q is the action functional
and stationary points therefore correspond to classical paths
or rays. From an optical/classical mechanics point of view a
catastrophe is a caustic, i.e., the locus of points where the ray
density diverges.

Thom’s theorem states that the local behavior of a function
near coalescing stationary points can always be mapped by a
smooth change of variables onto one of the catastrophes and
in this sense catastrophes are universal. There is also a second
sense in which catastrophes are universal: structural stability
means stability against perturbations and thus catastrophes do
not require special symmetry and hence occur generically in
nature. Perturbations do not qualitatively change catastrophes
and only quantitatively affect behavior up to the strength of
the perturbation.

The catastrophes in Table I are organized by the number n
of state variables (their corank), and by the dimension Q of
the control parameter space. Control space is the space where
the function with its singularities actually lives. The control
parameters C = {C1,C2, . . .} could be space and time coor-
dinates as well as any other parameters. The state variables
s = {s1, s2, . . . } characterize the rays. The simplest catastro-
phes (the cuspoids) have n = 1 and their generating functions
are polynomials of the form

�Q(s; C) = sQ+2

Q + 2
+

Q∑
m=1

Cmsm

m
, (1)

with up to Q coalescing stationary points. The stationarity
condition reads

∂�Q

∂s
= 0 (2)

and corresponds physically to Hamilton’s principle of sta-
tionary action, while caustics arise from coalescing stationary
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points where the generating function is stationary to higher
order [52]

∂2�Q

∂s2
= 0. (3)

In the examples, we provide in subsequent sections, we focus
primarily on the fold and cusp catastrophes, as well as a dis-
cussion of the hyperbolic umbilic in the context of correlation
functions. Folds and cusps are the only structurally stable
singularities in the 2D (x, t ) control plane where light cones in
1D chains live, while the higher catastrophes (although they
may still exist in greater dimensions) can only be projected
onto the plane by way of cusps and folds. This property
is generic: catastrophes of higher order contain the lower
ones [51]. The cusp is the meeting of two fold lines, the
swallowtail contains two cusps, and so on.

The wave functions, or wave catastrophes, associated with
catastrophes can be obtained in a way analogous to Feynman
path integrals by exponentiating the generating function and
integrating over all paths,

�Q(C) ∝ λn/2
∫ ∞

−∞
· · ·
∫ ∞

−∞
dns eiλ �Q (s;C), (4)

where λ plays the role of the wave number k or 1/h̄ in
quantum problems. In this form, the fact that the generating
function plays the role of the physical action becomes clear.
These functions are also known as diffraction integrals and
many of their properties have been tabulated [44]. We em-
phasize that standard approximations such as the method of
stationary phase where the integral over s is broken up into
a sum of independent gaussian integrals around each of the
stationary points are doomed to failure when the stationary
points coalesce. One must instead keep the full form of �Q

to get a result which is uniformly correct through the coales-
cence regions and this is precisely why diffraction integrals
are crucial for treating bifurcation problems where solutions
appear or disappear.

The fold has a cubic action �1(s;C) = s3/3 + Cs, where
in the case of a light cone in (1+1) dimensions C = C(x, t ).
As the control parameter C is taken from positive values down
through zero the cubic changes its form so as to describe
two coalescing rays. The resulting wave catastrophe can be
recognized as the integral form of the Airy function,

�1(C) ∝ (2πλ1/6)Ai(λ2/3C). (5)

In the absence of any special symmetry, two fold lines gener-
ically meet at cusps. In the region near the cusp point the
appropriate action is quartic and features two control pa-
rameters �2(s;C1,C2) = s4/4 + C2s2/2 + C1s. This normal
form, which formally resembles the Landau free energy for a
continuous (second-order) phase transition, describes the co-
alescence of up to three rays and results in a wave catastrophe
known as the Pearcey function,

�2(C1,C2) ∝ (2πλ1/4)Pe(C1λ
3/4,C2λ

1/2), (6)

which is a complex function of two variables. For our def-
initions/conventions for the Airy and Pearcey functions, see
Eqs. (D5) and (C7), respectively. Plots of the absolute values
|Ai(C)| and |Pe(C1,C2)| of the Airy and Pearcey functions are
given in Fig. 1.

FIG. 1. The Airy and Pearcey functions are the first two wave
catastrophes in a hierarchy. (a) Modulus of the Airy function, as
defined in Eq. (D5), which dresses a fold catastrophe where two
rays coalesce. The location of the fold, or classical caustic, is at
C = 0 and is indicated by the dashed line. For C < 0 there is
two-wave interference giving fringes whereas for C > 0 there is an
evanescent wave. (b) Modulus of the Pearcey function, as defined in
Eq. (C7), which dresses the classical cusp caustic C1 = 2C3/2

2 /(3
√

3)
and which is shown as a black dashed line. The cusp is made of two
fold lines which meet at the cusp tip at C1 = C2 = 0. There are three
rays/waves inside the cusp and only one outside: two coalesce as we
cross either of the fold lines, but all three coalesce at the cusp tip
which is the most singular part of the classical caustic (a ray picture
of the cusp can be seen in Fig. 2(b) in Ref. [80]). However, wave
interference removes the classical singularities. The black dots show
the locations of vortices: there is a line of vortices outside either edge
of the cusp, and vortex-antivortex pairs inside.

The fact that the Pearcey function is a two-dimensional
complex function, with an amplitude and a phase at each
point, allows for the possibility of vortices. This turns out to
be the case: the black dots in Fig. 1(b) show the locations of
vortices, or more precisely their cores. There is an ordered
network of vortex-antivortex pairs inside the cusp and single
rows of vortices lining the outer edges. These are subwave-
length features that represent the finest layer of structure of
a wave catastrophe. We find the vortices by densely covering
the plane with loops around which we integrate the phase of
the Pearcey function: loops that contain vortices give a ±2π

phase change (the vortex cores also correspond to nodes of the
Pearcey function, although in principle not all nodes need be
vortices).
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An important feature of wave catastrophes is that they
exhibit self-similar scaling. If the parameter λ is changed from
λ′ to λ the wave functions will retain their functional forms but
with rescaled coordinates,

�Q({Cm}; λ) =
(

λ

λ′

)βQ

�Q

({(
λ

λ′

)ςm

Cm

}
; λ′
)

. (7)

We can understand this scaling as follows: the overall ampli-
tude scales as λβQ , where βQ is known as the Arnol’d index.
The distance between interference fringes is also rescaled,
but generally the scale factor is different in each direction
according to λςm , where ςm is the Berry index associated
with coordinate Cm. For the fold wave catastrophe, βAi = 1

6
and ς = 2

3 , and for the cusp wave catastrophe, βPe = 1
4 and

ς = { 3
4 , 1

2 }. A complete list of Arnol’d and Berry indices for
the seven elementary catastrophes is displayed in Table I.

The sets of Arnol’d and Berry indices accompanying the
different catastrophes are reminiscent of the sets of critical
exponents which define universality classes of equilibrium
phase transitions. The underlying common cause of this sim-
ilarity is the presence of singularities, or more precisely non-
analyticity, in both cases. We emphasize that in the application
to light cones we study here, this universality occurs out of
equilibrium, and thus we have an example of universality in
quantum dynamics [79,85,87].

III. LIGHT CONES AS QUANTUM CAUSTICS

Our approach to the light cone problem is based upon the
idea that the build-up of correlations occurs through quasipar-
ticle propagation [3]; this is known to be the case in a broad
range of models including the BH, TFIM, and XY models.
The Lieb-Robinson bound can then be expressed in terms of
the maximal group velocity of quasiparticles [7,9]

vLR = max
k

∣∣∣∣dεk

dk

∣∣∣∣, (8)

where εk is the dispersion relation for quasiparticles as a
function of quasimomentum k. It can be seen immediately that
this result is exactly equivalent to Eqs. (2) and (3) which give
the conditions for a caustic (note that here we are implicitly
considering real solutions to the caustic conditions; imaginary
solutions correspond to phase velocity across the cone and are
discussed in Appendix D. This aspect has also been discussed
by Cevolani et al. in Ref. [16]). From this simple observation,
it follows that light cones are caustics and hence the results
and insights of catastrophe theory can be applied to them.

Let us focus on the case of a local quench where a single
quasiparticle is created at position x = 0 in the middle of
a spin chain (we briefly consider weakly nonlocal super-
positions of multiple quasiparticles in Sec. IX, and also in
Appendix E). Time evolving the state with the Hamiltonian
H , the state vector at time t is

|�(t )〉 = e−iHt/h̄b†
x=0 |0〉b (9)

where |0〉b is the Bogoliubov quasiparticle ground state and
the operator b†

x creates a quasiparticle at the site located at
position x. For the remainder of the paper, we use the subscript
“b” to distinguish Fock states in the Bogoliubov basis from the

Jordan-Wigner basis. Introducing the eigenstates |k〉 of H we
can write this as (see Appendix A for details)

|�(t )〉 = eiθ (t )

√
N

∑
k

e−iεkt/h̄ |k〉b , (10)

where N is the number of sites, and the phase θ (t ) ≡
t/(2h̄)

∑
k εk is not observable but is included here for com-

pleteness. Projecting onto the position basis, the wave func-
tion �(xn, t ) ≡ 〈xn|�(t )〉 on the nth lattice site is

�(xn, t ) = eiθ (t )

N

π/a−�k∑
km=−π/a

ei�(km;xn,t ), (11)

where

�(k; x, t ) = kx − εkt/h̄. (12)

In these expressions, n is an integer lying in the range
{−(N − 1)/2, . . . , (N − 1)/2}, and the separation between
momenta in the sum is �k = 2π/(aN ).

In the continuum approximation (CA), the wave function
corresponding to Eq. (11) is (see Appendix A)

�CA(x, t ) =
√

a eiθ (t )

2π

∫ π/a

−π/a
dk ei�(k;x,t ), (13)

where a = L/N is the lattice constant for a lattice of length L,
and the quasimomentum k runs over the first Brillouin zone. A
comparison of the exact (discrete) and CA wave functions is
given in Fig. 8 in the Appendices. In the semiclassical regime,
where N is large, the dominant contributions to the integral
in Eq. (13) come from values of k where � is slowly varying
which are the stationary and coalescence points (especially
the latter). By Thom’s theorem [50–52], we can therefore
map � onto one of the normal forms �Q. However, although
Thom’s theorem guarantees that this can be done by smooth
transformations, it does not tell us what these transformations
actually are. Figuring out the mapping is part of the challenge
in applying catastrophe theory to specific physical problems
and it is to this task that we now turn.

IV. XY AND TFIM SPIN CHAINS

Let us consider a 1D XY model describing spins on a
lattice interacting with a ferromagnetic coupling J , anisotropy
parameter γ , and subject to an external field gJ . The Hamilto-
nian is

H = −J
∑

i

(
(1 + γ )

2
σ x

i σ x
i+1 + (1 − γ )

2
σ

y
i σ

y
i+1 − gσ z

i

)
,

(14)
where σα

i , α ∈ {x, y, z}, are Pauli operators. When γ = 1 this
Hamiltonian reduces to that of the TFIM. The XY Hamil-
tonian can be diagonalized via the Jordan-Wigner transform
followed by a Bogoliubov rotation, which maps spin operators
to spinless fermions [82]. As shown in Appendix B, this leads
to the free model H =∑k εk (b̃†

kb̃k − 1/2), where b̃(†)
k is the

annihilation (creation) operator for Bogoliubov modes with
quasimomentum k and dispersion

εk = 2J
√

(cos(ka) − g)2 + γ 2 sin2(ka). (15)
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FIG. 2. (a) The exact quantum amplitude, obtained by numerically evaluating Eq. (11), for a single Bogoliubov fermion created at the
central lattice site, x = 0, and propagated under the XY Hamiltonian with γ = 0.2 and g = 0.8. This model gives rise to a double light cone
whose boundaries are indicated by the black dashed (LR cone) and dot-dashed (inner cone) lines. (b) A zoom-in of (a) with only half the
lattice shown. At five select points (xn, t ), we have overlaid plots of the generating function �(k; xn, t ) [Eq. (16)] as a function of k. Green
dots show stationary points of �(k; xn, t ); there are four stationary points in the inner cone and two annihilate (red stars) each time we cross a
cone boundary. (c) We can isolate the part of � responsible for the inner cone by only including values of km in Eq. (11) that include the three
stationary points of � that are close to the center of the Brillouin zone (note also the change in timescale). As shown in Sec. V, the inner cone
is described by a Pearcey function transformed so as to give a straight cone boundary. Note that in order to keep these figures simple we have
not shown the vortices although they are present. See Fig. 3 below, and also Fig. 8 in Appendices, for plots of light cone wave functions with
vortices included.

Thus the phase/generating function in Eq. (12) takes the
specific form

�(k; x, t ) = kx − 2Jt

h̄

√
(cos(ka) − g)2 + γ 2 sin2(ka). (16)

An exact numerical evaluation of the wave function given
in Eq. (11) using the generating function �(k; x, t ) for the
XY model is plotted in Fig. 2. The fact that xn is discrete
means that the light cone actually corresponds to a quantum
catastrophe, for more discussion of quantum catastrophes in
a spin context see Ref. [80]. However, in the semiclassical
regime where N is large, the CA described by Eq. (13) works
well. In this case, � has the same functional form but with
x and k taken as continuous variables, and the integral can
be evaluated analytically in terms of the Airy and Pearcey
functions as will be explained in the next section.

Dividing �(k, x, t ) as given in Eq. (16) by t we can identify
three control parameters: (x/t, γ , g) [we reserve the energy
scale J to play the role of k in Eq. (4)]. However, rays
propagate in the 2D (x, t ) plane rather than the full 3D control
space and thus for generic values of the control parameters
catastrophe theory predicts we should see folds and cusps.
In fact, we find a double cone made of a cusp enclosed by
two folds as shown in Fig. 2 (double cones occur both in spin
systems and in coupled 1D gases [57,58]).

Mathematically speaking, the double cone arises because
Eq. (16) has up to four stationary points within the first
Brillouin zone, as shown by the green dots in the five overlays
plotted in Fig. 2(b). Near the origin in Fig. 2 all four stationary
points are present, but three are quasidegenerate so � is
locally dominated by a Pearcey-like function, which gives
the inner cone. As we cross the edges of the inner cone
two stationary points annihilate (indicated by red stars in the
overlays) leaving two rays which in turn annihilate at the
edges of the outer cone so that locally it is dominated by
the Airy function. Furthermore, the XY model has a QCP
at g = 1 − γ 2; as the critical regime is approached the inner

cone narrows and eventually collapses because the three inner
stationary points in the generating function coalesce at this
value of g. In the case of the TFIM (γ = 1) [4,83,84], � has
only two stationary points and one finds a single cone with
edges that are dressed by Airy functions. The insight from
catastrophe theory is that the single cone is nongeneric and
only occurs due to the special symmetry of the Hamiltonian
when γ=1.

Due to the presence of four stationary points, the careful
reader might expect the XY model to show signatures of
the swallowtail catastrophe. Indeed, this would generically
be true, however it can be verified that the quadruple root
coalescence do not occur for real k. It is the periodic dis-
persion relation of the model which keeps us from physically
probing the highly singular swallowtail point. The cusp and
fold catastrophes that we observe here are however inherited
from the part of the swallowtail which is physically permitted.

V. AIRY AND PEARCEY FUNCTIONS

Let us now demonstrate explicitly how the Airy and
Pearcey catastrophe integrals emerge in the CA. Starting with
the Pearcey integral, consider first the triple stationary point
coalescence responsible for the inner cone, which we have
isolated in Fig. 2(c). One obvious difference between this
wave function and the Pearcey function shown in Fig. 1
is that the cone boundary in the former is straight rather
than the standard curved form of the cusp C1 = ±

√
4C3

2 /27.
Physically, this is due to the free propagation of the fermionic
quasiparticles. The required transformation to take us between
physical coordinates and those of the standard curved cusp is
similar to that used by Kaminski and Paris in Ref. [90]. In
Appendix C, we show that for our spin model it is

C1 = −
√

2x
/[

vI(t�)
1
4
]
, (17)

C2 = −√
t (γ 2 + g − 1)/[

√
�(g − 1)], (18)
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FIG. 3. (a) and (b) Modulus of exact wave function (11) �[x(C1,C2), t (C1,C2)] plotted in the scaled coordinates for the inner cone only
(vortices are present but not shown). It shows a remarkable qualitative resemblance to the Pearcey function (compare with Fig. 1), without
performing any approximations. Between (a) and (b), the interaction strength has been changed by a ratio of J ′/J = 2, so that while the
classical ray caustic remains fixed (C1 = ±√4C3

2 /27, red dashed line), the interference fringes of the wave-function scale according to the
Berry indices in the directions indicated. (c) |�|2 for the TFIM (blue shading truncated at 0.2 for clarity) is enclosed by the light cone (black,
dashed). Black dots mark the locations of vortices (see Sec. VIII). Slice along the time axis at x/a = 5. The local structure of the exact wave
function (11) (blue, solid) near the light cone is well-captured by the Airy-like representation of the wave function (21) (orange, dashed). Away
from the caustic the Airy function approximation gradually moves out of the phase with the exact result. This is because we have expanded the
generating function about the caustic and can be corrected by performing a uniform approximation.

where � = (g3−1−2γ 2+3γ 4+g(3−2γ 2 )+g2(4γ 2−3))
12(g−1)3 and we have de-

fined the Ising velocity,

vI ≡
{

2Jag
h̄ 0 < |g| < 1

2Ja
h̄ 1 < |g|

, (19)

which is equal to vLR in the TFIM limit (in principle, vLR

can be analytically solved for in closed form for general γ ,

however, the expression is complicated, and little physical
insight is gained from writing it here).

To complete the diffraction integral we also need the
integration variable s. This reads s = √

2a(t�)
1
4 k and results

in the Pearcey-like wave function �Pe(C1,C2; J ) written out in
Eq. (20). It rapidly tends to a true Pearcey function at longer
times when S = √

2π (t�)
1
4 
 1.

�Pe(C1,C2; J ) ≈ 1

2π

(
J (γ 2 + g − 1)

h̄vI(g − 1)C2

) 1
2
∫ S

−S
ds e− iJ

h̄ �2(s;C1,C2 ) Jt/h̄
1∝
(

J

h̄

) 1
4

Pe

[(
J

h̄

) 3
4

C1,

(
J

h̄

) 1
2

C2

]
, (20)

�
γ=1
Ai (C j ; J ) ≈ 1

2πt1/3

(
2Jg

2− j
3

vIh̄

) 1
2 ∫ sMax

j

sM in
j

ds j e
iJ
h̄ �1(s j ;C j ) Jt/h̄
1∝

(
J

h̄

) 1
6

Ai

[(
J

h̄

) 2
3

C j

]
. (21)

In order to display the close resemblance between �Pe

and the Pearcey function, we have plotted in Fig. 3 the wave
function of the inner cone from Eq. (11) without expansions
or approximations in terms of the transformed coordinates C1

and C2. This can be compared with the actual Pearcey function
plotted in Fig. 1. The only significant deviation is near C2 = 0.
Since the limit of integration S tends to 0 as t → 0, the cusp
point itself becomes poorly defined, and we get a “smearing”
of the wave function as C2 → 0. As a consequence, we cannot
get a Pearcey function exactly at the origin, since the initial
boundary condition requires the real-space wave function be
entirely localized here. As we move away from the cusp
point, however, the Pearcey function is indeed an excellent
approximation to the true wave function.

As C2 increases the Pearcey function can be approximated
by two back-to-back Airy functions as the cusp evolves into
two fold lines. Indeed, it is a general property of catastrophes
that the higher ones evolve into the lower ones as we move
away from the former’s most singular points. This provides
a rigorous explanation for why the Airy functions, which
are the simplest of the hierarchy of wave catastrophes, are

commonly encountered in the asymptotics of light cones
[8,14,15,59–64].

To examine how the Airy function emerges in the CA,
we specialize to γ = 1 (TFIM Hamiltonian). We stress that
the choice of γ does not affect the presence of the fold
catastrophe (and thus Airy functions), only the simplicity of
the subsequent calculations. To this end, note that for any
g = 1 it can be readily checked that �(γ = 1) in Eq. (16) has
only two stationary points as a function of k. We can therefore
map onto the canonical fold generating function �1(s;C) by
expanding � to third order in s. In the CA, and up to a
global phase, we show in Appendix D that the correct control
parameter in this case is

C j (x, t ) = 2(x/vI − t )(g2− j/
√

t )2/3. (22)

The index j ∈ {1, 2} refers to cases g > 1, and g < 1,
corresponding to above and below the QCP, respectively.
The integration variable s j = (g2− jt )

1
3 [ka − arccos(g3−2 j )]

and integration limits sMin
j = −(g2− jt )1/3[π + arccos(g3−2 j )]

and sMax
j = (g2− jt )1/3[π − arccos(g3−2 j )] are also derived in
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Appendix D. The resulting wave function �
γ=1
Ai (C j ; J ) is

given in Eq. (21).
When γ = 1 this process may be repeated around each

fold catastrophe, including for any inner cones, and will result
in the emergence of Airy functions with different defini-
tions of the control parameter, C. For example, a particular
limit of Eq. (21) has been conjectured to give a universal
form for the wavefront of out-of-time-ordered correlators
(OTOCs) [65–68]. According to catastrophe theory this is no
surprise. Furthermore, closer to the “brightest” parts of the
OTOC the hierarchy of catastrophes allows for more elaborate
structures beyond the Airy function.

VI. SCALING

The way the spin coupling strength J and the control
parameters C appear in combination on the right hand sides
of Eqs. (20) and (21) shows that light cones have nontrivial
scaling properties: varying J is equivalent to rescaling the
amplitude and coordinates. More specifically, increasing J
causes the amplitude to increase at a rate determined by the
Arnol’d index, and the interference patterns to oscillate more
quickly in space and time at rates determined by the Berry
index for each particular direction. The overall picture is that
the fringes flow in towards the origin as J is increased and
in the (singular) classical limit, which occurs when J → ∞,
all wave structure is pulled into the origin. There are other
choices we could have made for the scaling parameter since it
need only fill the role of λ in Eq. (4): for the TFIM, we could
have alternatively chosen a or g, and in the case of the XY
model we could also have chosen either of these or even γ . It
is usually necessary to keep some physics constant during the
scaling: we can keep the position of the classical ray caustics
constant as J is varied by tuning a or g to keep vI unchanged.

Numerical verification of the catastrophe theory predic-
tions for both the Arnol’d and Berry indices for the exact
wave function Eq. (11) is presented in Fig. 4. Panels (a)–(c)
show the scaling in the inner cone of the XY model: the fringe
scaling is obtained by measuring the distance between peaks
of the wave function along coordinates C1 and C2 as J is varied
and match the Pearcey scaling given in Table I to within 1%.
At first glance, it appears that panel (c) shows a contradiction
between the expected amplitude scaling of the catastrophe
integral and the wave function. However, a quick calculation
involving the prefactor of the wave function which ensures
that particle number is conserved shows that

C
− 1

2
2 ∼

(
J

J ′

)− 1
4

, (23)

which exactly cancels the Arnol’d scaling. This is a pecu-
liarity of our nongeneric initial condition of starting with a
completely localized initial state: when tracking a particular
fringe, it will move towards the origin but this normalization
factor means that its height does not scale with J .

Panel (d) of Fig. 4 shows the predictions in the TFIM for
the period T of oscillations near the caustic. Data are shown
both for the exact wave function, given in Eq. (11), and also
the “spin-flip” state �X, given in Eq. (33), which is easier to
realize experimentally. Since the Berry index ς for the fold

FIG. 4. Self-similar scaling of light cone wave functions. (a)
Fringe spacing in the C1 direction within the inner cone of the
XY model scales as Jς1 with a Berry index ς1 ≈ 0.743 ± 0.002
(a range of 1 � J/J ′ � 16 was used). The staircase pattern is due
to the discreteness of the lattice. (b) Fringe spacing scaling in
the C2 direction of the XY model gives a Berry index of ς2 ≈
0.500 ± 0.001. (c) Wave function amplitude scaling of ln |�| ≈
(−6 × 10−7 ± 4 × 10−7) ln(J ), indicating that the amplitude near the
cusp has an incredibly weak scaling with J . This effect is explained
by Eq. (23), since the initial condition precisely cancels the Arnol’d
scaling to preserve particle number. (d) The oscillation period, T , of
�(xn, t ) for site x/a = 5 in the TFIM with g = 3; Eqs. (11) and (33)
are plotted in blue circles and orange triangles, with blue-solid and
orange-dashed trendlines, respectively (a range of 1 � J/J ′ � 30
was chosen). Accounting for a geometric factor of sin[arctan(20)],
we find the Berry index to be 0.654 ± 0.003 and 0.646 ± 0.009 for
� and �X, respectively.

defines scaling perpendicular to the caustic, a geometric factor
dependent on vLR must be applied. Numerical agreement to
within 3% of Airy scaling given in Table I is found in both
cases even for finite-sized systems at finite times.

VII. CORRELATION FUNCTIONS AND HIGHER-ORDER
CATASTROPHES

Rather than the probability distribution associated with the
wave function itself, light cones are usually observed in corre-
lation functions [17–21]. The equal time site-site correlation
function is defined as

G(xn, xm, t ) = 〈b†
nbm(t )〉 − 〈b†

n(t )〉 〈bm(t )〉. (24)

Because Bogoliubov fermions are conserved, 〈b†
n(t )〉 =

〈bm(t )〉 = 0, and the last term vanishes. The remaining piece
is

〈b†
nbm(t )〉 = 〈�(t )|b†

nbm|�(t )〉

= 1

N

∑
k,k′

e−i(εk−εk′ )t/h̄
b〈0|b̃k′b†

nbmb̃†
k |0〉b. (25)

where we have used the state vector |�(t )〉 given in Eq. (10).
Expressing all the operators in terms of quasimomentum (see
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FIG. 5. (a) Correlation function amplitude |G(0, xm, t )| for γ =1,
and g = 0.5, where the blue shading has been truncated at 0.15 for
clarity. Black dots indicate vortices. (b) Same correlation function as
in (a), now with g = 0.9. Note that the number of vortices within the
cone decreases drastically near the critical point (see Sec. VIII).

Appendix A), we obtain

G(xn, xm, t ) = 1

N2

∑
k,k′

e−i(εk−εk′ )t/h̄ei(kxm−k′xn )

= �(xm, t )�(−xn,−t ). (26)

In Fig. 5, we plot G(0, xm, t ) on the upper half of the spin
chain for two different values of g. It displays the same fea-
tures as the wave function: a light cone, interference fringes,
and vortices. In the CA, the equal time site-site correlation
function becomes

GCA(x, x′, t ) = a

(2π )2

∫ π/a

−π/a

∫ π/a

−π/a
dk dk′ ei(�(k,x)−�(k′,x′ ))

= �CA(x, t )�CA(−x′,−t ), (27)

and expanding around the cone boundaries gives

GCA(x, x′, t ) ≈ �Ai(C(x, t ), t )�Ai(C(−x′,−t ),−t ), (28)

where C(x, t ) is the same function of x and t as that given in
Eq. (22).

Measurements and calculations (based on doublon and
holon quasiparticles) on the BH model following a
quench also find a product of two Airy functions for
G(xn, xm, t ) [8,17]. However, referring to Table I, generic
dimension three singularities (i.e., two spatial coordinates xn

and xm, as well as time t) of corank 2 (i.e., two integration
variables, like in the two-site correlation function) are the
elliptic umbilic, and hyperbolic umbilic catastrophes. The
elliptic umbilic diffraction catastrophe has been studied by
Berry, Nye, and Wright [88] via the optics of a triangular
water droplet lens, while the hyperbolic umbilic is a direct
consequence of the primary coma aberration [86] and has been
observed in matter waves using electron microscopy [69].
These catastrophes are generally more complicated than a
squared Airy function, however, we note that in a certain
plane the hyperbolic umbilic wave catastrophe does indeed
reduce to the product of two Airy functions. More precisely,
the hyperbolic umbilic wave catastrophe is given by [44]

�HU(x, y, z) = λ

∫∫ +∞

−∞
ds1ds2 eiλ(s3

1+s3
2+C3s1s2+C2s2+C1s1 ),

(29)

and when C3 = 0 this reduces exactly to

�HU(C1,C2, 0) = 4π2λ
1
3

3
2
3

Ai

(
C1λ

2
3

3
1
3

)
Ai

(
C2λ

2
3

3
1
3

)
. (30)

Thus, both the XY model and the BH model give rise to a
nongeneric special case.

What physical quantity could the C3 control parameter
represent? Studying the form of �HU given in Eq. (29) we
note that C3 controls the coupling between the s1 and s2

variables which in a spin chain correspond to the two quasi-
momenta k and k′. For noninteracting quasiparticles, which
is the case for the exactly solvable models considered in this
paper, the two quasimomenta are uncoupled and thus C3 is
zero. Furthermore, the particular regime of the BH model
where Refs. [8,17] obtained a product of Airy functions also
corresponds to the free quasiparticle case. It is therefore clear
that C3 can be used to parametrize quasiparticle-quasiparticle
scattering, and we predict that a model with interacting quasi-
particles will give rise to light cones that sample hyperbolic
umbilic wave catastrophes. This feature could be verified in
an experiment where the strength of the coupling is varied for
then the scaling along C3 should go as ς3 = 1/3.

Other quantities, for example, the spin-spin correlation
function, �nm = 〈σ x

n σ x
m〉 − 〈σ x

n 〉 〈σ x
m〉, may also be calculated

exactly via the Jordan-Wigner and Bogoliubov transforma-
tions, and simplified using Wick’s theorem. The functional
forms of these quantities in the continuum approximation re-
main diffraction integrals, and thus will also display universal
behavior corresponding to catastrophes.

VIII. VORTICES AND CRITICALITY

As seen in Figs. 3 and 5, and also Fig. 8 in the Ap-
pendices, we find that light cones contain lattices of vortex-
antivortex pairs. Vortices form the fine structure of wave
catastrophes [86,89–91], and in a continuum are zeros of �

where the phase χ ≡ Arg� is undefined (takes all values) and
has the topological property∮

C
dχ = ±2π, (31)

where C is any closed path which contains a single vortex. On
a discrete lattice we can still use such circuits to find vortices,
but across lattice sites one must perform a sum instead of
integrating, meaning that their spatial position is only known
up to the lattice constant: in figures we place the vortices be-
tween lattice sites. Furthermore, vortices on a lattice need not
correspond to nodes or even phase singularities, but to points
where the phase difference between adjacent sites is ±π (i.e.,
phase kinks or dark solitons). Thus, while phase interference
regulates the amplitude divergence of ray caustics, the effect
of a lattice is to regulate the phase singularities of wave theory.
In recent work by some of the authors [80], the regularization
of phase singularities by a lattice has been considered in Fock
space.

Whereas the classical light cone changes smoothly at the
QCP [see, e.g., Eq. (19)], there is a sharp minimum in the
vortex density, i.e., many vortex-antivortex pairs annihilate,
see Fig. 6. In the CA, all vortices except those closest to
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FIG. 6. (a) Vortex density inside the TFIM light cone reaches
a sharp minimum at the QCP for both Eq. (11) and the spin-flip
state Eq. (33). We define vortex density as being the total number
of vortices that occur within a cone up to the time at which the light
cone hits the edge of the system, taking care to normalize for different
cone sizes at different values of g. (b) Numerical determination of
vortex pair creation times at a fixed point in space as g = gc = 1 is
approached. In order to extrapolate to the critical point (inset), 30
data points (g, Jt/h̄) are fitted to a quadratic and then differentiated.
The resulting slopes are extrapolated to gc using a cubic and the
intercept gives νz = 0.9999 ± 0.0004 (standard error on the fit). The
range 0.02 � |g − 1| � 0.12 of g was chosen to optimize the prox-
imity to the critical point along with data accuracy, since the wave
function becomes highly oscillatory as g → 1. Numerical errors are
smaller than the symbol sizes.

the central axis annihilate at the QCP, while on a discrete
lattice, more off-axis vortices survive but the same trend is
observed. At a fixed point in space, the time at which a
vortex is first detected increases as one approaches the critical
point, becoming infinite in the CA. This diverging timescale
τ is related to critical slowing and suggests a connection to
the dynamical critical exponent, z. According to the scaling
hypothesis of critical phenomena

τ ∝ ξ z, (32)

where ξ = |g − gc|−ν is the correlation length and ν is its
equilibrium critical exponent. Fig. 5(b) plots τ as found from
the wave function Eq. (11) as g is tuned to the QCP. By
extrapolating the numerical data [Fig. 5(b) inset] to the critical
point we obtain νz = 1 and hence recover the known critical
scaling for the 1D TFIM [92,93]. For purposes of clarity, we
have only included the set of vortices which annihilate closest
to the axis x = 0. Vortices which annihilate farther off-axis
also display similar trends, which can be seen in Appendix F,
along with further figures which help with visualization of this
process.

While a more complete understanding of the nature of
the vortex-antivortex pairs within the light cone remains a
subject of future work, we wish to highlight that their presence
and scaling laws provide an interesting link between the
predictions of catastrophe theory and universality (in and out
of equilibrium). Due to the self-dual nature of the TFIM,
qualitative behavior for g > 1 is identical to that of the wave
function below the transition with g → 1/g and t → gt .

IX. EXPERIMENTAL REALIZATION: SPIN-FLIP STATE

The structural stability of catastrophes explains why they
occur so frequently in nature. Apart from the examples given
in the Introduction, they can also occur in disordered systems
such as at the Anderson transition where an evanescent Airy
function occurs [94], and it has also been shown that wave
catastrophes have the property of self-healing after being
disrupted [95]. There are, therefore, a broad range of initial
conditions and spin models which will give rise to caustics in
their dynamics.

So far we have used the initial condition of a localized
single quasiparticle, as given in Eq. (9). This is a nongeneric
initial condition and the reader may question how generic the
resulting light cones really are. In fact, all our analysis is stable
to perturbations around this initial condition. In particular, a
state which is naturally generated in trapped ion experiments
where individual ions can be addressed is a spin-flip state
which starts with all spins polarized in the x direction, except
for the central spin, say, which is flipped [21],

�X(x, t ) ≡ 〈x| e−iHt/h̄ |↑x . . . ↑x↓x↑x . . . ↑x〉. (33)

It is important to realize that physical spins are in general
superpositions of multiple quasiparticles and vice versa. We
elaborate upon the mathematical details of this point in Ap-
pendix E. What we find is that as long as the quench is not too
close to the transition the number of quasiparticles created by
a spin flip is close to one and hence we are perturbing around
the single quasiparticle state given in Eq. (9). The evidence
for this statement can be found in Figs. 4(d) and 6(a), which
compare the results of using �X with those of �. We find that
the scaling properties are essentially identical in the two cases
whilst the behavior of the vortex density shows some finite
differences but is qualitatively the same.

X. DISCUSSION AND CONCLUSIONS

Caustics are a natural phenomenon that can be seen by
looking up in the sky on a rainy day. The primary bow of
a rainbow is a fold caustic and careful observation reveals
supernumerary arcs that are interference fringes described by
the Airy function. This is the first in a hierarchy of caustics
of increasing complexity whose underlying description is
via catastrophe theory. This hierarchy has previously been
explored in optics (particularly in the field of gravitational
lensing [41]), thermodynamics [96,97], laser physics [98,99],
hydrodynamics [43,45,100], and also cosmology [101,102].
By showing that light cones in many-body systems are also
caustics, we are able to open the door to the application of a
rigorous and unified mathematical framework for describing
the dynamics of these systems following a quench.
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The main conceptual result of this paper is that there is
a hierarchy of light cone structures. They are stable against
perturbations and dressed by characteristic wave functions
that scale according to the sets of exponents given in Table I.
The fold catastrophe and its attendant Airy function features
in the TFIM, but breaking the symmetry of the TFIM leads us
to the XY model and the second catastrophe, the cusp, which
is dressed by the lesser-known Pearcey function. Choosing
the spin coupling J as a tuning parameter, we show how the
scaling exponents lead to nontrivial scaling of these wave
catastrophes as J is varied.

The TFIM and XY models are exactly solvable and hence
their quasiparticles are noninteracting. However, the defining
feature of catastrophe theory is that it deals with structurally
stable singularities and hence the light cone caustics we
have described also occur in the presence of perturbations
such as weak quasiparticle interactions. A related example
of this is provided by the celebrated Kolmogorov-Arnold-
Moser (KAM) theorem which shows that tori in the phase
space of integrable systems are stable against nonintegrable
perturbations. There is in fact a close connection between
caustics and the quasiperiodic motion that arises in dynamical
systems due to the existence of the tori [103].

Higher-order catastrophes will become important in higher
dimension spin lattices. Another way that higher-order catas-
trophes become important is through n-body correlation func-
tions. For the TFIM we find that the two-site equal time
correlation function is described near the cone edge by the
product of two Airy functions, which is, however, a special
case of the hyperbolic umbilic catastrophe. We predict that
adding quasiparticle interactions will lead to the full hyper-
bolic umbilic catastrophe.

On their finest scales, wave catastrophes contain vortex-
antivortex pairs. We have seen that in the case of light cones
in 1D spin chains these become vortex-antivortex pairs in
space-time. We note in passing that these are reminiscent of
the Kosterlitz-Thouless transition that occurs in one space
and one time dimension in the quenched 1D Bose-Hubbard
model [104] and in quantum wires [105]. Being high-energy
features, we find that the vortices are strongly affected by
critical slowing near a QCP, unlike the light cone itself which
evolves smoothly. The vortices contain all the information
about the QCP and can be used to extract the critical scaling
behavior.

The fact that light cones are structurally stable and fall into
distinct classes, each of which has its own set of scaling expo-
nents, underlines that as a phenomenon they are an example of
universality in out-of-equilibrium dynamics, somewhat akin
to the universality classes of equilibrium phase transitions.
The underlying reason for this universality in both cases is the
presence of singularities, and the realization that light cones
are caustics aids us in identifying and understanding their
properties.
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APPENDIX A: DYNAMICS OF A BOGOLIUBOV FERMION

The spin models dealt with in this paper can be exactly
diagonalized in terms of Bogoliubov fermions. Their Hamil-
tonians can therefore be written in the form

H =
∑

k

εk

(
b̃†

kb̃k − 1

2

)
, (A1)

where εk is the dispersion relation and the operators b̃†
k and

b̃k create and annihilate, respectively, fermions with quasimo-
mentum k. We shall denote the action of the creation operator
on the Bogoliubov vacuum as b̃†

k|0〉b = |k〉b. These operators
are related to their counterparts in position space via a discrete
Fourier transform:

bx = 1√
N

∑
k

e−ikx b̃k, (A2)

b̃k = 1√
N

∑
x

eikx bx, (A3)

where N is the number of sites/spins.
Applying the time evolution operator to a single Bogoli-

ubov fermion created at the center of the lattice we obtain the
state vector:

|�(t )〉 = e−iHt/h̄b†
r=0 |0〉b =e−iHt/h̄

(
1√
N

∑
k

b̃†
k

)
|0〉b (A4)

= eiθ (t )

√
N

∑
k

e−iεkt/h̄ |k〉b, (A5)

where θ (t ) ≡ (t/2h̄)
∑

k εk . The corresponding spatial wave
function is

�(x, t ) = b〈x|�(t )〉 = eiθ (t )

√
N

∑
k

e−iεkt/h̄
b〈x|k〉b, (A6)

and inserting the standard result 〈x|k〉 = eikx/
√

N for the
overlap gives

�(x, t ) = eiθ (t )

N

π
a − 2π

Na∑
k=− π

a

ei(kx−εkt/h̄). (A7)

If we allow �k = 2π/(aN ) to become very small (N 
 1) we
can approximate the sum by the integral

�(x, t ) = eiθ (t )√a

2π

∫ π/a

−π/a
dk ei� (A8)

with generating function � = kx − t
h̄εk . A comparison of the

discrete and continuum cases for the TFIM is given in Fig. 8.
In the semiclassical regime (N 
 1), both the sum and the
integral are dominated by the points at which � is stationary.
Along the caustic, however, a saddle-point approximation
fails since we are at a degenerate stationary point.
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APPENDIX B: DIAGONALIZATION OF THE XY MODEL

The Hamiltonian for the XY model is

H = −
∑
〈i j〉

(
Jxσ

x
i σ x

j + Jyσ
y
i σ

y
j

)− h
∑

i

σ z
i , (B1)

where σα
i , α ∈ {x, y, z} are the Pauli operators for the ith

site. We will use the Jordan-Wigner (JW) transformation,
followed by a Bogoliubov rotation, in order to diagonalize H .
Following the conventions used by Dutta et al. in Ref. [93],
the transformation to JW fermions is given by

σ z
i = 2c†

i ci − 1, (B2)

σ−
i = ci

∏
j<i

(1 − 2c†
j c j ) = −(ci + c†

i )eiπ
∑

j<i c†
j c j . (B3)

We note that the JW fermions and Bogoliubov fermions have
different vacuua; some more discussion of this point can be
found in Appendix E.

Next, we use a Fourier transform, c̃†
k =∑ j eikx j c†

j , and
then rotate to Bogoliubov fermions via

b̃†
k = vk c̃k + iukc̃†

−k (B4)

along with the corresponding destruction operator and trans-
formations for −k. Here, uk ≡ cos(φk/2), vk ≡ sin(φk/2),
and tan(φk ) = (Jy − Jx ) sin(ka)/((Jy + Jx ) cos(ka) + h),
with properties uk = u−k , vk = −v−k in order to ensure
the anticommutation relations {c̃†

k , c̃†
k′ } = {c̃k, c̃k′ } = 0

and {c̃†
k , c̃k′ } = δkk′ hold. We can simplify the resulting

Hamiltonian to get it in the form of Eq. (A1) with
εk = 2

√
h2 + J2

x + J2
y + 2h(Jx + Jy) cos(ka) + 2JxJy cos(2ka)

being a function of the parameters Jx, Jy, h, and a.
Next we introduce the anisotropy parameter γ so that we

can write Jx ≡ J (1 + γ )/2, Jy ≡ J (1 − γ )/2 and let h ≡ gJ .
We thereby arrive at the standard form of the Hamiltonian

H

J
= −1

2

∑
〈i j〉

(
(1 + γ )σ x

i σ x
j + (1 − γ )σ y

i σ
y
j

)− g
∑

i

σ z
i

(B5)
with dispersion εk = 2J

√
(cos(ka) + g)2 + γ 2 sin2(ka). If we

change our conventions in order to be consistent with
Sachdev [82] we must rotate the Hamiltonian by taking
σ x → σ x, σ y → σ y, and σ z → −σ z. Then we’ll instead

FIG. 7. The XY dispersion relation, given by Eq. (B6), for γ =
0.2 and g = 0.8. Bearing in mind the periodicity of the dispersion
relation, one can see that it has four stationary points for these
parameter values. The three stationary points that are responsible for
the Pearcey function are those that lie between the vertical red dashed
lines. The Pearcey function is the wave catastrophe that dresses the
inner cone.

have

εk = 2J
√

(cos(ka) − g)2 + γ 2 sin2(ka). (B6)

Effectively this is like taking g → −g, allowing us to return
to the standard form of the transverse-field Ising model in
the γ → 1 limit, presented in the main text. The dispersion
relation given in Eq. (B6) is plotted in Fig. 7.

APPENDIX C: CAUSTICS IN THE XY MODEL

In this Appendix, we give more details of the calculations
of the caustics and their wave functions that are presented in
the main text. The XY model contains both fold and cusp
catastrophes; we focus particularly on the cusp catastrophe
and defer some of the treatment of the fold catastrophe to the
next Appendix (Appendix D) which is on the TFIM.

1. Calculation of classical caustics in the XY model

The light cone conditions, or equivalently the caustic con-
ditions, are given in Eqs. (2) and (3) in the main text. These
correspond to vanishing first and second derivatives of the
generating function � = kx − εkt/h̄. The vanishing of the
first derivative with respect to k gives the equation

∂�

∂k
= x − Jt (2aγ 2 cos(ka) sin(ka) + 2a(g − cos(ka)) sin(ka))

h̄
√

(g− cos(ka))2 + γ 2 sin2(ka)
= 0 (C1)

bringing x to one side, multiplying both sides by the denominator and squaring gives

x2h̄2((g − cos(ka))2 + γ 2 sin2(ka)),

= 4a2J2t2(g + (γ 2 − 1) cos(ka))2 sin2(ka). (C2)

Replacing sin2(ka) = 1 − cos2(ka), putting z ≡ cos(ka), and collecting as a quartic polynomial gives

0 = (γ 2 − 1)2v2
I t2z4 + 2(γ 2 − 1)gv2

I t2z3 + (g2v2
I t2 − (γ 2 − 1)2v2

I t2 − γ 2x2 + x2
)
z2 + (−2(γ 2 − 1)gv2

I t2 − 2gx2
)
z

+ γ 2x2 − g2v2
I t2 + g2x2, (C3)
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where the Ising velocity vI was defined in Eq. (19). The light cones correspond to the control parameter values where solutions
coincide, that is, the stationary points of this equation.

The vanishing of the second derivative of the generating function gives the equation

∂2�

∂k2
= Jt (2aγ 2 cos(ka) sin(ka) − 2a(cos(ka) − g) sin(ka))2

2h̄((cos(ka) − g)2 + γ 2 sin2(ka))3/2

− Jt (2a2γ 2 cos2(ka) − 2a2 cos(ka)(cos(ka) − g))

h̄
√

(cos(ka) − g)2 + γ 2 sin2(ka)
− Jt (2a2 sin2(ka) − 2a2γ 2 sin2(ka))

h̄
√

(cos(ka) − g)2 + γ 2 sin2(ka)
= 0. (C4)

We now multiply both sides by 2h̄[((cos(ka) − g)2 + γ 2 sin2(ka)]
3/2

/Jt and simplify

0 = 1
2 a2[3(4g2 + (γ 2 − 1)2) − 2g(9 + 4g2 − 5γ 2) cos(ka) + 4(γ 4 − 1 + g2(2γ 2 − 3)) cos(2ka)

+ 6g(γ 2 − 1) cos(3ka) + (γ 2 − 1)2 cos(4ka)]. (C5)

Next we make the replacements cos(2ka) = 2 cos2(ka) − 1; cos(3ka) = 4 cos3(ka) − 3 cos(ka); and cos(4ka) = 8 cos4(ka) −
8 cos2(ka) + 1. Defining again z ≡ cos(ka), and dividing both sides by a2/2,

0 = 8(γ 2 − 1)2z4 + 24g(γ 2 − 1)z3 − 8(2γ 2(γ 2 − 1) + g2(2γ 2 − 3))z2 − 8g(g2 + γ 2)z + 8γ 2(g2 + γ 2 − 1). (C6)

The light cones/caustics correspond to simultaneous solutions
of Eqs. (C3) and (C6) and hence correspond to the Lieb-
Robinson (LR) bound which is the solution which maximizes
the propagation speed of the quasiparticles.

In the next section, we describe how the triple coalescence
of stationary points give rise to the Pearcey function which
provides the inner cone in Fig. 2. The three stationary points
which coalesce are those between the dashed lines in Fig. 7.
For 0 < γ < 1 and 0 < g < 1, this coalescence occurs at
k = 0, thus z = 1, and Eq. (C6) yields solutions g = 1 and
g = 1 − γ 2. The g = 1 solution is highly singular for nonzero
anisotropy, while the solution g = 1 − γ 2 is the key for triple
root coalescence.

2. Diffraction integral for the cusp wave catastrophe

Let us begin by defining the Pearcey function which is the
canonical form of the wave function corresponding to the cusp
catastrophe. The definition of the Pearcey function that we use
is

Pe(C1,C2) ≡ 1

2π

∫ ∞

−∞
ds e−i(C1s+ C2

2 s2+ s4

4 ). (C7)

It features two parameters C1 and C2 and is generally a com-
plex function. In fact, the common definition of the Pearcey
function is the complex conjugate of (C7), however for our
purposes, the above definition is more convenient.

Since the coalescence of extrema in � occurs at k = 0, we
expand to fourth order and factor out J/h̄, which we will later
use for scaling,

�(k; J ) ≈ J

h̄

[
2t (g − 1) + 2gax

vI
k

+ 1

2

2a2t (γ 2 + g − 1)

(g − 1)
k2 − 1

4
4a4t�k4

]
, (C8)

where we have defined the following parameter:

� ≡ (g3 − 1 − 2γ 2 + 3γ 4 + g(3 − 2γ 2) + g2(4γ 2 − 3))

12(g − 1)3
.

(C9)

Note that the solution g = 1 − γ 2 will kill off the quadratic
piece.

We now rescale our integration variable

s =
√

2a(t�)
1
4 k, (C10)

then our wave function locally takes the form

�Pe(C1,C2; J )

≈ eiθ (t )

2π

√
J

h̄vI

(
γ 2 + g − 1

(g − 1)C2

) 1
2
∫ S

−S
ds e−i J

h̄ (C1s+ C2
2 s2+ s4

4 )

(C11)

with definitions

C1(g, γ ; x, t ) = −
√

2x

vI(t�)
1
4

, (C12)

C2(g, γ ; x, t ) = − γ 2 + g − 1

g − 1

(
t

�

) 1
2

(C13)

and integration limit

S =
√

2π (t�)
1
4 . (C14)

Equation (C11) shows that the wave function for the inner
cone can locally be expressed as a diffraction integral which
is generated by the cusp catastrophe �2 = C1s + C2s2/2 + s4,
and is thus directly related to the canonical Pearcey function
when t is reasonably large and J/h̄ = 1 (below we will see
that we can choose any value of J/h̄ and it will simply rescale
the coordinates). Note, however, that the normalization of the
wave function restricts the bounds of the integral as t → 0,
and so no true cusp point can occur at the origin since �

also vanishes there. Nevertheless, the region of integration
is proportional to t1/4 and so is larger than the separation
between the stationary points as t → 0 since for any quartic
equation of the form �2 the position of the stationary points
in the s coordinate is proportional to

√
C2 so that for any

infinitesimal time dt the separation between them is propor-
tional to only (dt )1/2. Thus it becomes imperative that we
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FIG. 8. Caustics and vortices in the TFIM: discrete (exact) versus continuum approximation. The initial condition is a single Bogoliubov
fermion created at the center of the chain (only half the chain is shown). The discrete wave function is given by Eq. (A7) whereas the continuum
approximation is given by Eq. (A8). [(a)–(d)] Amplitude of the wave function for g = 0.5 and 1. [(e)–(h)] Phase of the same wave functions
(corresponding to the panels directly above). The caustics are shown as solid black lines, while the imaginary caustics are plotted as dashed
lines. The black dots mark the locations of vortices.

consider the effects of all three stationary points, giving rise
to the Pearcey-like function described in Eq. (20).

Finally, in order to keep our expressions consistent for
|g| < 1 and |g| > 1, we can instead factor out Jg/h̄ overall.
The above results are then identical up to a factor of 1/g,
which can be absorbed into s and is irrelevant for the scaling.
Thus the expression vI given in Eq. (19) may be used in
Eq. (C12) generally.

3. Self-similar scaling of the cusp wave catastrophe

Now we scale the coupling strength, which corresponds to
the width of the dispersion relation, from J → J ′. As we do
so we enforce Js4 = J ′s′4 so that the wave function maintains
its basic form. Then, the Berry scaling is

JC1s = JC1

(
J ′

J

) 1
4

s′ = J ′C1

(
J

J ′

) 3
4

s′ (C15)

and

J
C2

2
s2 = J

C2

2

(
J ′

J

) 1
2

s′2 = J ′ C2

2

(
J

J ′

) 1
2

s′2 (C16)

with Arnol’d scaling given by

√
Jds =

√
J

(
J ′

J

) 1
4

ds′ =
√

J ′
(

J

J ′

) 1
4

ds′. (C17)

These are the scaling factors for the cusp wave catastrophe
as listed in Table I. As we tune J , it is convenient to keep
the caustic in the same place. This is done by simultaneously
tuning a such that the Ising velocity vI is constant.

APPENDIX D: CAUSTICS IN THE TRANSVERSE-FIELD
ISING MODEL

As mentioned in the main text, the outer light cone in the
XY model is dominated by its Airy-like behavior because it

arises from the coalescence of just two stationary points. Since
this also occurs in the simpler TFIM (which is obtained by
setting γ = 1), we focus on this case here.

1. Calculation of classical caustics in the TFIM

As shown above for the cusp catastrophe case, we must
first calculate the two caustic conditions

∂�

∂k
= 0 = x − 2agJt sin(ka)

h̄
√

g2 − 2gcos(ka) + 1
(D1)

and

∂2�

∂k2
= 0 = − 2a2gJt cos(ka)

h̄
√

g2 − 2gcos(ka) + 1

+ 2a2g2Jt sin2(ka)

h̄(g2 − 2gcos(ka) + 1)3/2
, (D2)

which must be simultaneously fulfilled. Rearranging Eq. (D2)

g(1 − cos2(ka)) = cos(ka)(g2 − 2gcos(ka) + 1) (D3)

leads to cos(ka) = g or cos(ka) = 1/g, as expected. In-
putting this into Eq. (D1), along with sin(ka) =

√
1 − g2 [or

sin(ka) =
√

1 − 1/g2 for g > 1], we can solve for the LR
velocity, which is identical to the Ising velocity we defined
in the previous section,

vLR = vI. (D4)

Although the caustic lines are determined by the real so-
lutions to Eq. (D3), there exist imaginary solutions for which
the Lieb-Robinson velocity g designations are reversed. This
seems to be responsible for lines of constant phase across
the caustic (see Fig. 8). The presence of two separate speeds
within the light cone is also demonstrated by Cevolani et al.
in Ref. [16]. We term these imaginary solutions as “imaginary
caustics.”
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2. Diffraction integral for the fold wave catastrophe

The canonical wave catastrophe corresponding to the fold
catastrophe is the Airy function. The definition of the Airy
function that we use is

Ai(C) ≡ 1

2π

∫ ∞

−∞
ds ei(Cs+s3/3). (D5)

It features a single parameter C and is a real function if C is
real.

The stationary points of � coalesce when k =
(1/a) arccos(g) for g < 1 and k = (1/a) arccos(1/g) for
g > 1, respectively. Thus, for each of these cases, we will
expand about these particular k values to third order and
factoring out J/h̄ overall,

�(k; J ) ≈ J

h̄

(
−2t

√
1 − g2 + xh̄

aJ
arccos(g)

)

+ J

h̄

(
xh̄

aJ
− 2gt

)
(ka − arccos(g))

+ J

h̄

1

3
gt (ka − arccos(g))3 (D6)

for g < 1 and

�(k; J ) ≈ J

h̄

(
−2t

√
g2 − 1 + xh̄

aJ
arccos(1/g)

)

+ J

h̄

(
xh̄

aJ
− 2t

)
(ka − arccos(1/g))

+ J

h̄

1

3
t (ka − arccos(1/g))3, (D7)

for g > 1. Of course, the expansion will only capture the
behavior of the wave function close to the light cone, however
this is our primary objective. Furthermore, we are guaranteed
that (up to a smooth change of variables) this cubic form in
particular is structurally stable and will capture the qualitative
features of �. We now rescale our integration variables as

s3
1 = gt (ka − arccos(g))3, (D8)

s3
2 = t (ka − arccos(1/g))3. (D9)

Thus

�Ai(s; J ) = J

h̄

[(
−2t

√
1 − g2 + 2gx

vI
arccos(g)

)

+ 2

(
x

vI
− t

)(
g2

t

) 1
3

s1 + 1

3
s3

1

]
(D10)

for g < 1 and

�Ai(s; J ) = J

h̄

[(
−2t

√
g2 − 1 + 2x

vI
arccos(1/g)

)

+ 2

(
x

vI
− t

)(
1

t

) 1
3

s2 + 1

3
s3

2

]
(D11)

for g > 1.
Now we define the control variable as

C =
{

2
(

x
vI

− t
)( g2

t

) 1
3 , g < 1

2
(

x
vI

− t
)(

1
t

) 1
3 , g > 1

, (D12)

so that

�(C; J ) =
⎧⎨
⎩

e�1

2π (gt )
1
3
√

a

∫ sMax

sMin ds e
iJ
h̄ �1(C,s), g < 1

e�2

2πt
1
3
√

a

∫ sMax

sMin ds e
iJ
h̄ �1(C,s), g > 1

(D13)

with

�1(C, s) = Cs + 1

3
s3, (D14)

1√
a

ds =
⎧⎨
⎩
√

2gJ
vI h̄ ds, g < 1√
2J
vI h̄ ds, g > 1

(D15)

and limits

sMin =
{

(gt )
1
3 (−π − arccos(g)) g < 1

t
1
3 (−π − arccos(1/g)) g > 1

, (D16)

sMax =
{

(gt )
1
3 (π − arccos(g)) g < 1

t
1
3 (π − arccos(1/g)) g > 1

. (D17)

Note that sMin < 0 and sMax > 0. Thus, if we assume long
enough times, then it is reasonable to take these integration
limits to plus and minus infinity. We now have a description
of the wave function local to the light cone using a fold catas-
trophe integral, which in the limit of J/h̄ → 1 will become the
Airy integral.

3. Self-similar scaling of the fold wave catastrophe

As for the cusp case, we can extract the scaling properties
of the fold wave catastrophe by considering the change from
J → J ′. Under this transformation we assume that Js3 =
J ′s′3. Then,

JCs = JC

(
J ′

J

) 1
3

s′ = J ′C
(

J

J ′

) 2
3

s′ (D18)

and

√
Jds =

√
J

(
J ′

J

) 1
3

ds′ =
√

J ′
(

J

J ′

) 1
6

ds′. (D19)

Taking the integral limits to infinity (long times)

�Ai(C; J ) ∝
√

J ′
(

J

J ′

) 1
6
∫ ∞

−∞
ds′ ei J′

h̄ (( J
J′ )

2
3 Cs′+ 1

3 s′3 ) (D20)

or, equivalently,

�Ai(C; J ) =
(

J

J ′

) 1
6

�Ai

([
J

J ′

] 2
3

C; J ′
)

. (D21)

We have therefore obtained the scaling factors for the fold
wave catastrophe as listed in Table I.

APPENDIX E: SPIN-FLIP STATE �X(x, t )

In this paper, we mainly consider an initial state consisting
of a single fermionic quasiparticle localized on a particular
site. However, in Sec. IX, we instead consider the initial state
where all the spins are polarized along the x direction except
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for the central spin which is flipped such that the time evolved
wave function is

�X(x, t ) ≡ 〈x| e−iHt/h̄ |↑x . . . ↑x↓x↑x . . . ↑x〉. (E1)

Because experiments with ions can easily address individual
spins, and spins and quasiparticles are not quite the same
thing, it important to consider this kind of state.

Evaluating the time evolution of spin chains is generally
far simpler in the Bogoliubov basis. However, to introduce
physical spins, we begin with the JW basis which is related to
the Bogoliubov basis by the Bogoliubov rotation:

c̃†
k = ukb̃†

k − ivkb̃−k . (E2)

We identify the creation of a JW fermion at the center of
the lattice as a spin flip from ↑x to ↓x via the inverse JW
transformation:

c†
j =

⎛
⎝∏

i> j

σ x
i

⎞
⎠σ−

j . (E3)

It is also important to note that the JW and Bogoliubov
vacuums are related by

|0〉 =
∏
k>0

(uk − ivkb̃†
kb̃†

−k ) |0〉b. (E4)

Starting with the center spin (x = 0) down,

|�0〉 = c†
x=0 |0〉 =

∑
k1

c̃†
k1

|0〉

=
∑

k1

(
uk1 b̃†

k1
− ivk1 b̃−k1

)

×
∏
k2>0

(
uk2 − ivk2 b̃†

k2
b̃†

−k2

) |0〉b (E5)

and using the following relation

b̃†
k1

∏
k2>0

(
uk2 − ivk2 b̃†

k2
b̃†

−k2

) |0〉b

= uk1 b̃†
k1

∏
k2>0, |k2|=|k1|

(
uk2 − ivk2 b̃†

k2
b̃†

−k2

) |0〉b, (E6)

we get

|�0〉 =
∑

k1

b̃†
k1

∏
k2>0, |k2|=|k1|

(
uk2 − ivk2 b̃†

k2
b̃†

−k2

) |0〉b . (E7)

Next, we evolve in time using a more convenient representa-
tion of the time-evolution operator,

e
− it

h̄

∑
k

εk (b̃†
k b̃k− 1

2 ) = eiθ (t )
∏

k

[
1 − (1 − e− itεk

h̄
)
b̃†

kb̃k
]
. (E8)

Dropping the global phase factor, and projecting this state
onto real space �(xi, t ) = 〈xi|�(t )〉 using

〈xi| = 〈0| ci

=
∑

k3

eik3xi
b〈0|

∏
k4 > 0

|k4| = |k3|

(
uk4 + ivk4 b̃−k4 b̃k4

)
b̃k3 , (E9)

we arrive at, after a fair amount of algebra,

�(xi, t ) =
∑

k1

e− itεk1
h̄ eik1xi

∏
k2 > 0

|k2| = |k1|

(
u2

k2
+ v2

k2
e− itεk2

h̄
)

+
∑

k1

e− 2itεk1
h̄ eik1xiv2

k1

∏
k2 > 0

|k2| = |k1|

(
u2

k2
+ v2

k2
e− itεk2

h̄
)
.

(E10)

APPENDIX F: VORTEX SCALING

Returning to our original initial condition of a single Bo-
goliubov fermion created at x = 0, we can identify space-time
vortices in the time evolved system. The discrete (exact) and
CA results are compared for the TFIM in Fig. 8 where the
same general trend is observed in both cases: fewer vortices at
the QCP at g = 1 than away from it at g = 0.5. The vortices
that survive at the QCP are those near to the center of the
chain at x = 0, i.e., those closest to the position of the original
excitation. In fact, in the CA only a single line of vortices on
each side of the center line survives.

The vortices are located by breaking the light cone up into
small loops and integrating the phase of the wave function
around each one. For a loop containing a single vortex,∫

C
dχ = ±2π, (F1)

where the plus sign signifies a vortex and the minus sign an
antivortex. For the discrete wave function, the integral along
the spatial part of the path C is replaced by a sum.

If we track the positions of the vortices as g is varied,
we find that they flow in space-time in such a way that as
the QCP is approached vortices and antivortices annihilate
in pairs, each pair annihilating at a different point (x, t).
This process is easier to follow in the CA than the discrete
case because the discreteness in the lattice direction obscures
the spatial location of vortices, so in this Appendix we special-
ize to the CA case (whereas the data presented in Fig. 6 in the
main text are for the discrete case). In particular, Fig. 9 gives a
pictorial representation of the annihilations occurring near the
center of the lattice for g = 1.75. We see that vortex-antivortex
pairs converge on horizontal lines (i.e., spatial points) located
at x/a = ±0.5,±1.5,±2.5, . . .

The temporal behavior of the vortices can also be seen in
Fig. 9. For values of g close the QCP, the vortex-antivortex
pairs that occur at short times annihilate and so never occur,
or, said another way, as g → 1 the creation time for vortex-
antivortex pairs diverges, an example of critical slowing. Thus
there are two dimensions along which one can observe critical
scaling: along t and along x, and the data for these two
directions are shown in Fig. 10. It is clear from the way that
the data falls onto straight lines on a log-log scale as g → 1
that the vortices display critical scaling. The figure shows two
“sets” of vortices, where each set annihilates within a small
region of x/a at diverging timescales. The vortices we call
primary vortices annihilate at positions approaching x̄ = 1.5a,
while x̄ = 2.5a for the secondary vortices. In the main text,
we focus only on the primary vortices, since a greater number
annihilate earlier in time and thus result in a less oscillatory
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FIG. 9. Graphic depicting vortex annihilation in the CA for the
TFIM. Here, g = 1.75, and for clarity the lines x/a = 1.5 and
x/a = 2.5 have been drawn. As g is tuned toward the transition,
vortex-antivortex pairs (black dots) will approach one another and
eventually annihilate at a particular point in space-time, denoted with
an “X.” It is the vortices which annihilate close to x/a = 1.5 that
we refer to as ‘primary’ (red) and those which annihilate close to
x/a = 2.5 we refer to as “secondary” (blue, all annihilated in this
image). In principle, there exist rows of vortices beyond these, but
here we focus on those closer to the center of the lattice and short
times.

integrand, allowing us to get closer to the transition while
maintaining accuracy for a larger number of data points, but
we see that the secondary vortices obey the same scaling. The
temporal scaling shown in Fig. 10(a) leads to a gradient of
−1 and hence the relation νz = 1 as explained in the main
text [see inset in Fig. 6(b)]. The spatial scaling is shown in
Fig. 10(b) and leads to a gradient of 0.5.

FIG. 10. Vortex annihilation scaling in the TFIM within the CA.
(a) The time at which vortex annihilation occurs along a particular
set of vortices will diverge as we approach the QCP. (b) Each
consecutive vortex pair will annihilate at a point in space (x) which
approaches the midpoint between two lattice sites. Thus x̄ = 1.5a for
the set of primary vortices and x̄ = 2.5a for the secondary vortices.
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