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Collective modes near a Pomeranchuk instability in two dimensions
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We consider zero-sound collective excitations of a two-dimensional Fermi liquid. For each value of the angular
momentum l , we study the evolution of longitudinal and transverse collective modes in the charge (c) and spin
(s) channels with the Landau parameter F c(s)

l , starting from positive F c(s)
l and all the way to the Pomeranchuk

transition at F c(s)
l = −1. In each case, we identify a critical zero-sound mode, whose velocity vanishes at the

Pomeranchuk instability. For F c(s)
l < −1, this mode is located in the upper frequency half-plane, which signals

an instability of the ground state. In a clean Fermi liquid, the critical mode may be either purely relaxational
or almost propagating, depending on the parity of l and on whether the response function is longitudinal
or transverse. These differences lead to qualitatively different types of time evolution of the order parameter
following an initial perturbation. A special situation occurs for the l = 1 order parameter that coincides with
the spin or charge current. In this case, the residue of the critical mode vanishes at the Pomeranchuk transition.
However, the critical mode can be identified at any distance from the transition, and is still located in the upper
frequency half-plane for F c(s)

1 < −1. The only peculiarity of the charge- and spin-current order parameter is that
its time evolution occurs on longer scales than for other order parameters. We also analyze collective modes
away from the critical point, and find that the modes evolve with F c(s)

l on a multisheet Riemann surface. For
certain intervals of F c(s)

l , the modes either move to an unphysical Riemann sheet or stay on the physical sheet
but away from the real frequency axis. In that case, the modes do not give rise to peaks in the imaginary parts of
the corresponding susceptibilities.

DOI: 10.1103/PhysRevResearch.1.033134

I. INTRODUCTION

A Pomeranchuk transition is an instability of a Fermi liquid
(FL) toward a spontaneous order which breaks rotational sym-
metry but leaves translational symmetry intact [1]. Examples
include ferromagnetism [2–4] and various forms of nematic
order in quantum Hall systems, Sr3Ru2O7, and cuprate and
Fe-based superconductors [5,6]. For a rotationally invariant
system in two dimensions (2D), deformations of the Fermi
surface (FS) can be classified by the value of the angular mo-
mentum l . In general, a deformation with only one particular
l develops at a Pomeranchuk transition. A Pomeranchuk or-
der parameter �

c(s)
l (q) = ∑

k f c(s)
l (k)〈a†

k+q/2,αt c(s)
α,α′ak−q/2,α′ 〉

is bilinear in fermions and has the spin structure t c
α,α′ = δα,α′

or t s
α,α′ = σ z

α,α′ in the charge (c) and spin (s) channels, cor-
respondingly (σ z is the Pauli matrix). The order parameter is
assumed to vary slowly, i.e., q � min{a−1

0 , kF }, where a0 is
the lattice constant and kF is the Fermi momentum. Under ro-
tations, the form factors f c(s)

l (k) transform as basis functions
of the angular momentum and, in general, also depend on the
magnitude of |k| ≡ k. For example, f c(s)

1 (k) = cos θ f c(s)(k)
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or f c(s)
1 (k) = sin θ f c(s)(k), where θ is the azimuthal angle of

k, in a coordinate system chosen such that the x axis points
in the direction of q. According to the FL theory [7,8], a
Pomeranchuk order with angular momentum l emerges when
the corresponding Landau parameter F c(s)

l approaches the
critical value of −1 from above.

In this paper we focus on dynamical aspects of a Pomer-
anchuk instability. We consider primarily the 2D case because
examples of Pomeranchuk transitions have been discussed
mostly for 2D systems [9–26]. We consider an isotropic
FL but do not specifically assume Galilean invariance, i.e.,
the single-particle dispersion in our model is not necessar-
ily quadratic in |k|. The main object of our study is the
dynamical susceptibility χl (q, ω), which corresponds to a
particular order parameter �

c(s)
l . In 2D, there are two types

of susceptibilities for any given l: a longitudinal one, with
the form factor proportional to cos lθ , and a transverse one,
with the form factor proportional to sin lθ (for l = 0, there is
only one type, with an isotropic form factor). The longitudi-
nal susceptibility corresponds to FS fluctuations that are not
volume conserving, analogous to axisymmetric fluctuations
in three dimensions (3D), while the transverse susceptibility
describes volume-preserving fluctuations, analogous to non-
axisymmetric fluctuations in 3D [7]. In the low-energy limit
(q → 0 and ω → 0) the dynamical susceptibility is a function
of the ratio s = ω/v∗

F q, where v∗
F is the renormalized Fermi

velocity. As a function of complex variable, χ (s) has both
poles and branch cuts in the complex plane. We focus on
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the retarded susceptibility, which is analytic in the upper half-
plane Ims > 0, except for the case when the system is below
the Pomeranchuk instability, and, in general, has poles and
branch cuts in the lower half-plane Ims < 0. The poles of χ (s)
correspond to zero-sound collective modes whose frequency
and momentum are related by ω = sv∗

F q. If the Landau pa-
rameter is positive and nonzero for only one value of l , there is
one longitudinal and at most one transverse zero-sound mode
for any l 	= 0. These are conventional propagating modes with
Res > 1 and infinitesimally small Ims in the clean limit, when
the fermionic lifetime is infinite. The branch cuts are a conse-
quence of the nonanalyticity of the free-fermion bubble (the
Lindhard function). Their significance is that the zero-sound
poles are defined on a multisheet Riemann surface. In 2D, this
nonanalyticity is particularly simple, being just a square root
(see Sec. II A). As a result, the Riemann surface is a genus
0, two-sheet surface. We shall refer to the first sheet, which
includes the analytic half-plane, as the “physical sheet.” In our
work, we mostly discuss the properties of the physical sheet.

We obtain explicit results for the frequencies of collective
modes in the whole range of −1 < F c(s)

l < ∞. First, we
consider a clean FL (Sec. II). We present explicit results
for the zero-sound modes with l = 0, 1, 2 (Secs. II B, II C,
and II D, correspondingly) and analyze the structure of the
zero-sound modes for arbitrary l (Sec. II E). We show that for
l = 0 and in the transverse channel with l 	= 0, all zero-sound
modes acquire a finite decay rate already for an arbitrary small
negative F c(s)

l , i.e., s = ±a − ib, where a, b are real and b > 0.
A positive b implies that a perturbation of the order parameter
decays exponentially with time. The frequency of one of the
modes vanishes at the Pomeranchuk transition. We call this
mode the critical one. In the longitudinal channel, the decay
rate of one of the modes remains infinitesimally small until the
corresponding |F c(s)

l | exceeds a threshold value. Immediately
below the threshold, this mode is located at s = ±a − ib with
a > 1 and b � 1. Even though the mode frequency is almost
real, the corresponding pole is located below the branch cut
and thus cannot be reached from the real axis of the physical
sheet. Accordingly, the imaginary part of the susceptibility
does not have a peak above the particle-hole continuum for
real s, i.e., the mode is “hidden.” Below the transition, i.e.,
for F c(s)

l < −1, the pole is located in the upper frequency
half-plane, and a perturbation of the order parameter grows
exponentially with time, which indicates that a FL becomes
unstable with respect to a Pomeranchuk order. We obtain
explicit results for the frequencies of collective modes in the
whole range of −1 < F c(s)

l < ∞.
In Sec. III, we analyze how the dispersion of collective

modes is modified in the presence of impurity scattering. In
the dirty limit, the critical modes in both longitudinal and
transverse channels become overdamped for all l . Impurity
scattering also smears the threshold, described in the previ-
ous paragraph, i.e., the longitudinal collective modes have
nonzero damping rates for any F c(s)

l < 0.
In Sec. IV, we analyze the susceptibility in the time domain

χ
c(s)
l (q, t ) =

∫
dω

2π
χ

c(s)
l (q, ω)eiωt , (1)

which determines the time evolution of the order parameter
following an initial perturbation. We obtain explicit forms of

χ
c(s)
l (q, t ) for l = 0 and 1. Above the Pomeranchuk transition,

the time dependence of χ
c(s)
l (q, t ) in the clean limit is a

combination of an exponentially decaying part, which comes
from the poles of χ

c(s)
l (q, ω), and of an oscillatory (and alge-

braically decaying) part, which comes from its branch cuts. At
the transition, χ

c(s)
0 (q, t ) reaches a time-independent limit at

t → ∞, while χ
c(s)
1 (q, t ) grows linearly with time in the clean

case and saturates at a finite value in the presence of disorder.
Below the transition, the poles of χ

c(s)
0,1 (q, ω) are located in

the upper half-plane of ω. Consequently, both χ
c(s)
0 (q, t ) and

χ
c(s)
1 (q, t ) increase exponentially with time. This means that

any small fluctuation of the corresponding order parameter
is amplified, and thus the ground state with no Pomeranchuk
order is unstable. In the case of finite disorder, the branch-cut
contribution also begins to decay exponentially, on top of its
algebraic and oscillatory behavior.

In Sec. V, we consider the special case of an order pa-
rameter that coincides with either the charge or spin current.
Previous studies [26–28] found that the corresponding static
susceptibility χ

c(s)
1 (q, 0) does not diverge at the tentative

Pomeranchuk instability at F c(s)
1 = −1 because of the Ward

identities that follow from conservation of total charge and
spin. We analyze the dynamical susceptibility for such an
order parameter. We show, using both general reasoning and
direct perturbation theory for the Hubbard model, that while
the static susceptibility indeed remains finite at F c(s)

1 = −1,
the dynamical one still has a pole, which moves to the upper
frequency half-plane below the transition. The residue of this
pole vanishes as (1 + F c(s)

1 )2 at F c(s)
1 = −1, but is finite both

for F c(s)
1 > −1 and F c(s)

1 < −1. We argue that the presence
of the pole in the upper frequency half-plane for F c(s)

1 < −1
indicates that the state with no Pomeranchuk order becomes
unstable, like for any other type of the order parameter. We
derive a Landau functional for the charge- and spin-current
order parameter and show that it has a conventional form,
except that the coupling between the order parameter and an
external perturbation has an additional factor of 1 + F c(s)

1 . We
argue that the charge- and spin-current order does develop
at 1 + F c(s)

1 < 0, just as for a generic l = 1 order parameter,
but it takes longer to reach equilibrium after an instantaneous
perturbation. This result differs from earlier claims that there
is no Pomeranchuk transition to a state with the charge- and
spin-current order parameter [26–28].

Before we move on, a comment is in order. It is well
known that the range of FL behavior shrinks as the system
approaches a Pomeranchuk instability and disappears at the
transition point, where the system displays non-Fermi-liquid
behavior down to the lowest energies. In our analysis, we will
be studying the collective modes at finite s = ω/(v∗

F q) and
assume that ω and q are both small enough so that at any given
distance to the critical point the system remains a Fermi liquid.

II. DYNAMICAL QUASIPARTICLE SUSCEPTIBILITY
NEAR A POMERANCHUK TRANSITION IN A CLEAN

FERMI LIQUID

A. Quasiparticle susceptibility

According to the Kubo formula, the correlation function
of an order parameter �

c(s)
l is related to the susceptibility
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χ
c(s)
l (q, ω) with respect to the conjugated “field.” In its turn,

χ
c(s)
l (q, ω) is given by a fully renormalized particle-hole bub-

ble with external momentum q and external frequency ω. For
free fermions, the particle-hole bubble is just a convolution of
two fermionic Green’s functions, whose momenta (frequen-
cies) differ by q (ω). In the time-ordered representation, we
define the normalized susceptibility as

χ
c(s)
free,l (q, ω) = − 2i

NF

∫
dDk

(2π )D

∫
dε

2π

∣∣ f c(s)
l (k)

∣∣2
× Gfree

(
k + 1

2
q, ε + 1

2
ω

)

× Gfree

(
k − 1

2
q, ε − 1

2
ω

)
, (2)

where NF is the density of states at the Fermi energy EF ,
Gfree(k, ε) = 1/[ε − εk + EF + iδ sgnε] is the (time-ordered)
Green’s function, εk is the single-particle dispersion, D is the
spatial dimensionality, and a factor of 2 comes from summing
over spins. We will be interested only in the case of small q
and ω, i.e., q � kF and ω � EF . In this case, integration over
the internal fermionic momentum and frequency is confined
to the regions of small ε and εk − EF , i.e., the susceptibility
comes from the states near the FS or, for brevity, from “low-
energy fermions.”

For interacting fermions, the particle-hole bubble is modi-
fied in several ways [7,8,29]. First, the self-energy corrections
transform a free-fermion Green’s function near the FS into
a quasiparticle Green’s function, in which the bare velocity
vF is replaced by the renormalized velocity v∗

F = vF (m/m∗),
where m∗ is the renormalized mass, and the Green’s function
is multiplied by the quasiparticle residue Z < 1. Second,
interactions between low-energy fermions generate multibub-
ble contributions to the susceptibility. These renormalizations
transform the free-fermion susceptibility χ

c(s)
free,l (q, ω) into the

quasiparticle susceptibility χ
c(s)
qp,l (q, ω). (The effect of damping

due to the residual interaction between quasiparticles is a
subleading effect in the range of q and ω of interest to us,
and will not be considered here.) Third, fermions far away
from the FS (“high-energy fermions”) also contribute to the
full susceptibility χ

c(s)
l (q, ω).

The general expression for the dynamic susceptibility is
[29]

χ
c(s)
l (q, ω) = (

�
c(s)
l

)2
χ

c(s)
qp,l (q, ω) + χ

c(s)
inc,l . (3)

Here, �
c(s)
l is the side vertex, renormalized by high-energy

fermions, and the standalone term χ
c(s)
inc,l represents the contri-

bution solely from high-energy fermions. This last term does
not have a singular dependence on q and ω and will not play
any crucial role in our analysis. We emphasize that Eq. (3)
is valid for any isotropic system, even if it is not Galilean
invariant.

The quasiparticle contribution to the susceptibility depends
on the fully renormalized (and antisymmetrized) interaction
between low-energy fermions, usually denoted by 
αβ,γ δ (k −
p). This interaction includes renormalizations by high-energy
fermions but not by low-energy fermions. For a rotation-
ally and SU(2)-invariant system, which we consider here,


αβ,γ δ (k − p) can be expanded over harmonics characterized
by orbital momenta l , and the properly normalized coefficients
of this expansions are known as Landau parameters F c(s)

l :


αβ,γ δ = 
c(k − p)δαγ δβδ + 
s(k − p)σαγ · σβδ,


c(s)(k − p) = 

c(s)
0 + 2

∞∑
l=1



c(s)
l cos l (θk − θp),

F c(s)
l = νF 


c(s)
l , (4)

where

νF = 2NF Z2 m∗

m
(5)

and θk, θp are the azimuthal angles of k, p. The static quasi-
particle susceptibility χ

c(s)
qp,l (q, 0) is expressed in terms of just

a single F c(s)
l :

χ
c(s)
qp,l (q, 0) = νF

1 + F c(s)
l

. (6)

The dynamical quasiparticle susceptibility cannot, in general,
be expressed in terms of a single Landau parameter, unless all
Landau parameters except for a single F c(s)

l are small. In this
special case,

χ
c(s)
qp,l (q, ω) = νF

χfree,l (q∗, ω)

1 + F c(s)
l χfree,l (q∗, ω)

, (7)

where q∗ = (m/m∗)q and χfree,l (q∗, ω) is normalized to
χfree,l (q∗, 0) = 1 (we recall that we consider small q∗ � kF ).
For all order parameters, except for the charge or spin current,
the vertex �

c(s)
l in Eq. (3) is expected to remain finite at the

Pomeranchuk transition. The behavior of the full susceptibil-
ity is then determined entirely by the quasiparticle χ

c(s)
qp,l (q, ω).

Although the calculations are straightforward and some of
the results have appeared before [9,26,28,30–39], we include
below the details of the derivation of χ

c(s)
qp,l (q, ω) in 2D, as we

will be interested in the pole structure of the susceptibility not
only near a Pomeranchuk transition, but also away from it.
In what follows we first consider separately the cases of l =
0, 1, 2 and trace out the evolution of the poles of χ

c(s)
qp,l (q, ω)

in the complex plane of frequency. For a reader wishing to
avoid going through the computational details, we depict the
evolution graphically in Figs. 2 and 4, and summarize our
main results for l = 0, 1, 2 in Table I. We then analyze the
case of arbitrary l . In these calculations, up to Sec. II F,
we assume that a single Landau parameter F c(s)

l is much
larger than the rest and compute χ

c(s)
qp,l (q, ω) using Eq. (7).

In Sec. II F, we consider the case when F c(s)
0 and F c(s)

1 are
comparable, while all F c(s)

l>1 can be neglected.
For definiteness, in this and the next two sections we

approximate the form factors by their values on the FS,
as f c(s)

l (kF ) = √
2 cos(lθ ) in the longitudinal channel and

f c(s)
l (kF ) = √

2 sin(lθ ) in the transverse channel, where
kF = kF k/k and θ is the angle between the direction of kF

and the x axis.
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B. l = 0

In this case, the form factor f c(s)
0 (kF ) is just a constant. The

form of the retarded free-fermion susceptibility along the real
frequency axis is well known:

χfree,0(q∗, ω) = 1 + iω√
(vF q∗)2 − (ω + iδ)2

= 1 + is√
(1 − (s + iδ)2

, (8)

where we used that vF q∗ = v∗
F q and defined s = ω/v∗

F q.
Viewed as a function of complex s, χfree,0(s) has branch cuts,
which start at s = −iδ below the real axis and run along the
segments (−∞,−1) and (1,∞) along the real axis.

Traditionally, δ in Eq. (8) is interpreted as an infinitesi-
mally small damping rate whose physical origin does need
not to be specified and whose sole purpose is to shift the
branch cut into the lower half-plane of complex s. We will see,
however, that such approach is not sufficient for our purposes
because it would not allow us to resolve the relative positions
of the zero-sound poles and branch cuts of the susceptibility
in the complex plane of s. For this reason, we will consider
a specific damping mechanism, namely, scattering by short-
range impurities, and treat δ as a finite albeit small number.

The order parameter in the l = 0 channel (charge or spin)
is conserved, i.e., the susceptibility must satisfy χ

c(s)
0 (q =

0, ω) = 0 (see, e.g., Refs. [40,41]). Once δ is finite, Eq. (8)
does not satisfy this condition because it was obtained either
by adding iδ self-energy corrections to the Green’s functions
or, which is equivalent, by solving the kinetic equation in the
relaxation time approximation. To ensure that charge and spin
are conserved, one also has to include vertex corrections to
the particle-hole bubble or go beyond the relaxation-time ap-
proximation.1 The corresponding free-fermion susceptibility
is given by [42]

χfree,0(s) = 1 + is√
(1 − (s + iδ)2 − δ

, (9)

where δ now stands for the dimensionless impurity scattering
rate. The −δ term next to

√
1 − (s + iδ)2 in (9) comes from

vertex corrections. Until Sec. III, we will be assuming that
impurity scattering is weak, i.e., δ � min{Res, Ims}.

For F c(s)
0 > 0 we expect to have well-defined collective

modes with |s| > 1. In this case, one can safely neglect δ

in Eq. (9) and replace
√

1 − (s + iδ)2 by −i sgns
√

s2 − 1.
Equation (9) is then reduced to

χfree,0(s) = 1 − |s|√
s2 − 1

. (10)

1The collision integral in the relaxation-time approximation Icoll =
−δ × ( f − f0), with ( f ) f0 being (non)equilibrium distribution func-
tion, is not an appropriate form for impurity scattering, which is
elastic and therefore must conserve a number of particles with
given energy. Consequently, Icoll must vanish upon averaging over
the directions of the momentum, which is not the case for Icoll.
The correct form of the collision integral for impurity scattering
is −δ × ( f − f̄ ), where f̄ is the angular average of f . The kinetic
equation with this collision integral reproduces Eq. (9).

Substituting this form into Eq. (7), we obtain

χ
c(s)
qp,0(s) = νF

1 − |s|√
s2−1

1 + F c(s)
0

(
1 − |s|√

s2−1

) . (11)

The locations of the poles are determined from the equation

1 + F c(s)
0 − F c(s)

0

|s|√
s2 − 1

= 0. (12)

One can check that the solution s1,2 = ±sp with sp > 1 indeed
exists only for F c(s)

0 > 0:

sp = 1 + F c(s)
0√

1 + 2F c(s)
0

. (13)

We now widen the scope of our analysis and search for
solutions with complex s. To this end, we need to keep δ terms
in χfree,0(s). The quasiparticle susceptibility for s in the lower
half-plane is obtained by substituting (9) into (7). This yields

χ
c(s)
qp,0(s) = νF

1 + i s√
1−(s+iδ)2−δ

1 + F c(s)
0

(
1 + i s√

1−(s+iδ)2−δ

) . (14)

Using Eq. (14), we can study the poles of χ
c(s)
qp,0(s) everywhere

in the lower half-plane of complex s and in the whole range of
F c(s)

0 .
The positions of the poles in the lower half-plane of s are

determined by

1 + F c(s)
0

F c(s)
0

= − is√
1 − (s + iδ)2 − δ

. (15)

For F c(s)
0 > 0, the solutions of (15) are

s1,2 = ±sp,0 − iδ̃0, (16)

where

sp,0 = 1 + F c(s)
0√

1 + 2F c(s)
0

and δ̃0 = δ
1 + F c(s)

0

1 + 2F c(s)
0

. (17)

Up to the −iδ̃0 term, this result coincides with Eq. (13), as it
should. We see that δ̃0 is positive but smaller than δ in (15).
This implies that the poles are located above the branch cuts.
The purpose of starting with Eq. (9) with small but finite δ

was to resolve the difference between δ, which determines
the locations of the branch cuts, and δ̃0, which determines the
distance between the poles and the real axis. Near the poles,
the susceptibility reduces to

χ
c(s)
qp,0(s) ∝ F c(s)

0(
1 + 2F c(s)

0

)3/2

×
(

1

s + sp,0 + iδ̃0
− 1

s − sp,0 + iδ̃0

)
. (18)

This expression is valid for complex s above the branch cut
at Ims = −iδ. This includes the real axis. For real s and
vanishingly small δ̃0, Imχ

c(s)
0 (s) has δ-functional peaks at s =

±sp,0 with sp,0 > 1, i.e., outside the particle-hole continuum
[see Fig. 1(a)].
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FIG. 1. The imaginary part of the susceptibility in the l = 0 channel, χ
c(s)
qp,0(s), where s = ω/v∗

F q. (a) Imχ
c(s)
qp,0(s) for different F c(s)

0 > 0 in

a clean system (a small impurity scattering rate δ = 10−3 was added to make the poles visible). (b) Imχ
c(s)
qp,0(s) for different F c(s)

0 < 0 in a

clean system. Note that Imχ
c(s)
qp,0(s) is nonzero only for |s| < 1 in this case. In this and all other figures, we omit the “qp” subscript and “c(s)”

superscript of the susceptibilities, and set νF = 1.

For negative F c(s)
0 we search for complex solutions of

Eq. (12) in the form s = ±a − ib. For F c(s)
0 < − 1

2 , there exists
a purely imaginary solution s = −isi,0, where

si,0 = 1 − ∣∣F c(s)
0

∣∣√
2
∣∣F c(s)

0

∣∣ − 1
. (19)

The pole at s = −isi,0 describes a purely relaxational zero-
sound mode. As long as 1 + F c(s)

0 > 0, the pole in χ
c(s)
qp,0(q, ω)

is in the lower half-plane of s, i.e., excitations decay expo-
nentially with time. Once 1 + F c(s)

0 becomes negative, the
pole moves into the upper half-plane. Then, excitations grow
exponentially with time, i.e., the system becomes unstable
(see Sec. IV for more detail). This is corroborated by the fact
that the static susceptibility diverges as the system approaches
a Pomeranchuk instability:

χ
c(s)
qp,0(q, 0) = νF

1 + F c(s)
0

. (20)

As F c(s)
0 increases above −1, i.e., |F c(s)

0 | gets smaller, the
frequency of the relaxational mode in (19) increases in mag-
nitude. It reaches si,0 = ∞ at F c(s)

0 = −1/2. At this value
of F c(s)

0 , the mode bifurcates into two (si,0 → ±s̄p,0), and
each new mode moves from imaginary to almost real s along
infinite quarter circles in the complex s plane.

For − 1
2 < F c(s)

0 < 0 the mode frequency is given by s =
±s̄p,0 − iδ̄0, where

s̄p,0 = 1 − ∣∣F c(s)
0

∣∣√
1 − 2

∣∣F c(s)
0

∣∣ , δ̄0 = δ
1 − ∣∣F c(s)

0

∣∣
1 − 2

∣∣F c(s)
0

∣∣ . (21)

The real part varies from s̄p,0 = ∞ at F c(s)
0 = −1/2 + 0 to

s̄p,0 = 1 at F c(s)
0 = 0. The pole positions are similar to those

for positive F c(s)
0 [see Eq. (17)]; however, now δ̄0 � δ, i.e.,

the poles are located below the branch cut at Ims = −δ. At
vanishingly small δ, which we consider here, the poles are
glued to the lower edge of the branch cut immediately below
the real axis. The evolution of the real and imaginary parts of
the poles with F c(s)

0 is shown in Fig. 2.

The existence of the poles glued to the lower edge of
the branch cut is a tricky phenomenon. At first glance, they
describe undamped collective excitations with velocity larger
than the Fermi velocity [note that s̄p,0 > 1 in Eq. (21)]. Indeed,
the susceptibility near the poles is

χ
c(s)
qp,0(s) ∝

∣∣F c(s)
0

∣∣(
1 − 2|F c(s)

0 |)3/2

×
(

1

s + s̄p,0 + iδ̄0
− 1

s − s̄p,0 + iδ̄0

)
. (22)

This form is very similar to that in Eq. (18) for positive F c(s)
0 .

However, Eq. (22) is valid only for complex s below the lower
edge of the branch cut at |s| > 1, and cannot be extended
to real s. More precisely, Eq. (22) cannot be extended to the
real axis on the physical sheet of the Riemann surface, which
we recall is the sheet for which χ

c(s)
qp,0(s) is analytic in the

upper half-plane. Instead, it can be extended to the real axis
of the unphysical sheet, the one for which

√
1 − (s + iδ)2 =

i
√

(s + iδ)2 − 1. This means that the pole below the branch
cut has no effect on the behavior of Imχ

c(s)
qp,0(s) on the real

axis, and the imaginary part of the susceptibility for real s,

Imχ
c(s)
qp,0(s) = νF χ ′′

free,0(s)(
1 + F c(s)

0 χ ′
free,0(s)

)2 + (
F c(s)

0 χ ′′
free,0(s)

)2

(23)

with χ ′(s) ≡ Reχ c(s)
free,0(s) and χ ′′(s) ≡ Imχ

c(s)
free,0(s), has no

peak above the continuum. Therefore, the modes for −1/2 <

F c(s)
0 < 0 are “hidden,” in a sense that they cannot be detected

by a spectroscopic measurement which probes Imχ
c(s)
qp,0(s).

C. l = 1

For l � 1 we have to distinguish between the longitudinal
susceptibility with the form factor

√
2 cos θ and the transverse

susceptibility with the form factor
√

2 sin θ . We consider
the two cases separately. Here and in what follows, we will
suppress the c(s) superscript in the longitudinal and transverse
susceptibilities for brevity, i.e., we will relabel χ

c(s),long
l →

χ
long
l and χ

c(s),tr
l → χ tr

l .
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FIG. 2. Evolution of the poles of the dynamical susceptibility in the l = 0 channel. (a) The real [blue (dark)] and imaginary [yellow (light)]
parts of the pole of the quasiparticle susceptibility χ

c(s)
qp,0(s) as a function of the Landau parameter F c(s)

0 . For clarity, we show only one pole (for

F c(s)
0 > − 1

2 there are two poles with real parts of opposite signs). (b) The path followed by the pole in the complex plane with increasing F c(s)
0 .

For F c(s)
0 < −1 the pole is purely imaginary and above the real axis, which indicates that the FL state is unstable. With increasing F c(s)

0 , the
pole moves down along the imaginary axis, which corresponds to an overdamped zero-sound mode, and reaches −i∞ at F c(s)

0 = − 1
2 . It then

“jumps” to the lower edge of the branch cut. A pole located at the lower edge of the branch cut corresponds to a “hidden” zero-sound mode,
which cannot be detected in measurements of χ

c(s)
0 (s) for real s (i.e., real frequencies). At F c(s)

0 = 0 the pole moves to the upper edge of the
branch cut, where it becomes a well-defined zero-sound mode, detectable by spectroscopic methods.

1. l = 1, longitudinal channel

The computation of the free-fermion susceptibility with√
2 cos θ form factors at the vertices is quite straightforward.

In notations of the previous section, the retarded susceptibility
is given by

χ
long
free,1(s) = 1 + 2s2

(
1 + is√

1 − (s + iδ)2

)
. (24)

For real |s| > 1, Eq. (24) reduces to

χ
long
free,1(s) = 1 + 2s2

(
1 − |s|√

s2 − 1

)
. (25)

Substituting this form into Eq. (7), we obtain an equation for
the poles:

1 + F c(s)
1

F c(s)
1

= −2s2 + 2s2 |s|√
s2 − 1

. (26)

A solution of Eq. (26) in the form s1,2 = ±sp,1 with sp,1 > 1,
i.e., outside the continuum, exists only for F c(s)

1 > 0. For small
F c(s)

1 , sp,1 = 1 + 2(F c(s)
1 )2. As F c(s)

1 increases, the magnitude
of sp,1 also increases, and at large F c(s)

1 becomes sp,1 ≈
(3F c(s)

1 /4)1/2. Correspondingly, Imχ
long
qp,1 (s) has peaks on the

real axis at s = ±sp,1.
To find the actual position of the poles in the complex

plane, we will again need to treat δ as a finite, albeit small,
quantity. As for the l = 0 case, we associate δ with weak
impurity scattering. Because a generic l = 1 order parameter
is not a conserved quantity, vertex corrections are not crucial.2

2In the clean case, χl (q = 0, ω) for an order parameter with l 	= 0 is
finite because the self-energy and vertex corrections due to electron-
electron interaction do not cancel each other [24]. For noninteracting
fermions, but in the presence of disorder, χl 	=0(q = 0, ω) is finite

Nevertheless, they are necessary to correctly determine the
location of the poles.

The expression for χ
long
free,1(s) in the presence of impurity

scattering will be derived in Sec. III. Here, we just borrow the
result

χ
long
free,1(s) = 1 + 2s2

1 + i (s+iδ)√
1−(s+iδ)2

1 − δ√
1−(s+iδ)2

. (27)

The equation for the poles becomes

−1 + F c(s)
1

F c(s)
1

= 2s2

√
1 − (s + iδ)2 + i(s + iδ)√

1 − (s + iδ)2 − δ
. (28)

If we assume that s is in the lower half-plane above
the branch cut, i.e., −δ � Ims < 0 and

√
1 − (s + iδ)2 =

−i sgns
√

(s + iδ)2 − 1, we find that the solution actually ex-
ists only for 0 � F c(s)

1 � 3
5 . For these F c(s)

1 , the poles are
located at s1,2 = ±sp,1 − iδ̃1, where sp,1 is the solution of
Eq. (26) (which exists for all F c(s)

1 > 0), and δ̃1 = Q̃1δ, where

Q̃1 = s2
p,1

2 − s2
p,1 + sp,1

√
s2

p,1 − 1
. (29)

For 0 < F c(s)
1 < 3

5 , sp,1 varies between 1 and 2/
√

3, and Q̃1 <

1, as we assumed. For F c(s)
1 = 3

5 , we have sp,1 = 2/
√

3 and
Q̃1 = 1, i.e., the pole merges with the branch cut. For larger
F c(s)

1 , we have Q̃1 > 1, violating our assumption that the pole
is above the branch cut, so that Eq. (28) has no solution. A
more careful analysis shows that the pole has moved to the
unphysical Riemann sheet on which

√
1 − (a + ib)2 near the

because the self-energy and vertex corrections due to impurity scat-
tering do not cancel each other.
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FIG. 3. Imχ
long
qp,1 (s) for different F1. (A small impurity scattering

δ = 10−3 was added to make the pole at positive F1 visible.)

branch cut is defined as
√

1 − (a + ib)2 = i
√

(a + ib)2 − 1
instead of

√
1 − (s + iδ)2 = −i sgns

√
(s + iδ)2 − 1, which

we used to search for the poles on the physical Riemann sheet.
The absence of the zero-sound pole for F c(s)

1 � 3
5 is a

surprising result, but it has little effect on the form of χ
long
qp,1 (s)

for real s. The latter has a conventional form for all positive
F c(s)

1 :

χ
long
qp, 1(s) ∝

(
1

s + sp,1 + iδ̃1
− 1

s − sp,1 + iδ̃1

)
, (30)

and Imχ
long
qp,1 (s) has peaks at s = ±sp,1, as shown in Fig. 3.

There also exists another solution for F c(s)
1 > 0, which

is purely imaginary: s = −isi,1. Assuming that si,1 � δ, we
obtain an equation for si,1 from Eq. (28):

1 + F c(s)
1

2F c(s)
1

= s2
i,1

⎛
⎝1 + si,1√

1 + s2
i,1

⎞
⎠. (31)

For small positive F c(s)
1 , si,1 ≈ 1/2

√
F c(s)

1 � 1. As F c(s)
1 in-

creases, si,1 decreases and eventually saturates at si,1 = 1/
√

3.
This additional solution will be relevant for the case of finite
damping, analyzed in Sec. III. Note that Eq. (31) has a solution
only for positive si,1, i.e., the pole is in the lower half-plane,
as it should be.

For negative F c(s)
1 , we again search for complex solutions

in the form

s1,2 = ±a − ib, b > 0. (32)

Right above the Pomeranchuk instability, i.e, at F c(s)
1 ≈ −1

but F c(s)
1 > −1, we find

a =
(

1 + F c(s)
1

2

)1/2

, b = 1 + F c(s)
1

4
. (33)

In contrast to the l = 0 case, the collective modes are almost
propagating because a � b. Below the Pomerachuk transi-
tion, i.e., for F c(s)

1 < −1, both poles become purely imaginary
and split away from each other along the imaginary s axis:

s1,2 ≈ ±i

(∣∣1 + F c(s)
1

∣∣
2

)1/2

. (34)

One of these poles is now in the upper frequency half-plane,
i.e., a perturbation with the structure of the longitudinal l =
1 order parameter grows exponentially (see Sec. III). This
indicates a Pomeranchuk instability.

In the interval −1 � F c(s)
1 � F c(s)

1,cr , where F c(s)
1,cr ≡ − 1

9 , we
find s1,2 = ±a1 − ib1, where

a1 =
1 +

√∣∣F c(s)
1

∣∣
4
√∣∣F c(s)

1

∣∣
[(

1 −
√∣∣F c(s)

1

∣∣)(1 + 3
√∣∣F c(s)

1

∣∣)]1/2
,

b1 =
1 −

√∣∣F c(s)
1

∣∣
4
√∣∣F c(s)

1

∣∣
[(

1 +
√∣∣F c(s)

1

∣∣)(3√∣∣F c(s)
1

∣∣ − 1
)]1/2

. (35)

As |F c(s)
1 | decreases, a1 monotonically increases, while b1 first

increases and then changes trend and starts decreasing (see
Fig. 4). The poles reach the lower edges of the branch cuts
at F c(s)

1,cr . At this critical value of F c(s)
1 , acr,1 = 2/

√
3 > 1 and

b = 0 (up to a term of order δ). For |F c(s)
1 | slightly below F c(s)

1,cr ,
a1 and b1 are approximately given by

b1 =
√

3

2

(∣∣F c(s)
1

∣∣− ∣∣F c(s)
1,cr

∣∣)1/2
,

a1 = 2√
3

− 243
√

3

2

(∣∣F c(s)
1

∣∣ − ∣∣F c(s)
1,cr

∣∣)
= 2√

3
− O

(
b2

1

)
. (36)

When F c(s)
1 approaches F c(s)

1,cr , the poles approach the real axis
along the paths that are almost normal to it.

The existence of the solution with a1 > 1 but finite b1 for
F c(s)

1 � F c(s)
1,cr is at first glance questionable because conven-

tional wisdom suggests that a mode with Res > 1 is located
outside the particle-hole continuum and thus should be purely
propagating. However, as for the l = 0 case, these poles are
located below the branch cuts, cannot be accessed from the
real axis and do not lead to a peak in Imχ

long
1 (s) for real s.

For F c(s)
1,cr < F c(s)

1 < 0, the poles are located at s1,2 =
±s̄p,1 − iδ̄1, where s̄p,1 is determined from

s̄2
p,1

⎛
⎝1 + s̄p,1√

s̄2
p,1 − 1

⎞
⎠ = 1 − ∣∣F c(s)

1

∣∣∣∣F c(s)
1

∣∣ (37)

and δ̄1 = Q̄1δ with

Q̄1 = s̄2
p,1

2 − s̄2
p,1 − s̄p,1

√
s̄2

p,1 − 1
. (38)

The magnitude of s̄p,1 varies between s̄p,1 = 2/
√

3 at F c(s)
1 =

F c(s)
1,cr and s̄p,1 = 1 + 2(F c(s)

1 )2 for −F c(s)
1 � 1, i.e., at vanish-

ing F c(s)
1 the poles approach the end points of the branch cuts.

As follows from Eq. (38), Q̄1 � 1 for s̄p,1 in this interval,
hence δ̃1 � δ, i.e., the poles are located below the lower
edges of the cuts, as expected. This is very similar to what
we found in the l = 0 case for − 1

2 < F c(s)
0 < 0. Like in that

case, the l = 1 susceptibility for F c(s)
1,cr < F c(s)

1 < 0 has poles
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FIG. 4. The poles of χ
c(s)
qp,1(s) in the longitudinal (a), (b) and transverse (c) channels. The use of colors and notations is the same as in Fig. 2

[in the lower panels: blue (dark), real part of pole; yellow (light), imaginary part of pole]. The circle in the upper panel of (a) denotes a point
where a pole of the l = 1 longitudinal mode moves to the unphysical Riemann sheet. See Sec. II C for a detailed discussion.

at s = ±s̄p,1 − iδ̄1:

χ
long
qp,1 (s) ∝

(
1

s + s̄p,1 + iδ̄1
− 1

s − s̄p,1 + iδ̄1

)
. (39)

However, Eq. (39) is again only valid for complex s in the
lower half-plane below the branch cut, and cannot be extended
to real s. These poles correspond to hidden modes, and the
susceptibility does not have peaks above the particle-hole
continuum. We plot Imχ

long
qp,1 (s) for real s in Fig. 3. The

evolution of the real and imaginary parts of the poles with
F c(s)

1 is shown in Fig. 4.

2. l = 1, transverse channel

We next consider the transverse quasiparticle susceptibil-
ity in the l = 1 channel. The retarded susceptibility of free
fermions with the

√
2 sin θ form factors at the vertices is

χ tr
free,1(s) = 1 − 2s2 + 2i(1 − s2)

s√
1 − (s + iδ)2

.

(40)

For real |s| > 1, Eq. (40) is reduced to

χ tr
free,1(s) = 1 − 2s2 + 2|s|

√
s2 − 1. (41)

Substituting this form into Eq. (7), we find that the positions
of the poles on the real frequency axis and outside the particle-
hole continuum are determined by

1 + F c(s)
1

F c(s)
1

= 2s2 − 2|s|
√

s2 − 1. (42)

In contrast to the longitudinal case, the solutions of this
equation s1,2 = ±sp,1 exist not for any positive F c(s)

1 but only
for F c(s)

1 � 1 (Ref. [35]). Slightly above the threshold, sp,1 =
1 + (F c(s)

1 − 1)2/8. For large positive F c(s)
1 , sp,1 ≈

√
F c(s)

1 /2.

To obtain the solutions in the complex plane s, we intro-
duce impurity scattering in the same way as in the previous
cases. Equation (40) is then replaced by

χ tr
free,1(s) = 1 − 2s(s + iδ − i

√
1 − (s + iδ)2). (43)

There are no additional terms due to vertex corrections be-
cause the form factor is an odd function of the angle θ and
thus vertex corrections vanish upon angular integration.

Substituting Eq. (43) into (7), we find that for F c(s)
1 > 1,

where Eq. (42) has a solution for real s, there is actually no
solution for the pole of χ tr

qp,1(s) in the complex plane of s,
above the branch cut. Still, for real s, Imχ tr

qp,1(s) displays sharp

peaks even for F c(s)
1 > 1.

For 0 < F c(s)
1 < 1 we assume that s is below the branch cut

and rewrite the square root in Eq. (43) as
√

1 − (s + iδ)2 =
i sgns

√
(s + iδ)2 − 1. If we just neglect δ after that, we find

another propagating mode, located at s1,2 = ±s̄p,1, where
s̄p,1 � 1 is the solution of

1 + F c(s)
1

F c(s)
1

= 2s̄p,1(s̄p,1 +
√

(s̄p,1)2 − 1). (44)

However, if δ is treated as a small but finite quantity, we find
that there is no solution of (χ tr

qp,1(s))−1 = 0 with |Ims̄p,1| > δ,
i.e., there is no pole below the branch cut. Combining this
with the absence of the pole for F c(s)

1 > 1, we conclude that
the l = 1 transverse susceptibility does not have a pole on the
physical sheet for F c(s)

1 > 0. However, as was the case for the
longitudinal mode, the poles do exist on the unphysical sheet.

For negative F c(s)
1 the pole of χ tr

qp,1(s) is on the imaginary
axis: s = −isi,1. The value of si,1 is determined by

1 − ∣∣F c(s)
1

∣∣∣∣F c(s)
1

∣∣ = 2(si,1)2 + 2si,1

√
1 + (si,1)2. (45)

033134-8



COLLECTIVE MODES NEAR A POMERANCHUK … PHYSICAL REVIEW RESEARCH 1, 033134 (2019)

The solution exists for all negative F c(s)
1 . When F c(s)

1 ap-
proaches zero from below, si,1 ≈ 1/2|F c(s)

1 |1/2. Near 1 +
F c(s)

1 = 0, we have si,1 ≈ (1 + F c(s)
1 )/2, i.e., s = −i(1 +

F c(s)
1 )/2. As before, when 1 + F c(s)

1 changes sign and becomes
negative, the pole moves from the lower to the upper fre-
quency half-plane, i.e. an l = 1 perturbation in the shape of
the FS grows with time exponentially. This behavior is similar
to the one for l = 0. Yet, a purely relaxational collective mode
in the l = 1 transverse channel exists for all −1 < F c(s)

1 < 0,
i.e., it appears without a threshold.

D. l = 2

1. l = 2, longitudinal channel

The retarded free-fermion susceptibility with the√
2 cos 2θ form factors at the vertices is

χ
long
free,2(s) = 1 − 4s2 + 8s4 + 2i(2s2 − 1)2 s√

1 − (s + iδ)2
.

(46)

The equation for the poles of χ
long
qp,2 (s) outside the continuum,

i.e., for s real and |s| > 1, now reads as

−1 + F c(s)
2

F c(s)
2

= 8s4 − 4s2 − 2(2s2 − 1)2 |s|√
s2 − 1

= 0. (47)

Similarly to the cases of l = 0 and of the longitudinal channel
for l = 1, the propagating solutions s1,2 = ±sp,2 exist for all
positive F c(s)

2 . For small F c(s)
2 , sp,2 ≈ (1 + 2(F c(s)

2 )2); for large
F c(s)

2 , sp,2 ≈ (F c(s)
2 /2)1/2.

To obtain the solutions in the complex plane, we introduce
impurity scattering in the same way as before. Combining
the self-energy and vertex corrections, we obtain after some
algebra

χ
long
free,2(s) = 1 − 2i

s√
1 − (s + iδ)2 − δ

× (s + iδ − i
√

1 − (s + iδ)2)2[1 − 2s(s + iδ)].

(48)

The equation for the pole becomes

1 + F c(s)
2

2F c(s)
2

= is√
1 − (s + iδ)2 − δ

(s + iδ − i
√

1 − (s + iδ)2)2

× [1 − 2s(s + iδ)]. (49)

Solving for the pole at small but finite δ, we find s1,2 =
±sp,2 − iδ̃2, where δ̃2 = Q̃2δ. Evaluating Q̃2, we find that it is
smaller than 1 for F c(s)

2 < 0.420, when sp,2 < 1.072. For these
F c(s)

2 , the pole is located above the branch cut, as it should be.
For larger F c(s)

2 there are no poles near the real axis. This is
similar to the behavior in the longitudinal channel for l = 1.
We reiterate that the absence of a true pole in the complex
plane does not affect the behavior of χ

long
2 (s) for real s; in

particular, Imχ
long
2 (s) still displays sharp peaks at s = ±sp,2.

In mathematical terms, the pole moves to a different Riemann
sheet at F c(s)

2 > 0.420.

For negative F c(s)
2 , Eq. (49) has two solutions. One of

them is purely imaginary: s = −isi,2. For F c(s)
2 ≈ −1, si,2 =

(1 − |F c(s)
2 |)/2; for small negative F c(s)

2 , si,2 ≈ 1/(2|F c(s)
2 |1/4).

Another solution does not become critical at the Pomeranchuk
transition. To detect this mode, we notice that, for F c(s)

2 = −1,
Eq. (49) is satisfied not only by s = 0, but also by s1,2 =
±1/

√
2. The latter solutions are on the real axis, but away

from the branch cut. At small deviation from the critical
value F c(s)

2 = −1, these solutions evolve into s1,2 = ±a2 −
ib2, where

a2 = 1√
2

(
1 + 1 + F c(s)

2

4

)
,

b2 =
(
1 + F c(s)

2

)2

8
√

2
. (50)

Observe that b2 remains positive even when 1 + F c(s)
2 < 0.

As F c(s)
2 gets larger, the solutions first move away from the

real axis but then reverse the trend and, at the threshold value
F c(s)

2,cr = −0.0632, reach the lower edge of the branch cut at

a2,cr ≈ ±1.046. As F c(s)
2 is varied from F c(s)

2,cr to 0, the solutions
“slide” along the lower edge of the branch cut toward s = ±1.
This is very similar to what we found in the l = 0 case,
for − 1

2 < F c(s)
0 < 0, and in the l = 1 longitudinal channel,

for F c(s)
1,cr < F c(s)

1 < 0. At a small but finite δ, the two sliding
solutions are s1,2 = ±s̄p,2 − iδ̄2 with δ̄2 � δ, i.e., the pole does
exist but is located below the branch cut. The evolution of the
poles with F c(s)

2 is shown in Fig. 5.

2. l = 2, transverse channel

The retarded free-fermion susceptibility with the√
2 sin 2θ form factors at the vertices is given by

χ tr
free,2(s) = 1 + 4s2 − 8s4 − 8is3(s2 − 1)√

1 − (s + iδ)2
. (51)

The equation for the poles outside the continuum, i.e., for
s real and |s| > 1, reads as

1 + F c(s)
2

F c(s)
2

= 8s4 − 4s2 − 8s2|s|
√

s2 − 1. (52)

For positive F c(s)
2 , the solutions s1,2 = ±sp,2 exist for F c(s)

2 >
1
3 . For F c(s)

2 just slightly above 1
3 , sp,2 ≈ 1 + (81/128)(F c(s)

2 −
1/3)2. For large F c(s)

2 , sp,2 ≈ (F c(s)
2 /2)1/2.

To obtain the solutions in the complex plane s, we intro-
duce impurity scattering in the same way as before. There are
no additional terms due to vertex corrections because the form
factor is an odd function of the angle θ . Equation (51) is then
replaced by

χ tr
free,2(s) = 1 − 4s(s + iδ)(s + iδ − i

√
1 − (s + iδ)2)2.

(53)

For F c(s)
1 > 1

3 , we assume that s is above the branch cut and

use
√

1 − (s + iδ)2 = −i sgns
√

(s + iδ)2 − 1. If we neglect δ

after that, we obtain the same solution sp,2 as in (52). For 0 <

F c(s)
2 < 1

3 , the same procedure but with an assumption that the
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FIG. 5. The poles of χ
c(s)
qp,2(s) in the complex plane. The use of color and notation is the same as in Fig. 2 [blue (dark), real part of pole;

yellow (light), imaginary part of pole]. See Sec. II D for a detailed discussion.

pole is below the branch cut yields another propagating mode,
which slides along the lower edge of the branch cut, much
like it happens for the pole of the transverse susceptibility for
l = 1. Once we take into account that δ is small but finite, we
find that the solution along the real axis does not survive in
either of the cases, i.e., there is no pole close to the real axis
on the physical Riemann sheet. This is similar to the situation
for the l = 1 transverse channel.

As for the l = 1 case, there also exists another mode for
F c(s)

2 > 0, at s = −isi,2 on the imaginary axis. The value of
si,2 is determined from

1 + F c(s)
2

4F c(s)
2

= (si,2)2(si,2 +
√

1 + (si,2)2)2. (54)

For small F c(s)
2 > 0, si,2 ≈ 1/(2F c(s)

2 )1/4; for large F c(s)
2 , si,2 ≈

1/2
√

2.
For negative F c(s)

2 there is no solution on either real or
imaginary frequency axes, and we search for the solutions in
the form s = ±a2 − ib2, where both a2 and b2 are finite. In
this situation, one can safely neglect δ and write the equation
for the poles as

1 − ∣∣F c(s)
2

∣∣
4
∣∣F c(s)

2

∣∣ = s2(1 − 2s2 + 2is
√

1 − s2). (55)

An analysis of this equation shows that the solution exists for
all F c(s)

2 < 0. Near F c(s)
2 = −1,

a2 ≈
(

1 − ∣∣F c(s)
2

∣∣
4

)1/2

, b2 ≈ 1 − ∣∣F c(s)
2

∣∣
4

. (56)

For small negative F c(s)
2 , a2 ≈ b2 ≈ 1/(2

√
2|F c(s)

2 |1/4). The
evolution of this pole with F c(s)

2 is shown in Fig. 5.
Table I contains the summary of the results for the pole

positions for l = 0, 1, 2. The table reveals several trends,
which we now study in more detail by extending our analysis
to arbitrary l .

E. Poles of χ
c(s)
qp,l for arbitrary l

1. Equations for the poles

We now focus in more detail on negative F c(s)
l and,

in particular, on the behavior of collective modes near a
Pomeranchuk instability. Comparing the results for for the
l = 0, 1, 2 modes, we see a difference between even and
odd l . Namely, near a Pomeranchuk instability the critical
mode in the longitudinal channel is purely imaginary for even

l = 0, 2 and almost real for odd l = 1. For transverse channels
the situation is the opposite: the mode near a Pomeranchuk
instability is purely imaginary for l = 1 and almost real for
l = 2. In this section we analyze whether this trend persists
for other values of l .

The retarded longitudinal and transverse susceptibilities of
free fermions can be obtained analytically for any l . We have

χ
long,tr
free,l>0(s) = K0 ± K2l , (57)

where

K2l = −
∫

cos 2lθ
cos θ

s + iδ − cos θ
(58)

= δl,0 + i
s√

1 − (s + iδ)2
(s − i

√
1 − (s + iδ)2)2l . (59)

The equation for the pole on real frequency axis outside the
continuum, i.e., for |s| > 1, is

1 + F c(s)
l

F c(s)
l

= |s|√
(s + iδ)2 − 1

(1 ± (|s| −
√

s2 − 1)2l ). (60)

The upper and lower signs correspond to the longitudinal and
transverse channels, respectively. One can easily verify that,
for any l , a solution with real |s| > 1 exists only for positive
F c(s)

l .
For negative F c(s)

l , we search for complex solutions. In this
case, we rewrite (60) as

1 − ∣∣F c(s)
l

∣∣∣∣F c(s)
l

∣∣ = is√
1 − s2

(1 ± (s − i
√

1 − s2)2l ). (61)

In what follows, we consider the longitudinal and trans-
verse channels separately, first for even l and then for odd l .
We consider separately the limits of F c(s)

l ≈ −1 and |F c(s)
l | �

1, and then interpolate between the two limits. We show that
there are multiple solutions with complex s in each channel.
The structure of the solutions in the longitudinal channel for
even l are very similar to those in the transverse channel for
odd l . We do not discuss here the solutions in the transverse
channel for positive F c(s)

l , but below the threshold on the
solution with real s and s > 1.

2. Even l, longitudinal channel

For F c(s)
l ≈ −1, we first search for a solution with small

|s|. Expanding Eq. (61) in s, we find a pole on the imaginary
axis

s = si ≈ −i
1 + F c(s)

l

2
. (62)
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TABLE I. The positions of the poles for l = 0, 1, 2. The table describes for what values of F c(s)
l a pole sp is in the lower half-plane of the

physical sheet. For each pole, the table notes if the pole is in the complex plane (i.e., has a finite imaginary part), is glued to the lower edge of the
branch cut (i.e., has infinitesimal imaginary part but is hidden below the branch cut), or is glued to the real axis (i.e., has infinitesimal imaginary
part and is above the branch cut). When the pole is in the complex plane, it either has a finite real part (denoted by “p” for propagating) or
is pure imaginary (denoted by “d” for purely damped). The first column denotes the channel and the number of poles it has. In the case of
two poles they are specified by (a), (b) markings. For ranges of F c(s)

l that do not appear in the table, the pole is on the unphysical sheet. For
example, in the l = 1 longitudinal channel, one of the two modes is always on the unphysical sheet, except for when 0 < F c(s)

1 < 3
5 . Table

entries marked by “–” denote that a given type of pole does not occur for any −1 < F c(s)
l . The table includes entries only for poles having

Resp � 0. Please note that every pole with Resp > 0 has a counterpart with a negative real part −Resp and the same imaginary part.

Channel (no. of poles) Pole is in the lower half-plane Pole is glued to the lower branch cut edge Pole is glued to the real axis

l = 0 (1) −1 < F c(s)
0 < −1/2 (d) −1/2 < F c(s)

0 < 0 0 < F c(s)
0

l = 1, longitudinal (2) −1 < F c(s)
1 < −1/9 (a) [p] −1/9 < F c(s)

1 < 0 (a) 0 < F c(s)
1 < 3/5 (a)

0 < F c(s)
1 (b) [d]

l = 1, transverse (1) −1 < F c(s)
1 < 0 [d] – –

l = 2, longitudinal (2) −1 < F c(s)
2 < 0 (a) [d] −0.06 < F c(s)

2 < 0 (b) 0 < F c(s)
2 < 0.42 (b)

−1 < F c(s)
2 < −0.06 (b) [p]

l = 2, transverse (2) −1 < F c(s)
2 < 0 (a) [p] – –

0 < F c(s)
2 (b) [d]

There exist additional noncritical solutions for which s re-
mains finite at F c(s)

l = −1. To obtain these solutions, we
choose the plus sign in Eq. (61), set F c(s)

l = −1, and solve
the resultant equation 1 + (s − i

√
1 − s2)2l = 0. There are l

solutions sm = arccos [π (2m + 1)/2l], where 0 � m < l is an
integer. They form l/2 pairs of solutions with s1,2;p = ±ap,
ap < 1, 0 � p < l/2. For l = 2, we have a single pair s1,2;0 =
±1/

√
2, consistent with what we found earlier. At small

deviations from F c(s)
l = −1, in any direction, these solutions

become complex s1,2;p = ±ap − ibp, bp ∝ (1 + F c(s)
l )2. The

imaginary part of these solutions remains negative even for
F c(s)

s < −1.
Next, consider the interval 0 < −F c(s)

l � 1. In this limit,
the magnitude of s must be large for the right-hand side of
Eq. (61) to match 1/|F c(s)

l | � 1 on the left-hand side of the
same equation. Using

√
1 − s2 ≈ is for s in the lower half-

plane, we reduce (61) at small |F c(s)
l | to

1∣∣F c(s)
l

∣∣ = (2s)2l . (63)

This equation has l − 1 solutions with sm =
e−iπm/l/2|F c(s)

l |1/2l , where 0 < m < l is an integer. The
solution with m = l/2 is purely imaginary, and the other l − 2
solutions form p = (l − 2)/2 pairs of s1, 2; p = ±ap − ibp.
The purely imaginary solution sl/2 evolves toward sl/2 = 0
as F c(s)

l approaches −1 and moves into the upper half-plane
when |F c(s)

l | > 1, signaling a Pomeranchuk instability. The
other solutions s1,2;p evolve toward finite values at F c(s)

l = −1.
Comparing the number of solutions with s1,2;p = ±ap − ibp

at F c(s)
l = −1 and 0 < −F c(s)

l � 1, we see that they differ
by one pair, which exists for the former case but not for
the latter. From the analysis of the l = 2 case, we know
that the solution s1,2 = ±a − ib with a nonzero b emerges

when |F c(s)
l | exceeds a threshold value. At the threshold,

s1,2 = ±a − iδ̃ with a > 1 and δ̃ � δ.
For |F c(s)

l | smaller than the threshold, the poles remain
below the branch cut at s = ±a − iδ, a � 1. For vanishingly
small δ, which we consider in this section, the poles are
glued to the lower edge of the branch cut and slide along the
branch cut toward its lower end at |s| = 1 as |F c(s)

l | decreases.
We see that for any even l there exists exactly one such
threshold solution, while other solutions appear already for
infinitesimally small negative F c(s)

l .

3. Even l, transverse channel

We start again with F c(s)
l ≈ −1 and consider the solution

with vanishingly small s. For the transverse channel [for
which we have to choose the minus sign in Eq. (61)], the
leading, linear-in-s term on the right-hand side of Eq. (61)
is absent, and one needs to include the subleading terms.
A straightforward analysis then shows that the poles of the
transverse susceptibility are located near the real axis, at

s1,2 ≈ ±
(

1 + F c(s)
l

2l

)1/2

− i
1 + F c(s)

l

4
. (64)

When |F c(s)
l | becomes larger than 1, this solution moves

into the upper half-plane, signaling an instability toward the
development of a Pomeranchuk order.

There also exist other solutions that remain finite
at F c(s)

l → −1. These solutions are obtained by setting
F c(s)

l = −1 in Eq. (61) and solving the resultant equation
1 − (s − i

√
1 − s2)2l = 0. There are l − 2 solutions sn =

arccos(πn/l ), where 0 < n < l and n 	= l/2. Such solutions
do not exist for l = 2, i.e., there is only a solution that vanishes
at F c(s)

l → −1.
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For 0 < −F c(s)
l � 1, we need to solve 1/|F c(s)

l | = −(2s)2l .
The solutions are sn = e−iπ (1+2n)/(2l )/2|F e

l |1/2l with 0 � n <

l . The number of solutions is l , and they form l/2 pairs with
s1,2;p = ±ap − ibp, 0 � p < l/2. One pair evolves toward
s1,2;p = 0, as F c(s)

l approaches −1, while the other l − 2
solutions tend to finite values ±ap at F c(s)

l = −1. We see that
the number of noncritical solutions is the same, i.e., l − 2,
both for 0 < −F c(s)

l � 1 and at F c(s)
l = −1.

4. Odd l, longitudinal channel

The analysis for odd l proceeds along the same lines. We do
not present the details of calculations and just state the results.
For F c(s)

l ≈ −1, there are l + 1 solutions, which form (l +
1)/2 pairs s1,2;p = ±ap − ibp, 0 � p < (l + 1)/2. One pair is
the same as in Eq. (64), the other solutions tend to finite sm =
arccos[π (1 + 2m)/(2l )], with 0 � m < l , m 	= (l − 1)/2, at
F c(s)

l = −1. For 0 < −F c(s)
l � 1, there are l − 1 solutions

sm = e−iπm/l/2|F e
l |1/2l , with 0 < m < l . They form (l − 1)/2

pairs s1,2;p = ±ap − ibp, 0 � p < (l − 1)/2. Comparing the
number of solutions at F c(s)

l ≈ −1 and for 0 < −F c(s)
l � 1,

we see that there exists one pair of solutions s1,2 = ±a − ib
with b > 0, which emerges once |F c(s)

l | exceeds a threshold
value. For |F c(s)

l | smaller than the threshold, this pair of
solutions remains glued to the lower edge of the branch cut
immediately below the real axis.

5. Odd l, transverse channel

For F c(s)
l ≈ −1, there is one purely imaginary solution

with vanishing s, as in Eq. (62), and l − 1 solutions sn =
arccos(πn/l ), 0 < n < l . For 0 < −F c(s)

l � 1, there are l so-
lutions sm = e−iπ (1+2m)/(2l )/2|F c(s)

l |1/2l , with 0 � m < l . One
solution, with m = (l − 1)/2, is purely imaginary, while the
other solutions form (l − 1)/2 pairs s1,2;p = ±ap − ibp, 0 �
p < (l − 1)/2. Comparing the number of solutions at F c(s)

l ≈
−1 and for 0 < −F c(s)

l � 1, we see that the number is the
same, i.e., all solutions develop already at infinitesimally
small F c(s)

l . The purely imaginary solution moves into the
upper frequency half-plane when F c(s)

l + 1 becomes negative,
signaling a Pomeranchuk instability, while other solutions
s1,2;p = ±ap − ibp remain in the lower frequency half-plane
even for F c(s)

l < −1
Comparing the solutions for even and odd l , we see that

at F c(s)
l ≈ −1, the solutions in the longitudinal channel for

even l are quite similar to those in the transverse channel at
odd l and vice versa. For smaller negative F c(s)

l there is a
difference between the longitudinal and transverse channels
at any l . Namely, there exists one solution in the longitudinal
channel which remains glued to the lower edge of the branch
cut at |s| > 1, until |F c(s)

l | exceeds a threshold value, while
in the transverse channel all solutions with Ims < 0 emerge
already at infinitesimally small F c(s)

l .

F. Case of two comparable Landau parameters

As a more realistic example, we consider the case when
two Landau parameters, e.g., F c(s)

0 and F c(s)
1 , are comparable

in magnitude, while the rest of the Landau parameters are

negligibly small. In this situation, the relation between the
quasiparticle and free susceptibilities is more complicated
than in Eq. (7) because the l = 0 and 1 channels are coupled
at finite s via the F c(s)

0 F c(s)
1 term. Resumming the coupled

random phase approximation (RPA) series for χ
c(s)
qp,0 and χ

long
qp,1

or, equivalently, solving the FL kinetic equation, one arrives
at [26,34]

χ
c(s)
qp,0(s) = νF

K0 − 2F c(s)
1 K2

1

1+F c(s)
1 (K0+K2 )

1 + F c(s)
0 K0 − 2F c(s)

0 F c(s)
1 K2

1

1+F c(s)
1 (K0+K2 )

,

χ
long
qp,1 (s) = νF

K0 + K2 − 2F c(s)
0 K2

1

1+F c(s)
0 K0

1 + F c(s)
1 (K0 + K2) − 2F c(s)

0 F c(s)
1 K2

1

1+F c(s)
0 K0

, (65)

where Kn are given by Eq. (58). Explicitly,

K0 = 1 + i
s√

1 − (s + iδ)2
,

K0 + K2 = 1 + 2s2 + 2i
s3√

1 − (s + iδ)2
,

and K1 = s + i
s2√

1 − (s + iδ)2
. (66)

The denominators of χ
c(s)
qp,0 and χ

long
qp,1 vanish when(

1 + F c(s)
0 K0

)[
1 + F c(s)

1 (K0 + K2)
] = 2F c(s)

0 F c(s)
1 K2

1 . (67)

Suppose that F c(s)
1 is negative and close to −1 while 1 +

F c(s)
0 > 0 (F c(s)

0 can be of either sign). In the previous sections,
we saw that a critical zero-sound mode corresponds to small
s. Substituting the forms of Kn into Eq. (67) and assuming that
s is small, we obtain(

1 + F c(s)
0

)(
1 + F c(s)

1

) = 2s2 + 2is3 + iF c(s)
0

(
1 + F c(s)

1

)
s.

(68)

Iterating this equation in 1 + F c(s)
1 � 1, we obtain its approx-

imate solution as

s = ±
(

1 + F c(s)
1

2

)1/2(
1 + F c(s)

0

)1/2

− i

4

(
1 + F c(s)

1

)
. (69)

This form does not differ qualitatively from Eq. (33) for the
case F c(s)

0 = 0, i.e., both the real and imaginary parts of the
zero-sound velocity vanish when F c(s)

1 approaches −1, and
the imaginary part vanishes faster. The only effect of nonzero
F c(s)

0 is to renormalize the prefactor of Res.
In the opposite case, when F c(s)

0 is close to −1 while F c(s)
1

is not close to −1 but otherwise arbitrary, we find from (67)

s ≈ −i

[
1 + F c(s)

0 + (
1 + F c(s)

0

)2 1 − F c(s)
1

1 + F c(s)
1

]
. (70)

We see that the pole remains on the imaginary axis and
moves from the lower to upper frequency half-plane when
1 + F c(s)

0 changes sign. The Landau parameter F c(s)
1 affects
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only the subleading term. We expect this behavior to hold
when F c(s)

l with l > 1 are also present, as long as F c(s)
l>1 are not

close to −1.
The simultaneous presence of F c(s)

0 and F c(s)
1 , however,

changes the threshold for the existence of a propagating zero-
sound mode. (For 3D systems, this effect was noticed in
Ref. [43].) For example, if only F c(s)

0 is nonzero, a propagating
mode exists only for positive F c(s)

0 . If F c(s)
1 is also nonzero and

positive, a propagating mode exists also for negative F c(s)
0 .

Moreover, for large enough F c(s)
1 > 0, a propagating mode

exists even at the l = 0 Pomeranchuk instability, i.e., when
F c(s)

0 = −1. Namely, setting F c(s)
0 = −1 and varying F c(s)

1 >

0, we find the solution of Eq. (67) in the form of a propagating
zero-sound mode for F c(s)

1 > 1. The mode frequency is

s = ±1 + F c(s)
1

2
√

F c(s)
1

, |s| > 1. (71)

For large F c(s)
1 , s ≈

√
F c(s)

1 /2.

G. 3D systems

For comparison, we also briefly discuss the behavior of
zero-sound excitations near a Pomeranchuk instability in a 3D
system. We present the results for l = 0 and 1 and, in each
case, consider only one nonzero Landau parameter F c(s)

l < 0.

1. l = 0

Zero-sound modes in the l = 0 channel were analyzed in
Refs. [30,43]. The free-fermion susceptibility with the form
factor f c(s)

0 (kF ) = 1 is

χfree,0(s) = 1 − s

2
ln

s + iδ + 1

s + iδ − 1
. (72)

The equation for the pole reads as

1∣∣F c(s)
0

∣∣ − 1 = − s

2

[
−iπ + ln

1 + s + iδ

1 − s − iδ

]
. (73)

The pole is completely imaginary: s = −ib [hence, iδ in
(73) is irrelevant]. In contrast to the 2D case, such solu-
tion exists for all negative F c(s)

0 , i.e., there is no threshold.
For F c(s)

0 ≈ −1, b ≈ (2/π )(1 − |F c(s)
0 |). For 0 < −F c(s)

0 � 1,
b ≈ 1/(π |F c(s)

0 |).

2. l = 1

The eigenfunctions of angular momentum l = 1 are spher-
ical harmonics Y m

1 (θ, φ). We normalize Y m
1 as Y 0

1 (θ ) =√
3 cos θ and Y ±1

1 (θ, φ) = ∓√
3/2 sin θe±iφ . Then, the criti-

cal value of F c(s)
1 for a Pomeranchuk instability is F c(s)

1 = −1.
In the longitudinal channel, the form factor is f c(s)

1 (kF ) =
Y 0

1 (θ ). The free-fermion susceptibility is

χfree,1(s) = 1 + 3s

(
s + iδ − (s + iδ)2

2
ln

s + iδ + 1

s + iδ − 1

)
.

(74)

The equation for the zero-sound pole is

1 − ∣∣F c(s)
1

∣∣
3
∣∣F c(s)

1

∣∣ = s

[
s + iδ − (s + iδ)2

2

(
−iπ + ln

s + iδ + 1

1 − s − iδ

)]
.

(75)

When F c(s)
1 ≈ −1, the solution is

s = ±ε1/2 − i
π

4
ε, ε = 1 − ∣∣F c(s)

1

∣∣
3

. (76)

This is very similar to the 2D case [cf. Eq. (33)]. In contrast
to the 2D case, however, a complex solution in 3D exists for
all negative F c(s)

1 , i.e., there is no threshold. When |F c(s)
1 | is

small,

s ≈
(

1

3π
∣∣F c(s)

1

∣∣
)1/3

e−iπ/6. (77)

The form factor in the transverse channel is f c(s)
1 (kF ) =

Y ±1
1 (θ, φ). The free-fermion susceptibility is

χfree,0(s) = 1 − 3

2
s2 − 3s(1 − s2)

4
ln

s + 1

s − 1
. (78)

The equation for the zero-sound pole is

4
(
1 + F c(s)

1

)
3
∣∣F c(s)

1

∣∣ = −2s2 − s(1 − s2)

(
−iπ + ln

s + 1

1 − s

)
. (79)

One can easily verify that the pole is located on the imaginary
axis, at s = −ia, where a is the solution of

4
(
1 − ∣∣F c(s)

1

∣∣)
3
∣∣F c(s)

1

∣∣ = πa(1 + a2) + 2a2 + ia ln
1 + ia

1 − ia
. (80)

Near F c(s)
1 = −1, a ≈ (4/3π )(1 − |F c(s)

1 |). For small negative
F c(s)

1 , a ≈ [4/(3π |F c(s)
1 |)]1/3. This is again similar to 2D,

except for the solution s = −ia in 3D exists for all negative
F c(s)

1 , i.e., there is no threshold.

III. FINITE DISORDER

A. General formalism

In this section we analyze how the results of the previous
sections change in the presence of finite disorder. As in the
previous section, we consider separately the cases of l =
0, 1, 2. Other cases can be analyzed in the same manner as
these two. For a reader who prefers to avoid going through
the exhaustive derivations, we present in Figs. 7 and 9 a
graphical summary of the evolution of the poles for the l = 0
and the l = 1 longitudinal channels. These figures depict the
qualitative changes that occur for finite disorder.

The free-fermion susceptibility in the presence of scatter-
ing by short-range impurities consists of two parts: the bubble
part and the vertex part:

χfree,l (q, ωm) = χB
free,l (q, ωm) + χV

free,l (q, ωm) (81)

(cf. Fig. 6). The bubble part is formed from the (Matsubara)
Green’s functions G(k, νm) = (iνm − εk + i sgnνmγ̃ /2)−1,
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FIG. 6. The susceptibility of noninteracting fermions in the pres-
ence of impurity scattering. The diagram on the left corresponds
to χB

free,l in Eq. (82), while the diagrams in the square brackets
correspond to χV

free,l in Eq. (83). The solid lines represent disorder-
averaged fermionic propagators, the dashed lines represent the cor-
relation functions of the impurity potential.

where γ̃ is the impurity scattering rate:

χB
free,l (q, ωm) = − 2

NF

∫
d2k

(2π )2

∫
dνm

2π

∣∣ f c(s)
l (k)

∣∣2
× G(k + q/2, νm + ωm/2, )

× G(k − q/2, νm − ωm/2). (82)

The vertex part is

χV
free,l (q, ωm) = − 2

NF

∫
d2k

(2π )2

∫
d2k′

(2π )2

∫
dνm

2π
f c(s)
l (k)

× (
f c(s)
l (k′)

)∗
G(k + q/2, νm + ωm/2)

× G(k − q/2, νm − ωm/2)

×G(k′ + q/2, νm + ωm/2)

× G(k′ − q/2, νm − ωm/2)D(ωm, q; νm ),

(83)

where D(q, ωm; νm) is the diffusion propagator [42]

D(q, ωm; νm) = γ̃

2πNF

θ (ωm + |νm|/2)θ (|νm|/2 − ωm)√
(v∗

F q)2 + (|ωm| + γ̃ )2 − γ̃
.

(84)

Diagrammatically, D(q, ωm; νm) is represented by the sum of
ladder diagrams in the particle-hole channel (the sequence of
diagrams in the square brackets in Fig. 6).

The retarded forms of the susceptibilities are obtained by
choosing ωm > 0 and replacing iωm → ω in the final results.
The vertex part is especially important for the l = 0 case
because the corresponding order parameters (charge or spin)
are conserved quantities, and hence the bubble and vertex
parts of the susceptibility must cancel each other at q = 0. For
l > 0, the corresponding order parameters are not conserved,
but the vertex parts must be also included in order to obtain the
correct positions of the zero-sound poles in the complex plane.

B. l = 0

We recall that in a clean Fermi liquid with positive F c(s)
0

the pole of χ
c(s)
0 (s) is on the real axis at |s| > 1. For nega-

tive F c(s)
0 , the pole is on the imaginary axis, at s = −i(1 −

|F c(s)
0 |)/(2|F c(s)

0 | − 1)1/2, when −1 < F c(s)
0 < − 1

2 . At F c(s)
0 =

− 1
2 , the pole at s = −∞ splits into two, and the new poles

instantly move to the s = ±∞ points on the real axis. At
larger, but still negative, F c(s)

0 , the poles move toward s = ±1
along the lower edge of the branch cut.

The bubble and vertex parts for the l = 0 case are given by

χB
free,0 = 1 + is√

1 − (s + iγ )2
,

χV
free,0 = isγ /

√
1 − (s + iγ )2√

1 − (s + iγ )2 − γ
, (85)

where γ = γ̃ /v∗
F q. Adding these up, we obtain

χfree,0(s) = 1 + i
s√

1 − (s + iγ )2 − γ
, (86)

which is the result quoted in Eq. (9), except that we have
changed the notations δ → γ to emphasize that γ does not
have to be small. This result, as well as a corresponding result
for the l = 1 case, holds for γ̃ � EF while the ratio γ /s
can be arbitrary. At q → 0, i.e., at s → ∞, the susceptibil-
ity vanishes, which guarantees that the charge and spin are
conserved.

For |s| � γ , Eq. (86) reduces to the well-known diffusive
form [44,45]

χfree,0(s) = 1

1 − 2iγ s
= Dq2

Dq2 − iω
, (87)

where D = (v∗
F )2/2γ̃ is the diffusion coefficient in 2D.

Substituting Eq. (86) into Eq. (7) and solving for the poles,
we find that for F c(s)

0 < − 1
2 the pole is on the imaginary axis,

at

s = s1 = −iγ
1 − ∣∣F c(s)

0

∣∣
2
∣∣F c(s)

0

∣∣ − 1

⎛
⎝
√

1 + 2
∣∣F c(s)

0

∣∣ − 1

γ 2
− 1

⎞
⎠. (88)

For γ → 0, this reduces to Eq. (19). For large γ , s1 =
−i(1 − |F c(s)

0 |)/2γ . In this limit, we have a diffusion pole at
� = −iD∗q2, where D∗ = D(1 − |F c(s)

0 |) is the renormalized
diffusion coefficient [46]. In the ballistic regime at small γ ,
the damping term accounts for a small correction to the result
for a clean Fermi liquid [cf. Eq. (19)].

When 1 + F c(s)
0 becomes negative, s1 moves into the upper

half-plane of s, which signals a Pomeranchuk instability.
For positive 1 + F c(s)

0 , the pole s1 moves down along the
imaginary axis as 1 + F c(s)

0 increases, but remains finite at
F c(s)

0 = − 1
2 , in contrast to the behavior in the clean limit.

Expanding the square root in Eq. (88) in 2|F c(s)
0 | − 1, we

find s1 = −i/(4γ ) at F c(s)
0 = − 1

2 . At larger F c(s)
1 , another

solution

s2 = −iγ
1 − ∣∣F c(s)

0

∣∣
1 − 2

∣∣F c(s)
0

∣∣
⎛
⎝
√

1 − 1 − 2
∣∣F c(s)

0

∣∣
γ 2

+ 1

⎞
⎠ (89)

appears in the lower half-plane, initially at s2 = −i∞. As
F c(s)

0 keeps increasing, s1 and s2 move toward each other. For
γ < 1, the two solutions merge into a single pole s1 = s2 =
−i(1 + γ 2)/(2γ ) at F c(s)

0 = (γ 2 − 1)/2 < 0 [see Fig. 7(a)].
For F c(s)

0 slightly larger than this value, the double pole bifur-
cates into two poles with finite real parts. For even larger F c(s)

0 ,
the two poles move along arclike trajectories s1,2 = ±a − ib
in the complex plane. In contrast to the case of γ = 0, the
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FIG. 7. Evolution of the poles of χ
c(s)
qp,0(s) with Landau parameter F c(s)

0 for a finite disorder, parametrized by the dimensionless scattering
rate γ . We use blue (dark) and yellow (light) colors to show how poles merge and then bifurcate. The solid and dashed lines denote the
behavior of the poles of χ

c(s)
qp,0(s) for negative and positive F c(s)

0 , respectively. The black horizontal dotted lines denote the branch cuts of

χ
c(s)
qp,0(s) at Ims = −γ and |Res| > 1. The arrows identify the direction of the poles’ motion with F c(s)

0 increasing from −1 to ∞.

poles remain at a finite distance from the lower edges of the
branch cuts, as long as F c(s)

0 remains negative.
At F c(s)

0 = 0, the poles reach the points s1,2 =
±
√

1 − γ 2 − iγ . At positive F c(s)
0 , a increases and b becomes

smaller than γ . This implies that the poles are now located
in-between the branch cuts and real axis. At F c(s)

0 → ∞,
a → (F c(s)

0 /2)1/2 and b → γ /2.
For γ > 1, the second pole s2 still emerges at F c(s)

0 = − 1
2 ,

but the poles at s = s1 and s2 on the imaginary axis remain at
finite distance from each other for all negative F c(s)

0 and merge
only at F c(s)

0 = (γ 2 − 1)/2 > 0 [see Fig. 7(b)]. At larger
F c(s)

0 , the poles again follow the trajectories s1,2 = ±a − ib
with a increasing and b decreasing with increasing F c(s)

0 . For
F c(s)

0 � 1, the poles reach the same values as for γ < 1:
a ≈ (F c(s)

0 /2)1/2 and b ≈ γ /2. In Fig. 8 we plot Imχ
c(s)
0 (s) for

real s for a range of F c(s)
0 , both for γ < 1 and γ > 1 [Figs. 8(a)

and 8(b), respectively].

C. l = 1

1. l = 1, longitudinal

We start with recalling the situation at vanishingly small
damping. For −1 < F c(s)

1 < 0, the poles of χ
long
qp,1 (s) are at

s1,2 = ±a1 − ib1, where a1 and b1 are given by Eq. (35).
For F c(s)

1 just above −1, a1 ≈ [(1 − |F c(s)
1 |)/2]1/2 and b1 ≈

(1 − |F c(s)
1 |)/4, i.e., the the poles are almost on the real

axis. For larger F c(s)
1 (smaller |F c(s)

1 |), the two poles evolve
such that a1 increases monotonically, while b1 first in-
creases and then decreases. The poles approach the lower
edges of the branch cuts along the real axis at F c(s)

cr,1 = − 1
9 ,

when a1 = 2/
√

3 > 1. For larger F c(s)
1 , the poles remain

slightly below the lower edge of the branch cut and move
toward a1 = ±1. For 0 < F c(s)

1 < 3
5 the poles are located

slightly above the branch cuts. For F c(s)
1 > 3

5 they move off
from the physical Riemann sheet. For all F c(s)

1 > 0, there
exists another, purely imaginary, solution s = −isi,1. For

FIG. 8. The imaginary part of χ
c(s)
qp,0(s) for finite disorder, characterized by the dimensionless coupling constant γ . (a) Weak disorder

(γ = 0.2). For −1 < F c(s)
0 < − 1

2 , the shape of Imχ
c(s)
qp,0(s) has a characteristic overdamped form. As F0 increases from − 1

2 to 0, the shape

changes its form due to the appearance of “hidden” poles below the branch cut. For F c(s)
0 > 0, Imχ

c(s)
qp,0(s) has a conventional form of a damped

zero-sound mode. (b) Strong disorder (γ = 1.5). In this case Imχ
c(s)
0 (s) has an overdamped shape for all F c(s)

0 , negative and positive.
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FIG. 9. Evolution of the poles of χ
long
qp,1 (s) with the Landau parameter F c(s)

1 for finite disorder, parametrized by the dimensionless coupling
constant γ , as specified in the legend. Like in Fig. 7, we use different colors to show how the poles merge and bifurcate. The × denotes the
limiting position of the pole for F c(s)

1 → ∞. The inset in the first panel depicts how, for small γ , the pole bypasses the s = 1 branching point
before finally moving to an unphysical Riemann sheet for s > 2/

√
3 (F c(s)

1 > 3
5 ).

small damping, this solution and the s1,2 solution are not
connected.

We now show that the behavior of χ
long
1 changes qualita-

tively in the presence of disorder. The bubble and vertex parts
of the free-fermion susceptibility are now given by

χ
long,B
free,1 (s) = 1 + 2s(s + iγ )

(
1 + i

s + iγ√
1 − (s + iγ )2

)
,

χ
long,V
free,1 (s) = −2iγ s

[
√

1 − (s + iγ )2 + i(s + iγ )]2√
1 − (s + iγ )2

× 1√
1 − (s + iγ )2 − γ

. (90)

Adding these up, we obtain

χ
long
free,1(s) = 1 + 2s2

√
1 − (s + iγ )2 + i(s + iγ )√

1 − (s + iγ )2 − γ
, (91)

which is the result quoted in Eq. (27), up to a replacement
γ → δ. Note that the vertex part vanishes at q → 0, i.e., at
s → ∞, while the bubble part is reduced to a form which is
identical to the Drude conductivity at finite frequency ω. This
indicates that the charge and spin currents are not conserved
in the presence of disorder.

The analysis of the evolution of the poles with F c(s)
1 for

different γ is straightforward but somewhat involved. We omit
the details of the calculations and present only the results.
These results are summarized graphically in the panels of
Fig. 9.

The beginning stage of the evolution is the same for all
γ : for 1 + F c(s)

1 � 1, the poles are located at s1,2 = ±a1 −
ib1, where a1 ≈ [(1 + F c(s)

1 )/2]1/2 is independent of γ , and
b1 ≈ [(1 + F c(s)

1 )/4](
√

1 + γ 2 + γ ). However, the behavior
at larger F c(s)

1 depends strongly on γ . We find that there are
three values of γ , at which the evolution of the poles changes
qualitatively: γ = 1

2 , γ = 0.923, and γ = 1.
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FIG. 10. Imχ
long
qp,1 (s) for finite disorder γ = 1

10 and various inter-
action strengths.

For γ < 1
2 the evolution of the poles is similar to that for

vanishingly small γ (see Fig. 3), although the interval, where
the imaginary part of the pole frequency varies nonmonoton-
ically with F c(s)

1 , shrinks rapidly with increasing γ . The pole
positions s1,2 = ±a1 − ib1 cross the line s = −iγ first at some
negative F c(s)

1 , when a1 =
√

1 − (1 − γ )2, and then again at
F c(s)

1 = 0, when a1 =
√

1 − γ 2. The pole moves to the other,
unphysical Riemann sheet at F c(s)

1,R given by

1 + F c(s)
1,R

2F c(s)
1,R

=
(
a2

1.R − γ 2
)(

a1,R −
√

a2
1,R − 1

)
√

a2
1,R − 1

, (92)

where

a1,R =
(

2
√

γ 4 − γ 2 + 1 + 2 − γ 2

3

)1/2

. (93)

The values of F c(s)
1,R and of a1,R decrease as γ increases, but

F c(s)
1,R remains positive, and a1,R remains larger than 1 as long

as γ < 1. For large F c(s)
1 the pole on the unphysical sheet is

at s1 ≈ (
√

3F c(s)
1 − iγ F c(s)

1 )/2, i.e., Ims1 increases with F c(s)
1 .

Figure 10 depicts the imaginary part of χ
long
qp,1 (s) for a finite

disorder.
The purely imaginary pole s = −isi,1, which exists only

for F c(s)
1 > 0, moves up the imaginary axis from si,1 ≈

1/2(F c(s)
1 )1/2 � 1 for small F c(s)

1 > 0 toward smaller values
for larger F c(s)

1 . For F c(s)
1 � 1, si,1 is determined from the

equation

s2
i,1

(
1 + si,1√

1 + (si,1 − γ )2 − γ

)
= 1/2. (94)

For γ < 1
2 , this limiting value si,1 > γ .

At γ = 1
2 , the points at which the s1,2 poles cross the

s = −iγ line merge at F c(s)
1 = 0, and the region of the non-

monotonic evolution of s1,2 for negative F c(s)
1 disappears. At

this γ , the limiting value of the purely imaginary pole at
F c(s)

1 � 1 becomes si,1 = γ = 1
2 .

For 1
2 < γ < 0.923, the poles evolve in the complex plane

as shown in Fig. 9, third panel. The s1,2 poles cross the line
s = −iγ first at F c(s)

1 = 0, when a1 =
√

1 − γ 2, and then

again at some positive F c(s)
1 , when a1 =

√
1 − (1 − γ )2. The

limiting value of the purely imaginary pole for F c(s)
1 � 1 is

now smaller than γ . This implies that, for large F c(s)
1 , this pole

gives the main contribution to χ
long
1 (t ) in the time domain.

At γ = 0.923, the s1,2 poles touch the imaginary axis of s
at F c(s)

1 ≈ 0.031. The corresponding value of a1 = 1.391. At
this F c(s)

1 , the purely imaginary pole is located at the same
point on the imaginary axis, i.e., there are three degenerate
solutions.

For 0.923 < γ < 1, the poles, which initially move away
from the imaginary axis, return to this axis at some positive
value of F c(s)

1 , at which the purely imaginary is still located at
a higher point on the imaginary axis (see Fig. 9, fourth panel).
The subsequent evolution with increasing F c(s)

1 involves two
bifurcations. After the second bifurcation, the two solutions
approach the upper edge of the branch cut and move to a
different Riemann sheet at F c(s)

1 = F c(s)
1,R given by Eq. (93).

At γ = 1, the first bifurcation occurs at F c(s)
1 = 0, at the

point s = −iγ . After the bifurcation, one solution moves up
along the imaginary axis, while another moves down. The
one that moves up eventually reaches the point s = −0.39i
at F c(s)

1 � 1. The second bifurcation occurs at F c(s)
1 = 0.022

at the point s = −2iγ . After that, the two solutions s1,2 =
±a1 − ib1 move toward the end point of the branch cut and
reach a1 = 1, b1 = γ at F c(s)

1 = 1
3 .

For γ > 1, the first bifurcation happens at F c(s)
1 < 0 and,

after bifurcation, the first (second) solution moves up (down)
the imaginary axis. At F c(s)

1 = 0, these two solutions are at s =
−i(γ ±

√
γ 2 − 1). For F c(s)

1 > 0, the third solution emerges
on the imaginary axis and, eventually, it merges with the
solution that moves down (see Fig. 9, fifth panel), that, the
two solutions bifurcate and move toward the branch cut. In
distinction to the case γ < 1, now they merge with the lower
edge of the branch cut at F c(s)

1 = F̄ c(s)
1,R , where

1 + F̄ c(s)
1,R

2F̄ c(s)
1,R

=
(
ā2

1,R − γ 2
)(

ā1,R +
√

ā2
1 − 1

)
√

ā2
1,R − 1

(95)

and ā1,R is given by Eq. (93). For large γ , ā1,R ≈ γ /
√

3 and
F̄1,R ≈ 3/8γ 2 � 1. For F c(s)

1 > F̄ c(s)
1,R the poles again move to

a different Riemann sheet. The solution that moves up the
imaginary axis survives for all F c(s)

1 > 0 and, for F c(s)
1 � 1

and γ � 1, it approaches the point s ≈ −i/2γ .
We note that there are certain similarities between the evo-

lution of the poles with F c(s)
1 and the behavior of the plasmon

modes in a 2D electron gas with conductivity exceeding the
speed of light σ > c/2π , where σ is in CGS units. This
problem was studied some time ago [47] and has recently been
revisited in Ref. [48].

2. l = 1, transverse channel

For vanishingly weak damping (γ → 0), the pole moves
along the imaginary axis (s = −isi) for −1 < F c(s)

1 < 0, to-
ward larger si, as |F c(s)

1 | decreases. At F c(s)
1 = 0+, si tends

to infinity. For positive F c(s)
1 , there is no pole on the physical

Riemann sheet.
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For finite γ , the evolution remains essentially the same.
There are still no solutions for F c(s)

1 > 0, while for −1 <

F c(s)
1 < 0 the pole is on the imaginary axis, at s = −isi,1,

where

si,1 = S

1 + 2S
(
√

γ 2 + (1 + 2S)2 + γ ), S = 1 − ∣∣F c(s)
1

∣∣∣∣F c(s)
1

∣∣ .

(96)

At F c(s)
1 ≈ −1, si,1 ≈ (1 − |F c(s)

1 |)(
√

1 + γ 2 + γ )/2. Note
that there is no diffusive behavior for large γ . In this limit,
si,1 ≈ γ (1 − |F c(s)

1 |), i.e., ω ≈ −iγ̃ (1 − |F c(s)
1 |), where γ̃ is

the dimensionful impurity scattering rate. At F c(s)
0 → 0, si,1 ≈

1/2|F c(s)
1 |1/2 for all γ .

D. l = 2

1. l = 2, longitudinal channel

For vanishingly weak damping (γ → 0) and F c(s)
2 < 0, one

of the poles is on the imaginary axis while the other one is in
the complex plane. For small negative F c(s)

2 , the latter pole is at
the lower edge of the branch cut. When F c(s)

2 crosses zero, the
pole bypasses the end point of the branch cut, moves slightly
above it, and continues to stay there as F c(s)

2 increases from
0 up to F c(s)

2 ≈ 0.4. For larger F c(s)
2 , the pole is located on an

unphysical Riemann sheet.
For finite γ , the poles are determined from the equation

1 + F c(s)
2

2F c(s)
2

= is√
1 − (s + iγ )2 − γ

(s + iγ − i
√

1 − (s + iγ )2)2

× [1 − 2s(s + iγ )]. (97)

As for the l = 1 case, the behavior of the poles is quite in-
volved, particularly for γ > 1, and we refrain from presenting
all the details. We note only that at F c(s)

2 ≈ −1 the purely
imaginary pole is located at s ≈ −i(1 − |F c(s)

2 |)(
√

1 + γ 2 +
γ )/2. For large γ , s ≈ −i(1 − |F c(s)

2 |)γ , i.e., ω ≈ −i(1 −
|F c(s)

2 |)γ̃ . This pole is not a diffusive one, which to be is
expected because the l = 2 order parameter is not a conserved
quantity [49].

2. l = 2, transverse channel

For vanishingly weak damping (γ → 0), the poles s =
±a2 − ib2 are in the complex plane of s for negative F c(s)

2 .
As F c(s)

2 increases from −1 toward 0, the poles move
from the vicinity of the real axis at F c(s)

1 ≈ −1 [a2 ∼ (1 −
|F c(s)

2 |)1/2 � b2] toward a2 ≈ b2 ≈ 1/2
√

2|F c(s)
2 |1/4 at 0 <

−F c(s)
2 � 1. For positive F c(s)

2 , there is only a single pole on
the imaginary axis.

For finite γ , the equation for the pole is

s(s + iγ )(s + iγ − i
√

1 − (s + iγ )2)2 = −1 + F c(s)
2

F c(s)
2

. (98)

It has two solutions. At small 1 + F c(s)
2 both are on the

imaginary axis: one is a2 = 0, b2 ≈ (1 − |F c(s)
2 |)(

√
1 + γ 2 +

γ )2/4γ and another one is a2 = 0, b2 ≈ −γ . Note that nei-
ther mode is diffusive for large γ . As 1 + F c(s)

2 increases, the

two solutions move toward each other and merge at some
critical value F c(s)

2 = F c(s)
2,cr . For small γ , F c(s)

2,cr ≈ −1 + γ 2 and

the solutions merge at b2 ≈ γ /2. At F c(s)
2 = F c(s)

2,cr + 0, the
poles split and move away from the imaginary axis, i.e., a2

becomes finite. The subsequent evolution is essentially the
same as for vanishingly small γ . For large positive F c(s)

2 , the
pole is located on the imaginary axis at b2 = 1/2/

√
2 for

small γ and at b2 = γ + 1/(4γ ) for large γ .

IV. SUSCEPTIBILITY IN THE TIME DOMAIN

A. General results

In this section we study the real-time response of an order
parameter on both sides of the Pomeranchuk transition by
analyzing the susceptibility in the time domain χ

c(s)
l (q, t ). For

definiteness, we consider l = 0 and the longitudinal channel
for l = 1. In both cases,

χ
c(s)
l (q, t ) =

∫ ∞

−∞

dω

2π
χ

c(s)
l (q, ω)e−iωt , (99)

where χ
c(s)
l (q, ω) is the retarded susceptibility. Introducing

t∗ = v∗
F qt and going over from integration over ω to integra-

tion over s = ω/v∗
F q, we obtain

χ
c(s)
l (t∗) ≡ 1

v∗
F q

χ
c(s)
l (q, t ) =

∫ ∞

−∞

ds

2π
χ

c(s)
l (s)e−ist∗

. (100)

The time dependent χ
c(s)
l (t∗) can be measured in pump-

probe experiment, by applying an instantaneous perturbation
hl (t∗) = hδ(t∗)�c(s)

l with the symmetry of the Pomeranchuk
order parameter, to momentarily move the system away from
the FL state without Pomeranchuk order [here δ(. . .) is the
δ function]. The order parameter �

c(s)
l (t∗) will then relax to

zero as �
c(s)
l (t∗) ∝ hχ

c(s)
l (t∗), if 1 + F c(s)

l > 0, and will grow
with time, if 1 + F c(s)

l < 0.
Causality requires that χ

c(s)
l (t∗ < 0) = 0. The vanishing

of χ
c(s)
l (t∗) for t∗ < 0 is guaranteed because the poles and

branch cuts of the retarded susceptibility χ
c(s)
l (s) are located

in the lower frequency half-plane. For t∗ < 0, e−ist∗
vanishes

at s → i∞, and the integration contour can be closed in the
upper half-plane of complex s, where χ

c(s)
l (s) is analytic. The

integral over s in Eq. (100) then vanishes. For t∗ > 0, the
integration contour should be closed in the lower half-plane of
s, where χ

c(s)
l has both poles and branch cuts. In this situation,

χ
c(s)
l (t∗) is finite.

The susceptibility in the time domain can be obtained
either by contour integration, or directly, by using the form
of χ

c(s)
l (s) above the branch cut and integrating over real s. In

a clean system Eq. (100) can be rewritten as

χ
c(s)
l (t∗ > 0)

= 1

π

∫ ∞

0
ds
(
Reχ c(s)

l (s) cos st∗ + Imχ
c(s)
l (s) sin st∗)

= 2

π

∫ 1

0
ds Imχ

c(s)
l (s) sin st∗. (101)

In the last line we used that χ
c(s)
1 (t∗ < 0) = 0 and that

Imχ
c(s)
l (s) is nonzero only for |s| < 1. Equation (101) is con-
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FIG. 11. Integration contour for evaluation of χ
c(s)
l (t∗), defined

in Eq. (100). The contour is shown for the case of finite disorder, and
the branch cuts are at s = −iγ + x, |x| > 1. The poles are located at
finite distance below the lower edges of the branch cuts.

venient for numerical calculations. To analyze the behavior of
χ

c(s)
1 (t∗) analytically, it is more convenient to integrate over

the contour shown in Fig. 11, and evaluate the contributions
from the poles and branch cuts. This way, we get

χ
c(s)
l (t∗) = χpole,l (t

∗) − χbcut,l (t
∗), (102)

where χpole,l (t∗) is the sum of the residues of the poles,
multiplied by −i, and

χbcut,l (t
∗) =

∫ ∞

1

dx

π
cos xt∗

×(
χ

c(s)
l (x − iδ − iε) − χ

c(s)
l (x − iδ + iε)

)
,

(103)

where ε = 0+ is the combined contribution from the two
edges of the branch cut along |x| > 1. [By χ

c(s)
l (x − iδ − iε),

we mean the retarded susceptibility χ
c(s)
l (s) computed at s =

x − iδ − iε, where x is a real variable and 0 < ε � δ.]
In what follows, we focus on the on the behavior of

χ
c(s)
l (t∗) near the Pomeranchuk instability for l = 0 and 1,

when the corresponding F c(s)
l ≈ −1. The analysis of χ

c(s)
l (t∗)

for larger F c(s)
l requires a separate discussion, particularly

when the poles in χ
c(s)
l (s) are near the lower edges of the

branch cuts, and will be presented elsewhere [50]. We will
analyze the behavior of χ

c(s)
l (t∗) at large t∗ � 1. For such t∗,

the dominant contribution to χ
c(s)
l (t∗) comes from the quasi-

particle part of the susceptibility [the first term in Eq. (3)],
the contribution from the incoherent part of the susceptibility
is much smaller. Accordingly, χ

c(s)
l (t∗) = (�c(s)

l )2χ
c(s)
qp,l (t∗),

where χ
c(s)
qp,l (t∗) is the Fourier transform of χ

c(s)
qp,l (s). In this

section we consider a generic case when �
c(s)
l is finite near

a Pomeranchuk transition, and focus on χ
c(s)
qp,l (t∗). In the next

section we consider the special case of l = 1 charge- and
spin-current order parameter, for which �

c(s)
1 vanishes at a

Pomeranchuk transition. To simplify the expressions, below
we write χ

c(s)
qp,l (t∗) simply as χ

c(s)
l (t∗).

B. l = 0

We recall that near the Pomeranchuk transition the only
pole of χ

c(s)
0 (s) in the lower half-plane is located at s = si ≈

−i(1 − |F c(s)
0 |) [see Eq. (19)]. Near this pole,

χ
c(s)
0 (s) ≈ νF

i

s + i
(
1 − ∣∣F c(s)

0

∣∣) . (104)

Evaluating the residue, we obtain

χ
c(s)
pole,0(t∗) = νF e−t∗(1−|F c(s)

l |). (105)

To obtain the branch-cut contribution, we recall that

χ
c(s)
l (x − iδ ∓ iε) = νF

1 ± x√
x2−1

1 − ∣∣F c(s)
l

∣∣(1 ± x√
x2−1

) . (106)

Hence,

χ
c(s)
0 (x − iδ − iε) − χ

c(s)
0 (x − iδ + iε)

= −2νF
x
√

x2 − 1(
1 − ∣∣F c(s)

0

∣∣)2 + x2
(
2
∣∣F c(s)

0

∣∣− 1
) . (107)

For large x, the right-hand side of Eq. (107) approaches
a constant value (= −2), and the integral over x in (103)
formally diverges. This divergence is artificial and can be
eliminated by introducing a factor of exp(−αx) with α > 0
and taking the limit of α → 0 at the end of the calculation.

For F c(s)
0 ≈ −1, the leading contribution to the integral

in Eq. (103) comes from nonanalyticity of the integrand at
x = 1. For t∗ � 1, we use

∫
dy

√
y cos yt∗ = −√

π/(2t∗)3/2,∫
dy

√
y sin yt∗ = √

π/(2t∗)3/2, and obtain

χbcut,0(t∗) = −νF

√
2

π

cos(t∗ − π/4)(
F c(s)

0

)2
(t∗)3/2

. (108)

Comparing Eqs. (105) and (108), we see that the pole con-
tribution is the dominant one for 1 � t∗ � (3/2)| ln(1 −
|F c(s)

l |)|/(1 − |F c(s)
l |), while at longer times the time depen-

dence of the response function comes from the end point of
the branch cut.

In Fig. 12 we show χ
c(s)
0 (t∗) computed numerically using

Eq. (101). As is obvious from this equation, χ c(s)
0 (t∗) increases

linearly with t∗ at short times t∗ � 1 (the pole and branch
contributions cancel each other at t∗ = 0). At intermediate
times 1 � t∗ � (3/2) ln |1 − |F c(s)

l ||/(1 − |F c(s)
l |), χ

c(s)
0 (t∗)

exhibits an exponentially decay augmented by weak oscilla-
tions, in agreement with Eqs. (105) and (108). This behavior
is shown in the left panel of Fig. 12. At long times, χ

c(s)
0 (t∗)

oscillates and decreases algebraically with time, in agreement
with Eq. (108). This behavior is shown in the right panel of
Fig. 12.

As F c(s)
0 becomes closer to −1, the exponential decay of

χ
c(s)
0 (t∗) with t∗ becomes slower and the crossover to a power-

law behavior shifts to larger t∗. Right at the Pomeranchuk
instability, when F c(s)

0 = −1, the form χ
c(s)
0 (t∗) can be found

directly from Eq. (101). In this case, Imχ
c(s)
0 (s) = νF θ (1 −

|s|)√1 − s2/s. Substituting into (101), we find that χ
c(s)
0 (t∗)

starts off linearly for t∗ � 1, exhibits an oscillatory behavior
for t∗ ∼ 1, and approaches the limiting value of χ

c(s)
0 (t∗) = νF

at t∗ → ∞.
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FIG. 12. χ
c(s)
qp,0(t∗) (with νF = 1) as a function of the dimensionless time t∗, as defined in Eq. (100), for F c(s)

0 near −1. The solid line

is the numerically computed response and the dashed lines are the analytic expressions in Eqs. (104) and (108). Left: χ
c(s)
qp,0(t∗) at short

and intermediate times. At intermediate time, the time dependence is dominated by the exponentially decaying pole contribution. As F c(s)
0

approaches −1, the decay time goes to infinity. Right: long-time behavior, dominated by the oscillatory and power-law decaying contribution
from the branch cut.

For F c(s)
0 < −1, a long-range order develops. Within our

approach, we can analyze the initial growth rate of the order
parameter �

c(s)
0 (t∗) induced by an instant perturbation h(t∗) ∝

hδ(t∗) such that �
c(s)
0 (t∗) ∝ hχ

c(s)
0 (t∗). The computation of

χ
c(s)
0 (t∗) for F c(s)

0 < −1 requires some care because integrat-
ing Eq. (100) over the same contour as in Fig. 11 we would
find that χ

c(s)
0 (t∗ < 0) becomes finite, i.e., that causality is

lost. This issue was analyzed in Ref. [30] (see also, e.g.,
Ref. [51]), where it was shown that, to preserve causality,
one has to modify the integration contour such that it goes
above all poles, as shown in Fig. 13(c). Integrating along the
modified contour, we find that χ

c(s)
0 (t∗ < 0) = 0, as required

by causality. For t∗ > 0 we now have

�
c(s)
0 (t∗) ∝ het∗(|F c(s)

0 |−1), (109)

i.e., a perturbation grows exponentially with time. This ob-
viously indicates that the FL state without Pomeranchuk
order becomes unstable. To see how the system eventually
relaxes to the final equilibrium state with �

c(s)
0 (t∗) = �0, we

would need to recalculate χ
c(s)
0 (t ) in the broken-symmetry

state.

1. l = 1, longitudinal channel

For small positive 1 + F c(s)
1 , the poles of χ

long
1 (s) are given

by Eq. (33). Near the poles,

χ
long
1 (s) ∝ 1

(s − s1)(s − s2)
+ · · · , (110)

where · · · stands for nonsingular terms. Evaluating the
residues, we obtain the pole contribution to χ

long
1 (t∗) as

χ
long
pole,1(t∗) ∝ t∗ exp

(
−1 − ∣∣F c(s)

1

∣∣
4

t∗
)

sin
(√ 1−|F c(s)

1 |
2 t∗)√

1−|F c(s)
1 |

2 t∗
.

(111)
The branch-cut contribution has the same structure as for
l = 0, i.e., χ long

bcut,1(t∗) ∝ cos(t∗ − π/4)/(t∗)3/2 for t∗ � 1. We
see that the pole contribution remains dominant up to t∗ ∼

FIG. 13. Positions of the poles and analyticity regions of χ
long
1 (s) in the Fermi-liquid phase without Pomeranchuk order [1 + F c(s)

1 > 0
(a)], at the transition point [1 + F c(s)

1 = 0 (b)], and in the ordered phase [1 + F c(s)
1 < 0 (c)]. In the ordered phase, the susceptibility in the time

domain χ
long
1 (t∗) is an increasing function of time, and so its Fourier transform is only analytic at finite distance above the real axis.
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| ln(1 − |F c(s)
1 )|/(1 − |F c(s)

1 |), which becomes progressively
larger as |F c(s)

1 | approaches one. We also see that the pole
contribution contains two relevant scales

t∗
a = [

2/
(
1 − ∣∣F c(s)

1

∣∣)]1/2
and t∗

b = 4/
(
1 − ∣∣F c(s)

1

∣∣). (112)

Near the Pomeranchuk transition, t∗
b � t∗

a � 1. Applying
an instant perturbation in the l = 1 channel h(t∗) ∼ hδ(t∗)
and analyzing the behavior of �

long
1 (t∗) ∝ hχ

long
1 (t∗), we

find that it grows linearly with t∗ for t∗ � t∗
a , i.e., the sys-

tem initially tends to move further away from equilibrium.
For t∗

a � t∗ � t∗
b , the order parameter oscillates between

the quasiequilibrium states with �
long
1 (t∗) = ±�q-eq, where

�q-eq ∝ h[2/(1 + F c(s)
1 )]

1/2
. Finally, for t∗ � t∗

b , �long
1 (t∗) de-

cays exponentially toward zero. At F c(s)
1 = −1, both ta and

tb diverge and, following an instant perturbation at t = 0, the
order parameter �

long
1 (t∗) ∝ h increases linearly with t∗ until

the perturbation theory in h breaks down.
The difference with the l = 0 case, when �

c(s)
0 (t∗ → ∞)

at F c(s)
0 = −1 is finite, can be understood by noticing that

the behavior of χ
long
free,1(t∗) for large t∗ is determined by

that of Imχ
long
free,1(s) for small s. Equation (91) shows that

χ
long
free,1(s) = 1 + 2s(s + iδ) for |s| � 1. At F c(s)

1 = 1, there-

fore, we have χ
long
1 (s) ≈ −1/2s(s + iδ), and, at vanishingly

small δ, Imχ long(s) goes over to (π/2)δ(s)/s. Substituting this
into Eq. (101), we find that χ

long
1 (t∗) ∝ t∗.

For F c(s)
1 < −1, both poles of χ

long,

1 (s) are located on the
imaginary axis, at s = ±(|1 + F c(s)

1 |/2)1/2. One of the poles
is now in the upper half-plane of complex s. Modifying the
integration contour the same way as for l = 0 to preserve
causality, we obtain for t∗ > 0

χ
long
1 (t∗) ∝ t∗ sinh

√
|F c(s)

1 |−1
2 t∗√

|F c(s)
1 |−1

2 t∗
. (113)

For t∗ � t∗
a = (2/|1 + F c(s)

1 |)1/2, both χ
long
1 (t∗) and

�
long
1 (t∗) ∝ hχ

long
1 (t∗) increase linearly with t∗. For t∗ � t∗

a ,
the perturbation grows exponentially, indicating that the FL
state becomes unstable.

We note in passing that the need to bend the integration
contour around the pole for F c(s)

1 < −1 can be also understood
by considering the behavior of χ

long
1 (t∗) at F c(s)

1 approaching
−1 from above. In the limit F c(s)

1 → −1 + 0+, the two poles
of χ

long
1 (s) coalesce into a single double pole at the origin,

as shown in Fig. 13(b). Had we tried to compute χ
long
1 (t∗) by

integrating along the real axis of s, we would have intersected
a divergence. To eliminate the divergence, one needs to bend
the integration contour and bypass the double pole along
a semicircle above it. The extension of this procedure for
F c(s)

1 < −1 yields the contour shown in Fig. 13(c).

2. l = 1, transverse channel

For small 1 + F c(s)
1 , the pole in the transverse susceptibility

for l = 1 is on the imaginary axis. The behavior of χ tr
1 (t∗) is

then the same as for the l = 0 case.

FIG. 14. χ
long
qp,1 (t∗) with and without impurity scattering. Solid:

numerical calculation for γ = 0 and 1
2 , both for F c(s)

1 = −0.95.
Dashed: asymptotic expressions describing contributions that decay
exponentially with characteristic times t∗

b [Eq. (112) for γ = 0 and
Eq. (114) for γ = 1

2 ].

C. Response in the time domain in the presence of disorder

Near Pomeranchuk instabilities in the l = 0 and transverse
l = 1 channels, the poles are on the imaginary axis, and
adding weak impurity scattering will not change the results
obtained in Sec. IV B. Namely, the pole’s contribution to
χ

c(s)
0 (t∗) still decays exponentially with t∗ for F c(s)

0 > −1,
becomes independent of t∗ at F c(s)

0 = −1, and increases ex-
ponentially with t∗ for F c(s)

0 < −1.
In the longitudinal l = 1, the poles remain near the real

axis also in the presence of γ . Finite damping changes the
timescale t∗

b from Eq. (112) to

t∗
b = 4(

√
1 + γ 2 − γ )/

(
1 − ∣∣F c(s)

1

∣∣). (114)

After this change, the results for χ
long
1 (t∗) remain the same as

in the absence of disorder. The time dependence of χ
long
1 in

the presence of impurity scattering is shown in Fig. 14.
In all cases, finite γ modifies the branch-cut contribution,

so that in addition to the algebraic decay, there is also an
exponential decay. For l = 0 we find

χbcut,0(t∗) ∝ e−γ t∗ cos(t∗ − π/4)

(t∗)3/2
. (115)

Similar expressions hold for l > 0.
The presence of the exponentially decaying terms due to

damping is particularly relevant for l > 0 and F c(s)
l > 0, as it

allows one to distinguish between the cases of smaller F c(s)
l .

For the former, the zero-sound pole is present and located
above the branch cut, at s = ±a − ibγ , where a > 1 and
b < 1. For the latter, the zero-sound pole is located on the
unphysical Riemann sheet. In both cases, Imχ

c(s)
l (s) at real

s has a peak at s = ±a, but for larger F c(s)
l its width is b̄γ

with b̄ > 1, i.e., it is larger than γ . Accordingly, for smaller
F c(s)

l , the dominant contribution to χl (t∗) at large t∗ comes
from the pole, and χl (t∗) ∝ e−bγ t∗

cos(at∗). For larger F c(s)
l ,

χl (t∗) at large t∗ comes from the branch cut, and χl (t∗) ∝
e−γ t∗

cos(t∗ − π/4)/(t∗)3/2. Because this property holds only
for l > 0 and in the presence of disorder, it was not discussed
in previous works [9,31–37], which studied collective modes
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of a 2D Fermi liquid either in the l = 0 channel or in the
absence of disorder.

V. SPECIAL CASES OF CHARGE- AND SPIN-CURRENT
ORDER PARAMETERS

A. Ward identities and static susceptibility in the l = 1 channel

In previous sections, we assumed that the behavior of the
full susceptibility is at least qualitatively the same as that
of the quasiparticle susceptibility, i.e., the collective modes,
present in χ

c(s)
qp,l (q, ω), are also present in the full χ

c(s)
l (q, ω).

The full and quasiparticle susceptibilities differ by the factor
(�c(s)

l )2 [see Eq. (3)], which accounts for renormalizations
from high-energy fermions. For a generic order parameter
with a form factor f c(s)

l (k), the vertex �
c(s)
l is assumed to be

finite for all F c(s)
l , including F c(s)

l = −1. The pole structure of
χ

c(s)
l (q, ω) is then fully determined by that of χ

c(s)
qp,l (q, ω).

We now consider the special case of order parameters with
l = 1, for which f c(s)

1 (k) = (cos θ

sin θ )∂εk/∂k, up to an overall
factor. These order parameters correspond to charge or spin
currents. The special behavior of a FL under perturbations of
this form has been discussed in recent studies of the static
susceptibility in the l = 1 channel [26–28]. Namely, for the
spin- or charge-current order parameter, the vertices �

c(s)
1

satisfy the Ward identities which follow from conservation
of the total number of fermions (the total “charge”) and total
spin. In the static limit, the Ward identities read as [28,52]

m∗

m
Z�

c(s)
1 = 1 + F c(s)

1 . (116)

Under certain assumptions, these identities allow one to
decide which of three factors on the left vanishes at the
instability. First, we assume that the Z factor, being a high-
energy property of the system, remains finite at the instability.
Therefore, the product (m∗/m)�c(s)

1 should vanish at F c(s)
1 →

−1. Next, we divide the versions of Eq. (116) for the charge
and spin channels by each other and obtain

�c
1

�s
1

= 1 + F c
1

1 + F s
1

. (117)

We then rule out a very special case, when both F c
1 and F s

1
reach the critical value of −1 simultaneously, and also assume
the charge (spin) vertex remains finite at an instability in
the spin (charge) channel. Then, �

c(s)
1 vanishes as 1 + F c(s)

1 ,
which implies that m∗/m remains finite.

Given that m∗/m remains finite while (�c(s)
1 )2 vanishes

as (1 + F c(s)
1 )2, the full static susceptibility χ

c(s)
1 (q, ω = 0) =

(�c(s)
1 )2χ

c(s)
qp,1(q, ω = 0) + χ

c(s)
inc,1 does not diverge at F c(s)

1 =
−1, despite the fact that the quasiparticle susceptibility
χ

c(s)
qp,1(q, ω = 0) diverges as 1/(1 + F c(s)

1 ).
What was said above does not apply to the special case of

a Galilean-invariant system. In this case, the charge current is
equivalent to the momentum and thus is conserved. The Ward
identity for the momentum implies that Z�c

1 = 1, i.e., �c
1

remains finite at 1 + F c
1 = 0. Equation (116) then implies that

m∗/m = 1 + F c
1 , which is the standard result for a Galilean-

invariant FL. The static susceptibility still remains finite at
1 + F c

1 → 0, this time because the factor of m∗/m in the
numerator of χ c

qp,1 cancels out with 1 + F c
1 in its denominator.

Furthermore, in the Galilean-invariant case the static l = 1
charge and spin susceptibilities are not renormalized at all
by the electron-electron interaction [29]. On the other hand,
m∗/m = 1 + F c(s)

1 does vanish at the transition in the l = 1
charge channel. We believe that the vanishing mass indicates
a global instability of a non-Pomeranchuk type, which is not
associated with the l = 1 deformation of the FS.

B. Dynamical susceptibility in the l = 1 channel

Now, let us look at the dynamics. Consider for definiteness
the l = 1 longitudinal susceptibility. Near 1 + F c(s)

1 = 0, the
quasiparticle susceptibility has poles given by Eq. (33). One
of the poles moves into the upper frequency half-plane when
1 + F c(s)

1 becomes negative. To relate the full and quasiparti-
cle dynamical susceptibilities, we need to know �

c(s)
1 in the

dynamical case. The FL theory assumes that �
c(s)
1 can be

computed by setting both ω and q to zero. The argument is that
�

c(s)
1 is renormalized only by high-energy fermions, hence, its

frequency and momentum dependencies come in a form of
regular functions of q/kF and ω/EF . If so, then the relation
between �

c(s)
1 and 1 + F c(s)

1 , Eq. (116), holds in the dynamical
case as well. We will verify this statement explicitly via a
perturbative calculation in Sec. V D.

Taking �
c(s)
1 from Eq. (116) and substituting it along with

the dynamical quasiparticle susceptibility into Eq. (3), we
obtain the full susceptibility for F c(s)

1 ≈ −1:

χ
long
1 (q, ω) ≈ −NF

m

m∗

(
1 + F c(s)

1

)2
(v∗

F q)2

ω2 − (
1 + F c(s)

1

)
(v∗

F q)2/2
+ χinc,1,

(118)

where we recall that the last term represents the contribution
from high-energy fermions. The static limit of the first term
in the equation above, i.e., NF (1 + F c(s)

1 )(m/m∗), is indeed
nonsingular at the transition, in agreement with the conclu-
sions of the previous section. Nevertheless, one of the poles of
χ

long
1 (q, ω) moves into the upper frequency half-plane when

1 + F c(s)
1 becomes negative, i.e., a dynamical perturbation

with the structure of spin or charge current grows exponen-
tially with time, which is an indication of a Pomeranchuk
instability. The peculiarity of the l = 1 case in that the residue
of the pole vanishes right at the transition, but it is finite both
above and below the transition.

C. Case of more than one nonzero Landau parameter

It is instructive to derive an analog of Eq. (118) for a
more general case of several nonzero Landau parameters. We
remind the reader that in this situation the pole structure of
χ

long
1 (q, ω) is more complex than when only F c(s)

1 is present
[see Eq. (65) for the case when F c(s)

1 and F c(s)
0 are nonzero].

The issue we address is whether χ
long
1 (q, ω) for charge and

spin currents still has (�c(s)
1 )2 ∝ (1 + F c(s)

1 )2 as the overall
factor. We argue that it does.

To demonstrate this, we need to express the full suscep-
tibility via vertices �̄c(s)(q, ω), which include both high-
and low-energy renormalizations. Vertices �̄c(s)(q, ω) can be
expanded into a series of partial harmonics: �̄c(s)(q, ω) =∑

l al�
c(s)
l (s) cos lθ , where θ is the angle between the
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momentum of the incoming fermion and q, a0 = 1, and
al 	=0 = √

2. With this definition, the full longitudinal suscep-
tibility in the l = 1 channel can be written as

χ
c(s),long
1 (s) = −νF

∫
dθ

π

∑
l

al�̄
c(s)
l (s) cos lθ

× cos2 θ

s − cos θ + iδ
�

c(s)
1 . (119)

The vertex �̄
c(s)
l (q, ω) is given by a series of diagrams which

contain momentum and frequency integrals of the product
Gp+ q

2 ,ωp+ ω
2
Gp− q

2 ,ωp− ω
2
, convoluted with fully renormalized

four-fermion vertices. The diagrammatic series can be rep-
resented as the sum of subsets of diagrams, each with a
fixed number n = 0, 1, 2, 3 . . . of cross sections which contain
contributions from the regions where the poles of Gp+ q

2 ,ωp+ ω
2

and Gp− q
2 ,ωp− ω

2
are in the opposite half-planes of complex

frequency. This constraint binds the internal p and ωp to the
FS. The subset with n = 0 is nonzero only for l = 1 and gives
�

c(s)
1 , while the sum of contributions with different n > 0

gives �̄
c(s)
l (s). Combining the contributions from all n, we find

that the vertex �̄
c(s)
l (s) satisfies an integral equation with �

c(s)
1

as the source term:

�̄
c(s)
l (s) = �

c(s)
1 δl,1 + Z2m∗

4π3

∑
l ′

�̄
c(s)
l ′ (s)al ′

×
∫ 2π

0
dθ

∫ 2π

0
dθ ′ cos lθ cos l ′θ ′

× cos θ ′

s − cos θ ′ + iδ

c(s)(θ, θ ′), (120)

where 
c(s)(θ, θ ′) is the four-fermion (four-leg) vertex with
external fermions right on the FS. By construction, 
c(s)(θ, θ ′)
contains only renormalizations from high-energy fermions
(in the FL theory, such a vertex is called 
ω, see Ref. [7]).
Landau parameters F c(s)

l are related to the angular harmonics
of 
c(s)(θ, θ ′) via F c(s)

l = (Z2m∗/π )
c(s)
l . When only F c(s)

1 is
nonzero, i.e., (Z2m∗/π )
c(s)(θ, θ ′) = 2F c(s)

1 cos θ ′ cos θ , only
�̄

c(s)
1 (s) is nonzero as well. Then,

�̄
c(s)
1 (s) = �

c(s)
1

1 − F c(s)
1

1
π

∫ 2π

0 dθ cos3 θ
s−cos θ+iδ

= �
c(s)
1

1 + F c(s)
1 χ

long
free,1(s)

. (121)

Substituting Eq. (121) into (119) and expanding near F c(s)
1 =

−1, we reproduce Eq. (118). When, e.g., F c(s)
0 and F c(s)

1 are
nonzero, the solution of Eq. (120) is

�̄
c(s)
1 (s) = �

c(s)
1

1

1 + F c(s)
1 (K0 + K2) − 2F c(s)

0 )F c(s)
1 K2

1

1+F c(s)
0 K0

,

�̄
c(s)
0 (s) = −�

c(s)
1

√
2F c(s)

0 K1

1 + F c(s)
1 (K0 + K2) − 2F c(s)

0 F c(s)
1 K2

1

1+F c(s)
0 K0

, (122)

where K0,1,2 are defined by Eq. (66). Substituting the last two
equations into Eq. (119), we obtain

χ
long
1 (s) = νF

(
�

c(s)
1

)2
K0 + K2 − 2F c(s)

0 K2
1

1+F c(s)
0 K0

1 + F c(s)
1 (K0 + K2) − 2F c(s)

0 F c(s)
1 K2

1

1+F c(s)
0 K0

.

(123)

Comparing the last result with χ
long
qp,1 in Eq. (65), we see that

χ
long
1 (s) = (�c(s)

1 )2χ
long
qp,1 (s), exactly as in the static case. This

result implies that the residue of the pole is proportional to
(�c(s)

1 )2 ∝ (1 + F c(s)
1 )2 and thus vanishes at the Pomeranchuk

instability also for the case of two nonzero Landau param-
eters, when the pole structure of the susceptibility becomes
more involved. Still, like in the case when only F c(s)

1 is
nonzero, (�c(s)

1 )2 is independent of s = ω/(v∗
F q), and it does

not cancel the poles in χ
long
qp,1 . At 1 + F c(s)

1 < 0, one pole moves
into the upper frequency half-plane, signaling a Pomeranchuk
instability.

D. Perturbation theory for the vertex in the dynamical case

We now return to the case of a single Landau parameter
F c(s)

1 and verify by a perturbative calculation that (�c(s)
1 )2 does

not cancel the dynamical poles in the full l = 1 susceptibility.
We perform the calculation to second order in the Hubbard
(pointlike) interaction U . For simplicity we limit our attention
to the spin channel and also consider a Galilean-invariant
system. We will show that the dynamical vertex �̄s

1(s) has
the pole structure of Eq. (121) with s independent �

c(s)
1 .

To demonstrate this, it suffices to show that the vertex �s
1,

which acts as a source for the dynamical vertex �̄s
1(s) in

Eq. (120), does not vanish at s which corresponds to the pole
of the dynamical vertex. Instead of calculating �s

1 directly, we
compute the product �s

1Z for reasons that will become clear
later in the section. Using the Ward identity associated with
the Galilean invariance, we express quasiparticle Z as [7]

1

Z
= 1 − i

2kF

∑
αβ

∫
d3 p

(2π )3

ω

αβ,αβ (k, p)
(
G2

p

)ω
(k̂ · p),

(124)
where the (2 + 1)-momentum p = (p, ωp) is not necessarily
close to the FS, and k = (kF k̂, 0) + ε is infinitesimally close
to the FS, i.e., ε = (q, ω) with both |q| and ω being infinites-
imally small. The direction of k̂ in Eq. (124) is arbitrary. The

ω

αβ,αβ is the dressed four-fermion vertex and (G2
p)ω(k̂ · p)

is the regular part of the product Gp+ε/2Gp−ε/2 of two exact
Green’s functions, whose arguments differ by ε. (Note that the
q and ω in the definition of the Z factor do not need to coincide
with the corresponding variables describing the collective
mode, but we choose them to be the same for simplicity.) The
product Gp+ε/2Gp−ε/2 can be written as the sum of a regular
part and a singular contribution from the FS [7]:

Gp+ε/2Gp−ε/2 = (
G2

p

)ω + 2π iZ2

v∗
F

p̂ · q̂

s − p̂ · q̂ + iδ sgnωp

× δ(ωp)δ(|p| − kF ), (125)

where p̂ = p/|p| and, as before, s = ω/v∗
F |q|.
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FIG. 15. Diagrams for the four-fermion vertex 
ω
αβ,γ δ to second order in the Hubbard-type interaction. One of external (2 + 1)-momenta,

k = (k, ωk ), is chosen to be on the FS, i.e., |k| = kF and ωk = 0, while the other, p, is generically away from the FS. All internal momenta are
away from the FS. In this sense, renormalization of 
ω

αβ,γ δ comes from high-energy fermions.

To second order in U , 
ω
αβ,αβ is given by the diagrams

shown in Fig. 15. Explicitly,


ω
αβ,γ δ (k, p) = 1

2
δαγ δβδ

[
U + iU 2

∫
d3k′

(2π )3

×
(

2Gk′Gp−k+k′ + Gk′Gp+k−k′

)]

− 1

2
σαγ · σβδ

[
U + iU 2

∫
d3k′

(2π )3
Gk′Gp+k−k′

]
≡ δαγ δβδ


c(k, p) + σαγ · σβδ

s(k, p), (126)

where at the last step we defined the charge and spin parts of
the four-fermion vertex 
c(k, p) and 
s(k, p), respectively.

The renormalized spin-current vertex can be written as (see
Fig. 16)

�s
1σ

z
ββ = σ z

ββ − i

kF

∑
α

∫
d3 p

(2π )3

ω

αβ,αβ (k, p)

× (
G2

p

)ω
(k̂ · p)σ z

αα, (127)

where the internal momentum p = (p, ωp) is again not con-
fined to the FS. It is to be understood that �s

1 is a function
of the (2 + 1)-momentum ε, and �s

1 	= 0 even for ε = 0.
Substituting the last formula in Eq. (126) into (124) and (129)
and summing over spin indices, we obtain

1

Z
= 1 − 2i

kF

∫
d3 p

(2π )3

c(k, p)

(
G2

p

)ω
(k̂ · p) (128)
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k
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FIG. 16. Diagrammatic representation of the high-energy triple
vertex �s

1. The shaded box is 
ω
αβ,γ δ .

and

�s
1 = 1 − 2i

kF

∫
d3 p

(2π )3

s(k, p)

(
G2

p

)ω
(k̂ · p). (129)

To second order in U , the product �s
1Z can then be written as

�s
1Z = 1 − 2i

kF

∫
d3 p

(2π )3

× [
c(k, p) − 
s(k, p)]k̂ · p
(
G2

p

)ω
. (130)

We now show that the product �s
1Z does not depend on

s = ω/v∗
F |q|. To see this, we add a term kF s to k̂ · p on the

right-hand side of Eq. (130) and then subtract off the same
term. Equation (130) then goes over to

�s
1Z = 1 − Q1 − Q2, (131)

where

Q1 = 2is
∫

d3 p

(2π )3
[
c(k, p) − 
s(k, p)]

(
G2

p

)ω
(132)

and

Q2 = 2i
∫

d3 p

(2π )3
[
c(k, p) − 
s(k, p)]

(
k̂ · p

kF
− s

)(
G2

p

)ω
.

(133)

We now use the fact that conservation of charge and
spin allows one to derive two independent relations for Z
(Refs. [3,4,7,28]):

1

Z
= 1 − i

2kF

∑
αβ

∫
d3 p

(2π )3

c(k, p)

(
G2

p

)ω
(charge);

1

Z
= 1 − i

2kF

∑
αβ

∫
d3 p

(2π )3

s(k, p)

(
G2

p

)ω
(spin). (134)

Combining the two, we find that Q1 = 0, i.e., �s
1Z = 1 − Q2.

We now analyze Q2. To first order in U , the vertex remains
static. Then, O(U ) terms in 
c(s) in Eq. (133) vanish because
of the double pole of (G2

p)ω. Let us focus on the O(U 2) terms.
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Substituting Eq. (125) into (133) for Q2 and choosing the
direction of k to be along q, we obtain

Q2 = 2i
∫

d3 p

(2π )3
[
c(k, p) − 
s(k, p)]

(
k̂ · p

kF
− s

)

×
(

Gp+ε/2Gp−ε/2 − 2π iZ2

v∗
F

k̂ · p̂

s − k̂ · p̂ + iδ

× δ(ωp)δ(|p| − pF )

)
(135)

= 2i
∫

d3 p

(2π )3
[
c(k, p) − 
s(k, p)]

× [(v∗
F |q|)−1(Gp−ε/2 − Gp+ε/2)

+ 2π iZ2

v∗
F

k̂ · p̂δ(ωp)δ(|p| − pF )]. (136)

One can now verify that the first term in the right-hand side of
Eq. (136) is zero, i.e.,∫

d3 p

(2π )3
[
c(k, p) − 
s(k, p)](Gp−ε/2 − Gp+ε/2) = 0.

(137)

This can be done by substituting the explicit expressions for

c(s) from Eq. (126) and changing integration variables [53].
We are then left with a contribution coming solely from the
FS,

Q2 = Z2

2πv∗
F

∫
dθ ′

π
cos θ ′[
c(θ, θ ′) − 
s(θ, θ ′)]

= F c
1 − F s

1 , (138)

where θ and θ ′ are the azimuthal angles of k̂ and p̂, respec-
tively. This term is independent of s and only contributes to
the static vertex [26]. Going back to Eq. (131), we obtain

�s
1Z = 1 − F c

1 + F s
1 = m

m∗ (1 + F s
1 ), (139)

where we used the relation m∗/m = 1 + F c
1 valid for a

Galilean-invariant system. This result agrees with the analysis
in the previous section.

E. Charge- and spin-current order parameter:
Ginzburg-Landau functional and time evolution

We now analyze the structure of the Landau functional that
describes the l = 1 Pomeranchuk transition. Our purpose is
to reconcile the apparent contradiction that on one hand the
FL ground state becomes unstable for F c(s)

1 < −1, while on
the other hand the static l = 1 susceptibility remains finite at
F c(s)

1 = −1. The Ginzburg-Landau functional can be derived
from the Hamiltonian of interacting fermions, coupled to
an infinitesimal external perturbation hc(s)

1 , via a Hubbard-
Stratonovich (HS) transformation with an auxiliary field �

c(s)
1 .

For a generic l = 1 order parameter, the vertex remains finite
at the Pomeranchuk transition. In this case, it is sufficient to
consider only the quasiparticle part of the Hamiltonian and
neglect the contributions from high-energy fermions. Then,
the coupling to the external field is given by a bilinear term

hc(s)
1 �

c(s)
1 , and the total susceptibility is identical to the quasi-

particle susceptibility. For the charge- and spin-current order,
the coupling is still proportional to hc(s)

1 �
c(s)
1 term, but the con-

tributions from high-energy fermions to the proportionality
coefficient cannot be neglected, as with these contributions the
fully dressed coupling vanishes at the transition. To see this,
we explicitly separate the four-fermion interaction into the
components coming from the states near and away from the
FS. Such an approach has been used in statistical FL theory
and in renormalization group studies of FLs [54–60].

Our point of departure is the effective, antisymmetrized in-
teraction between fermions, expressed via the vertex function

αβ;γ δ (k, k′; q), where q is a small momentum transfer:

Hint =
∑

k,k′,q,α,β,γ ,δ


αβ;γ δ (k, k′; q)a†
k+ q

2 ,α
ak− q

2 ,γ
a†

k′− q
2 ,β

ak′+ q
2 ,δ

.

(140)

The generic form of the l = 1 component of 
αβ;γ δ (k, k′; q)
is


l=1
αβ;γ δ (k, k′; q) = −k̃ · k̃′(U c

1 f c(|k̃|, |k̃′|)δαγ δβδ

+U s
1 f s(|k̃|, |k̃′|)σαγ · σβδ

)
, (141)

where k̃ = k/kF and k̃′ = k′/kF , and kF should be treated
here as just a normalization constant, which we choose for
convenience to match the Fermi wave number of the quasi-
particles. For charge- and spin-current orders, we replace the
form factors f c,s(|k̃|, |k̃′|) by constants and incorporate them
into U c(s)

1 . An instability in the l = 1 channel can occur if
U c(s)

1 > 0. Below, we approximate the full vertex function

αβ;γ δ by its l = 1 component. Other components are not nec-
essarily small, but we assume they are irrelevant for the low-
energy theory near the l = 1 Pomeranchuk instability. In this
approximation, the effective interaction is separable into two
parts that depend on k̃ and k̃′, and can be written as the sum
of the charge and spin components Hint = Hc

int + Hs
int, where

Hc(s)
int = −U c(s)

1

∑
q

⎛
⎝∑

k,α,γ

k̃a†
k+ q

2 ,α
t c(s)
αγ ak− q

2 ,γ

⎞
⎠

×
⎛
⎝∑

k′,β,δ

k̃′a†
k′− q

2 ,β
t c(s)
βδ ak′+ q

2 ,δ

⎞
⎠, (142)

and, as before, t c
μν = δμν and t s

μν = σ z
μν . We next rewrite the

sums over the fermionic momenta as∑
k

a†
k+ q

2 ,α
t c(s)
αγ ak− q

2 ,γ

=
∑

k

a†
k+ q

2 ,α
t c(s)
αγ ak− q

2 ,γ
δε
|k+ q

2 |,kF
δε
|k− q

2 |,kF

+
∑

k

a†
k+ q

2 ,α
t c(s)
αγ ak− q

2 ,γ
(1 − δε

|k+ q
2 |,kF

δε
|k− q

2 |,kF
) (143)

(and the same for the sum over k′). Here, δε
a,b is nonzero

only for |a − b| < ε, and ε is small compared to kF and will
be taken to zero at the end of the calculation. The purpose
of the projectors δε

a,b is to split the fermions into those near
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the FS, which form the FL of quasiparticles, and those away
from the FS, whose role is to renormalize the interaction
between quasiparticles and their coupling to an external

perturbation. Below, we denote fermions near the FS as
ψ†(ψ ), and fermions away from the FS as ψ̃†(ψ̃ ). Using
(143), we rewrite (142) as

Hint = −U c(s)
1

∑
q

⎡
⎣∑

k,α,γ

k̃
(
ψ

†
k+ q

2 ,α
t c(s)
αγ ψk− q

2 ,γ
+ ψ̃

†
k+ q

2 ,α
t c(s)
αγ ψ̃k− q

2 ,γ

)⎤⎦
⎡
⎣∑

k′,β,δ

k̃′(ψ†
k′− q

2 ,β
t c(s)
βδ ψk′+ q

2 ,δ
+ ψ̃

†
k′− q

2 ,β
t c(s)
βδ ψ̃k′+ q

2 ,δ

)⎤⎦.

(144)

The coupling of the charge- and spin-current order parameter
to a weak external field hc(s)

1 (q, t ) (which may be time depen-
dent) can be split into the low- and high-energy parts in the
same way:

Hh =
∑

q

hc(s)
1 (q, t )

×
∑
k,α,γ

k̃
(
ψ

†
k+ q

2 ,α
t c(s)
αγ ψk− q

2 ,γ
+ ψ̃

†
k+ q

2 ,α
t c(s)
αγ ψ̃k− q

2 ,γ

)
.

Note that the field couples to both ψ and ψ̃ .
The interaction in Eq. (144) contains one term involving

four fermions near the FS, one term involving four fermions
away from the FS, and two mixed terms involving two
fermions at the FS and two away from the FS. We decouple
the quartic term with fermions away from the FS by going
from a Hamiltonian representation to a Lagrangian one, upon
which ψ†

n and ψn with n = k, p, q become Grassman fields,
which depend on the (2 + 1)-momentum n = (n, ωn). Next,
we introduce a momentum- and time-dependent HS vector
field �̃

c(s)
1 (q, t ) to decouple only the term in Hint that in-

volves fermions away from the FS, leaving the term involving
fermions near the FS and the two mixed terms untouched.
We then integrate out the high-energy fermions and obtain the
effective action for �̃

c(s)
1 . The action is given by

S
[
�̃

c(s)
1

] =
∑

q

(
�̃

c(s)
1 (q)

)2

U c(s)
1

+
∑
k,α

ln Mc(s)
α,β (k, k′)|β=α,k=k′

(145)
with

Mc(s)
αβ (k, k′) = G−1

0 (k)δk,k′δαβ − t c(s)
αβ

k̃ + k̃′

2

·
[

hc(s)
1 (q) − 2

(
�̃

c(s)
1 (q) + U c(s)

1

×
∑
p,γ ,δ

p̃ψ
†
p− q

2 ,γ
t c(s)
γ δ ψp+ q

2 ,δ

)]
|q=k′−k, (146)

where G0(k) is the free-fermion propagator.
Corrections to the low-energy theory from high-energy

fermions are obtained by expanding S[�̃c(s)
1 ] up to first order

in hc(s)
1 (q) and up to second order in ψ†ψ . For definite-

ness, we consider the longitudinal l = 1 channel and restrict
the external field to a longitudinal component, i.e., we set
hc(s)

1 (q) = q̂hc(s)
1 (q). The new terms generated by integration

over �̃
c(s)
1 (q) affect the action for low-energy fermions in

three ways: (i) the propagator of low-energy fermions acquires
a Z factor and vF gets renormalized into v∗

F ; (ii) the coupling

to the external field acquires a factor of �
c(s)
1 ; and (iii)

the coupling constant of the interaction between low-energy
fermions is renormalized from −U c(s)

1 to F1/νF . With these
modifications, the action for properly normalized low-energy
fermions (ψ†

k and ψk) becomes

S[ψ] = −
∑

k

ψ
†
k Z−1[ωk − v∗

F (|k| − kF )]ψk

+�
c(s)
1

∑
q

hc(s)
1 (q)

∑
k,α,β

cos θkψ
†
k+ q

2 ,α
t c(s)
αβ ψk− q

2 ,β

+ 1

νF

∑
k,k′,q,α,β,γ ,δ

F c(s)
1 cos θk cos θk′ψ

†
k+ q

2 ,γ
t c(s)
αγ ψk− q

2 ,α

×ψ
†
k′− q

2 ,δ
t c(s)
βδ ψk′+ q

2 ,β , (147)

where the summation over k is confined to the vicinity of the
FS. We see that the factor �

c(s)
1 only changes the response

function to an external perturbation, but does not affect the
thermodynamic stability of the FL state. If we compute the
response function by differentiating the partition function
twice with respect to hc(s)

1 (q), we find the same expression as
in Eq. (3):

χ
c(s)
1 (q) = ∂2Z(

∂hc(s)
1 (q)

)2

=
〈⎛⎝∑

k,α

�
c(s)
1 ψ

†
k+q/2,α

ψk−q/2,α cos θk

⎞
⎠

2〉
S[ψ]

+χ
c(s)
inc,1

= (
�

c(s)
1

)2
χ

c(s)
qp,1(q) + χ

c(s)
inc,1, (148)

where Z is the partition function, 〈. . . 〉S[ψ] denotes averaging
with action S[ψ], and χinc,1 is obtained by differentiating
Z̃ = ∫

e−S[�̃c(s)
1 ] twice with respect to hc(s)

1 without taking into
account the contribution from low-energy fermions [the ψ†ψ

term in (146)]. We recall that the static susceptibility does not
diverge at F c(s)

1 = −1 because �
c(s)
1 = (m/m∗Z )(1 + F c(s)

1 )
vanishes at F c(s)

1 = −1.
We now introduce a low-energy HS field �

c(s)
1 (q) to de-

couple the quartic term in S[ψ]. Integrating out low-energy
fermions, we obtain the effective action for �

c(s)
1 (q) in the

form

S
[
�

c(s)
1

] =
∑

q

(
a|�c(s)

1 (q)|2 + b|�c(s)
1 (q)|4

+�
c(s)
1 hc(s)

1 (q)�c(s)
1 (q)χ c(s)

1,free(q) + c.c.) (149)

plus higher-order terms.
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In Eq. (149), a ∝ 1 + F c(s)
1 changes sign at the critical

point, i.e., fluctuations of the order parameter �
c(s)
1 diverge

at the critical point, like for any other order parameter. In this
sense, Pomeranchuk order with the structure of spin/charge
current does develop when 1 + F c(s)

1 becomes negative. What
makes the case of spin/charge current special is that the
response to an external field gets critically reduced because
of destructive interference from high-energy fermions.

The presence of �
c(s)
1 ∝ 1 + F c(s)

1 in the response function
changes the time evolution of �

c(s)
1 (t∗) after an instant pertur-

bation hc(s)
1 (t∗) = hc(s)

1 δ(t∗). For 1 + F c(s)
1 > 0, we have

�
c(s)
1 (t∗) ∝ hc(s)

1

(
1 + F c(s)

1

)2
t∗e−(1+F c(s)

1 )t∗/4

× sin
√

1+F c(s)
1

2 t∗√
1+F c(s)

1
2 t∗

. (150)

The functional form of �
c(s)
1 (t∗) is the same as for a generic

l = 1 order parameter, when high-energy renormalizations
can be neglected, just the amplitude is smaller. For 1 +
F c(s)

1 < 0, a deviation from the normal state grows as

�
c(s)
1 (t∗) ∝ hc(s)

1

(
1 + F c(s)

1

)2
t∗ sinh

√
|1+F c(s)

1 |
2 t∗√

|1+F c(s)
1 |

2 t∗
. (151)

The functional form is again the same as for a generic l = 1
order parameter. The presence of the overall small factor (1 +
F c(s)

1 )2 just implies that it takes a longer time for a deviation
to develop. In particular, the ratio of �

c(s)
1 (t∗) in (151) and

the initial perturbation hc(s)
1 becomes O(1) only after �

c(s)
1 (t∗)

begins to grow exponentially.

VI. CONCLUSIONS

In this paper, we analyzed zero-sound collective bosonic
excitations in different angular momentum channels in a metal
with an isotropic, but not necessarily parabolic, dispersion εk .
We explicitly computed the longitudinal and transverse dy-
namical susceptibility χ

c(s)
l (q, ω) in charge and spin channels

for l = 0, l = 1, and l = 2, and extracted zero-sound modes
at ω = sv∗

F q from the poles of χ
c(s)
l (q, ω). We also presented

the generic structure of zero-sound excitations for arbitrary
frequency. Our key goal was to identify, in each case, the
mode, whose frequency moves from the lower to the upper
half-plane as the system undergoes a Pomeranchuk instability,
when the corresponding Landau parameter F c(s)

l = −1. Right
at the transition, the mode is located at ω = 0, i.e., the static
susceptibility diverges. At F c(s)

l < −1, the mode moves to
the upper frequency half-plane, and a perturbation around
a state with no Pomeranchuk order grows exponentially

with time, i.e., the system becomes unstable toward sponta-
neous development of a uniform order parameter, bilinear in
fermions.

We also discussed the evolution of the poles with F c(s)
l >

−1 both for infinitesimally small and for finite fermionic
damping rate. For infinitesimally small damping, we found
that in some channels, the poles are located very close to a real
frequency axis and outside particle-hole continuum already
for negative (attractive) F c(s)

l . This result is at a first glance an
unexpected one as naively one would expect the poles to be
located inside the continuum. We found that these poles are
located below the branch cut and cannot be gradually moved
to real axis without simultaneously moving from the physical
Riemann sheet to an unphysical one. As the consequence,
these poles are hidden in the sense that, although they do
exist infinitesimally close to the real axis, they are not visible
in Im χ

c(s)
l (ω) for real ω. Besides, we found that for l >

0, zero-sound poles for positive F c(s)
l exist only if F c(s)

l is
below a certain value. For larger F c(s)

1 , the poles move from
the physical Riemann sheet to an unphysical one. This does
not eliminate the zero-sound peak in Im χ

c(s)
l (ω) for real

ω, but the width of the peak becomes larger than fermionic
damping γ . We argued that in this situation the behavior of
time-dependent susceptibility χ

c(s)
l (t ) at large t is determined

by the end point of the branch cut (ω = ±vF q) rather than by
the zero-sound peak.

We next showed that the situation is somewhat different
for l = 1 order parameters with the same form factors as that
of spin or charge currents. In these two cases, the bosonic
response has a zero-sound pole that crosses to the upper
half-plane at F c(s)

1 < −1, but its residue vanishes precisely
at F c(s)

1 = −1. We argued that in this situation, the static
uniform susceptibility does not diverge at F c(s)

1 = −1, yet
at 1 + F c(s)

1 < 0 the system still develops long-range Pomer-
anchuk order, and the shape of the FS gets modified. It just
takes more time for the system to reach the steady ordered
state.

ACKNOWLEDGMENTS

We thank L. Levitov, G. Orso, J. Schmalian, P. Woelfle,
and Y-M. Wu for stimulating discussions. This work was
supported by the NSF Grants No. DMR-1523036 (A.K. and
A.V.C.), No. NSF-DMR-1720816 (D.L.M.), and UF DSR
Opportunity Fund No. OR-DRPD-ROF2017 (D.L.M.). L.P.P.
acknowledges financial support from the A. V. Humboldt
foundation. A.V.C. is thankful to the Aspen Center for Physics
(ACP) for hospitality during the completion of this work.
ACP is supported by National Science Foundation grant PHY-
1607611.

[1] I. Pomeranchuk, Zh. Exp. Teor. Fiz. 35, 524 (1959) [Sov. Phys.–
JETP 8, 361 (1959)].

[2] I. Dzyaloshinskii and P. Kondratenko, Zh. Exp. Teor. Fiz. 70,
1987 (1976) [J. Exp. Theor. Phys. 43, 1036 (1976)].

033134-27



KLEIN, MASLOV, PITAEVSKII, AND CHUBUKOV PHYSICAL REVIEW RESEARCH 1, 033134 (2019)

[3] P. S. Kondratenko, Zh. Exp. Teor. Fiz. 47, 1536 (1965) [Sov.
Phys.–JETP 20, 1032 (1965)].

[4] P. S. Kondratenko, Zh. Exp. Teor. Fiz. 46, 1438 (1964) [Sov.
Phys.–JETP 19, 972 (1964).

[5] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys.
10, 97 (2014).

[6] E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and
A. P. Mackenzie, Annu. Rev. Condens. Matter Phys. 1, 153
(2010).

[7] L. Landau, E. Lifshitz, and L. Pitaevskii, Course of Theoretical
Physics: Statistical Physics, Part 2, Vol. 9 (Pergamon, Oxford,
1980).

[8] A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics, Dover Books on
Physics Series (Dover, New York, 1975).

[9] V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64,
195109 (2001).

[10] C. Wu and S.-C. Zhang, Phys. Rev. Lett. 93, 036403 (2004).
[11] L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 (2006).
[12] C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B 75,

115103 (2007).
[13] A. V. Chubukov and D. L. Maslov, Phys. Rev. Lett. 103, 216401

(2009).
[14] D. L. Maslov and A. V. Chubukov, Phys. Rev. B 81, 045110

(2010).
[15] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Proc. Natl.

Acad. Sci. USA 114, 4905 (2017).
[16] A. V. Chubukov, R. M. Fernandes, and J. Schmalian, Phys. Rev.

B 91, 201105(R) (2015).
[17] F. Wang, S. A. Kivelson, and D.-H. Lee, Nat. Phys. 11, 959

(2015).
[18] S. A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev, Phys.

Rev. B 89, 155130 (2014).
[19] J.-H. Chu, H.-H. Kuo, J. G. Analytis, and I. R. Fisher, Science

337, 710 (2012).
[20] J.-H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon,

Z. Islam, Y. Yamamoto, and I. R. Fisher, Science 329, 824
(2010).

[21] R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J.
Schmalian, Phys. Rev. B 85, 024534 (2012).

[22] M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127
(2010).

[23] A. Klein and A. Chubukov, Phys. Rev. B 98, 220501(R)
(2018).

[24] A. Klein, S. Lederer, D. Chowdhury, E. Berg, and A. Chubukov,
Phys. Rev. B 97, 155115 (2018).

[25] A. Klein, S. Lederer, D. Chowdhury, E. Berg, and A. Chubukov,
Phys. Rev. B 98, 041101(R) (2018).

[26] Y.-M. Wu, A. Klein, and A. V. Chubukov, Phys. Rev. B 97,
165101 (2018).

[27] E. I. Kiselev, M. S. Scheurer, P. Wölfle, and J. Schmalian, Phys.
Rev. B 95, 125122 (2017).

[28] A. V. Chubukov, A. Klein, and D. L. Maslov, Zh. Exp. Teor.
Fiz. 154, 960 (2018) [J. Exp. Theor. Phys. 127, 826 (2018)].

[29] A. J. Leggett, Phys. Rev. 140, A1869 (1965).
[30] C. Pethick and D. Ravenhall, Ann. Phys. (NY) 183, 131 (1988).
[31] M. T. Béal-Monod, O. Valls, and E. Daniel, Phys. Rev. B 49,

16042 (1994).
[32] R. H. Anderson and M. D. Miller, Phys. Rev. B 84, 024504

(2011).
[33] D. Z. Li, R. H. Anderson, and M. D. Miller, Phys. Rev. B 85,

224511 (2012).
[34] V. A. Zyuzin, P. Sharma, and D. L. Maslov, Phys. Rev. B 98,

115139 (2018).
[35] J. Y. Khoo and I. Sodemann Villadiego, Phys. Rev. B 99,

075434 (2019).
[36] A. Lucas and S. Das Sarma, Phys. Rev. B 97, 115449 (2018).
[37] I. Torre, L. Vieira de Castro, B. Van Duppen, D. Barcons Ruiz,

F. M. Peeters, F. H. L. Koppens, and M. Polini, Phys. Rev. B 99,
144307 (2019).

[38] N. Dupuis, Lecture notes (2011), https://www.lptmc.jussieu.fr/
users/dupuis.

[39] A.-M. Tremblay, Lecture notes (2019), https://www.physique.
usherbrooke.ca/tremblay/cours/phy-892/N-corps.pdf.

[40] P. Nozières and D. Pines, Theory of Quantum Liquids (Westview
Press, Boulder, CO, 1999).

[41] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435
(1977).

[42] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64,
214204 (2001).

[43] G. Orso, Proprietá dinamiche delliquido elio-3 vicino al punto
spinodale, Ph.D. thesis, Universitá Degli Studi Di Trento, 1999.

[44] B. L. Altshuler and A. Aronov, in Electron-Electron Interac-
tions in Disordered Systems, Vol. 10, edited by A. Efros and M.
Pollak (Elsevier, Amsterdam, 1985), pp. 1–153.

[45] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985).

[46] A. M. Finkel’stein, Int. J. Mod. Phys. B 24, 1855 (2010).
[47] V. I. Fal’ko and D. E. Khmel’nitskii, Zh. Exp. Teor. Fiz. 95,

1988 (1989) [J. Exp. Theor. Phys. 68, 1150 (1989)].
[48] D. O. Oriekhov and L. S. Levitov, arXiv:1903.10648.
[49] Y. Gallais and I. Paul, Comptes Rendus Physique 17, 113

(2016).
[50] A. Klein, D. L.Maslov, and A. V. Chubukov (unpublished).
[51] H. W. Wyld, in Mathematical Methods For Physics, edited by

D. Pines (Perseus Books, New York, 1976).
[52] S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).
[53] A. V. Chubukov and D. L. Maslov, Phys. Rev. B 81, 245102

(2010).
[54] C. De Dominicis, J. Math. Phys. 3, 983 (1962).
[55] R. Balian and C. De Dominicis, Physica (Amsterdam) 30, 1927

(1964).
[56] J. M. Luttinger, Phys. Rev. 174, 263 (1968).
[57] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[58] N. Dupuis, Int. J. Mod. Phys. B 14, 379 (2000).
[59] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.

Schönhammer, Rev. Mod. Phys. 84, 299 (2012).
[60] C. Platt, W. Hanke, and R. Thomale, Adv. Phys. 62, 453 (2013).

033134-28

https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/PhysRevLett.93.036403
https://doi.org/10.1103/PhysRevLett.93.036403
https://doi.org/10.1103/PhysRevLett.93.036403
https://doi.org/10.1103/PhysRevLett.93.036403
https://doi.org/10.1103/PhysRevB.73.045127
https://doi.org/10.1103/PhysRevB.73.045127
https://doi.org/10.1103/PhysRevB.73.045127
https://doi.org/10.1103/PhysRevB.73.045127
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevB.75.115103
https://doi.org/10.1103/PhysRevLett.103.216401
https://doi.org/10.1103/PhysRevLett.103.216401
https://doi.org/10.1103/PhysRevLett.103.216401
https://doi.org/10.1103/PhysRevLett.103.216401
https://doi.org/10.1103/PhysRevB.81.045110
https://doi.org/10.1103/PhysRevB.81.045110
https://doi.org/10.1103/PhysRevB.81.045110
https://doi.org/10.1103/PhysRevB.81.045110
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1103/PhysRevB.91.201105
https://doi.org/10.1103/PhysRevB.91.201105
https://doi.org/10.1103/PhysRevB.91.201105
https://doi.org/10.1103/PhysRevB.91.201105
https://doi.org/10.1038/nphys3456
https://doi.org/10.1038/nphys3456
https://doi.org/10.1038/nphys3456
https://doi.org/10.1038/nphys3456
https://doi.org/10.1103/PhysRevB.89.155130
https://doi.org/10.1103/PhysRevB.89.155130
https://doi.org/10.1103/PhysRevB.89.155130
https://doi.org/10.1103/PhysRevB.89.155130
https://doi.org/10.1126/science.1221713
https://doi.org/10.1126/science.1221713
https://doi.org/10.1126/science.1221713
https://doi.org/10.1126/science.1221713
https://doi.org/10.1126/science.1190482
https://doi.org/10.1126/science.1190482
https://doi.org/10.1126/science.1190482
https://doi.org/10.1126/science.1190482
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.85.024534
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.98.220501
https://doi.org/10.1103/PhysRevB.98.220501
https://doi.org/10.1103/PhysRevB.98.220501
https://doi.org/10.1103/PhysRevB.98.220501
https://doi.org/10.1103/PhysRevB.97.155115
https://doi.org/10.1103/PhysRevB.97.155115
https://doi.org/10.1103/PhysRevB.97.155115
https://doi.org/10.1103/PhysRevB.97.155115
https://doi.org/10.1103/PhysRevB.98.041101
https://doi.org/10.1103/PhysRevB.98.041101
https://doi.org/10.1103/PhysRevB.98.041101
https://doi.org/10.1103/PhysRevB.98.041101
https://doi.org/10.1103/PhysRevB.97.165101
https://doi.org/10.1103/PhysRevB.97.165101
https://doi.org/10.1103/PhysRevB.97.165101
https://doi.org/10.1103/PhysRevB.97.165101
https://doi.org/10.1103/PhysRevB.95.125122
https://doi.org/10.1103/PhysRevB.95.125122
https://doi.org/10.1103/PhysRevB.95.125122
https://doi.org/10.1103/PhysRevB.95.125122
https://doi.org/10.1134/S0044451018110032
https://doi.org/10.1134/S0044451018110032
https://doi.org/10.1134/S0044451018110032
https://doi.org/10.1134/S0044451018110032
https://doi.org/10.1134/S1063776118110122
https://doi.org/10.1134/S1063776118110122
https://doi.org/10.1134/S1063776118110122
https://doi.org/10.1134/S1063776118110122
https://doi.org/10.1103/PhysRev.140.A1869
https://doi.org/10.1103/PhysRev.140.A1869
https://doi.org/10.1103/PhysRev.140.A1869
https://doi.org/10.1103/PhysRev.140.A1869
https://doi.org/10.1016/0003-4916(88)90249-7
https://doi.org/10.1016/0003-4916(88)90249-7
https://doi.org/10.1016/0003-4916(88)90249-7
https://doi.org/10.1016/0003-4916(88)90249-7
https://doi.org/10.1103/PhysRevB.49.16042
https://doi.org/10.1103/PhysRevB.49.16042
https://doi.org/10.1103/PhysRevB.49.16042
https://doi.org/10.1103/PhysRevB.49.16042
https://doi.org/10.1103/PhysRevB.84.024504
https://doi.org/10.1103/PhysRevB.84.024504
https://doi.org/10.1103/PhysRevB.84.024504
https://doi.org/10.1103/PhysRevB.84.024504
https://doi.org/10.1103/PhysRevB.85.224511
https://doi.org/10.1103/PhysRevB.85.224511
https://doi.org/10.1103/PhysRevB.85.224511
https://doi.org/10.1103/PhysRevB.85.224511
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.98.115139
https://doi.org/10.1103/PhysRevB.99.075434
https://doi.org/10.1103/PhysRevB.99.075434
https://doi.org/10.1103/PhysRevB.99.075434
https://doi.org/10.1103/PhysRevB.99.075434
https://doi.org/10.1103/PhysRevB.97.115449
https://doi.org/10.1103/PhysRevB.97.115449
https://doi.org/10.1103/PhysRevB.97.115449
https://doi.org/10.1103/PhysRevB.97.115449
https://doi.org/10.1103/PhysRevB.99.144307
https://doi.org/10.1103/PhysRevB.99.144307
https://doi.org/10.1103/PhysRevB.99.144307
https://doi.org/10.1103/PhysRevB.99.144307
https://www.lptmc.jussieu.fr/users/dupuis
https://www.physique.usherbrooke.ca/tremblay/cours/phy-892/N-corps.pdf
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1142/S0217979210064642
https://doi.org/10.1142/S0217979210064642
https://doi.org/10.1142/S0217979210064642
https://doi.org/10.1142/S0217979210064642
http://arxiv.org/abs/arXiv:1903.10648
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1016/j.crhy.2015.10.001
https://doi.org/10.1103/PhysRev.131.993
https://doi.org/10.1103/PhysRev.131.993
https://doi.org/10.1103/PhysRev.131.993
https://doi.org/10.1103/PhysRev.131.993
https://doi.org/10.1103/PhysRevB.81.245102
https://doi.org/10.1103/PhysRevB.81.245102
https://doi.org/10.1103/PhysRevB.81.245102
https://doi.org/10.1103/PhysRevB.81.245102
https://doi.org/10.1063/1.1724313
https://doi.org/10.1063/1.1724313
https://doi.org/10.1063/1.1724313
https://doi.org/10.1063/1.1724313
https://doi.org/10.1016/0031-8914(64)90076-X
https://doi.org/10.1016/0031-8914(64)90076-X
https://doi.org/10.1016/0031-8914(64)90076-X
https://doi.org/10.1016/0031-8914(64)90076-X
https://doi.org/10.1103/PhysRev.174.263
https://doi.org/10.1103/PhysRev.174.263
https://doi.org/10.1103/PhysRev.174.263
https://doi.org/10.1103/PhysRev.174.263
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1142/S0217979200000376
https://doi.org/10.1142/S0217979200000376
https://doi.org/10.1142/S0217979200000376
https://doi.org/10.1142/S0217979200000376
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1080/00018732.2013.862020
https://doi.org/10.1080/00018732.2013.862020
https://doi.org/10.1080/00018732.2013.862020
https://doi.org/10.1080/00018732.2013.862020

