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Theory of nonlinear interactions between x rays and optical radiation in crystals
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We show that the nonlinear interactions between x rays and longer wavelengths in crystals depend strongly
on the band structure and related properties. Consequently, these types of interactions can be used as a powerful
probe for fundamental properties of crystalline bulk materials. In contrast to previous work that highlighted
that these types of nonlinear interactions can provide microscopic information on the valence electrons at the
atomic scale resolution, we show that these interactions also contain information that is related to the periodic
potential of the crystal. We explain how it is possible to distinguish between the two contributions. Our work
indicates on the possibility for the development of novel multidimensional pump-probe metrology techniques
that will provide spectroscopic information combined with structural information including ultrafast dynamics

at the atomic scale.
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I. INTRODUCTION

The possibility to utilize nonlinear interactions between
x rays and radiation at wavelengths ranging from infrared
(IR) to ultraviolet (UV) as an atomic-scale probe for inter-
molecular interactions and for properties of valence electrons
has been discussed in several publications [1-9]. This probe
can provide a new insight into atomic-scale processes, such
as charge transfer between atoms in molecules and micro-
scopic redistribution of charges in response to illumination.
The technique relies on the atomic scale wavelengths of the
x-rays, which provide the high resolution, while the longer
wavelengths (UV/optical) are used to enhance the interactions
with the valence electrons, which are usually weak for x rays.

The strong wavelength dependence of spontaneous para-
metric down conversion (SPDC) of x rays into UV, which
has been observed in recent experiments [3,6,8—11] sug-
gests that nonlinear interactions between x rays and longer
wavelengths can be used also as new spectroscopy tools for
the investigation of phenomena that traditionally are probed
by using long-wavelength radiation with the advantage of
providing microscopic atomic-scale information. Moreover, x
rays penetrate into materials more than electrons and therefore
provide bulk properties in contrast to methods that are relied
on electron or ion scattering.

The main challenge in measuring x ray and optical/UV
nonlinear interactions is the weakness of the effects. To over-
come this challenge, experiments are performed with crystals
where the periodic structure is used to enhance the signal in
analogy to Bragg scattering, in which the reciprocal lattice
vector is used to achieve momentum conservation (phase
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matching). The use of the reciprocal lattice vector also pro-
vides the atomic scale resolution, which can be achieved by
measuring the efficiencies of the effect for many reciprocal
lattice vectors and by using Fourier analysis [3]. Since the
goal of the measurements is to probe microscopic informa-
tion, the use of crystals introduces a new challenge for the
interpretation of the results since the measured signal depends
not just on the atomic or inter unit cell interactions between
the valence electrons but also on the periodic potential of the
materials. It is therefore essential to develop a formalism that
enables the separation of the two contributions.

We note that other approaches such as inelastic x-ray scat-
tering (IXS) are very useful for the investigation of properties
of valence electrons including, for instance, valence charge
distribution, density of states, and the macroscopic linear
response [12—-14]. In resonant inelastic scattering (RIXS),
the core electrons are excited to valance states and decay
by nonradiative scattering processes to lower valence states.
In the last step of the process, the electrons return to the
original core state and radiate at lower photon energy with an
energy that corresponds to the energy difference between the
two intermediate valence states. Other IXS processes that do
not require the excitation of core electrons such as Compton
scattering [15], can be used to probe the ground-state electron
momentum density (EMD) and the electron charge density of
the investigated sample [16]. However, the spatial resolution
of the measurement is limited by the spatial resolution of the
detectors and by the beam size, whereas in nonlinear x-ray
processes the use of the reciprocal lattice vector for momen-
tum conservation provides the possibility to utilize Fourier
synthesis to measure atomic scale structural information in
contrast to conventional IXS. An interesting analogy between
between SPDC and IXS (in the low-energy transfer limit)
was introduced by Freund and Levine [17], by describing the
interaction as Thomson scattering of x rays from optically
induced valence charges. In this work, we indeed show that
the nonlinearity depends on the induced charge at the visible
frequency, but only to a certain part of the nonlinearity.
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To date, most theoretical models that have been consid-
ered for the description of nonlinear interactions between x
rays and longer wavelengths have focused on the ability to
observe microscopic information and on the estimation of the
strength of the effects [2-5,7,17-20]. However, they have not
addressed the challenge of the separation of the inter unit
cell information from the periodic information. We note that
Freund and Levine and also Jha and colleagues [17-19,21-25]
have considered the periodic structure but not the influence
of the electronic band structure on the nonlinear interactions,
which can be significant for valence electrons with binding
energies that are weaker or on the order of the periodic
potential. In a recent theoretical paper, the authors analyzed
the general case of x ray diffraction from laser driven systems
using a quantum electrodynamics approach, but in that paper
the main focus is on the nonperturbative regime [26].

In several recent experimental papers, the experimental
results were fitted to the theory by using the band gap rather
than the atomic binding energy, but although good agreements
were obtained for transparent materials, this approach is phe-
nomenological and failed for energies near or above the band
gap [6].

In this paper, we illustrate how the nonlinear interaction
between x rays and longer wavelengths depends on the band
structure and related properties by using perturbation theory
in the density matrix formalism. As an example we describe
explicitly the dependence of the nonlinear interactions on the
joint density of states of interband transitions. In addition,
we analyze the polarization dependencies of the nonlinear
interactions and predict that it is not trivial.

II. THEORETICAL DESCRIPTION
AND GENERAL FORMALISM

We focus here on the second-order nonlinearity that con-
stitutes a source term in the wave equations that describe
effects such as sum-frequency generation (SFG) and SPDC.
Schematic diagrams for these processes are presented in
Fig. 1. The nonlinear interactions can be described by the
second nonlinear current density or the nonlinear conductivity.

A. Hamiltonian

To describe the nonlinear optical interaction in the crystal,
we use the minimal electromagnetic coupling Hamiltonian of
an electron in a periodic potential

A 2
H = Ho + Hiy = (p+eA)Y +VX),
2m
P
Ho = — + V&), (D
2m

e &2 )
Hiw=—P-A+A-p)+ —A",
2m 2m

where the unperturbed Hamiltonian is H, the electron mass
is m, the momentum operator is p and the potential V (x) =
V(x + R) is periodic with respect to translation by a lattice
vector, where R is any lattice vector. In our derivation, the
electromagnetic interaction described by H;, is treated as
a perturbation, where —e is the electron charge, A(x, ) =
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FIG. 1. Schematic diagrams for the nonlinear processes of SFG
and SPDC. (a) SFG: two input photons at frequencies w; and w,
are converted to a photon at frequency w; = w; + w,. (b) SPDC: an
input pump photon at frequency w), is converted to a photon pair at
frequencies w, and w;,.

. %“’[’)e"'“’l’ is the electromagnetic vector potential assumed
in the Coulomb gauge, and &(wy) is the electric field envelope
of the /th mode. The solutions of the unperturbed Hamiltonian
H, are given by the Bloch states

Holnq) = ex(q)Inq), @

with eigenvalues &,(q), where n is the band number and q is
the wave vector associated with the Bloch state.

B. Density matrix

We follow the standard procedure for the calculation of
nonlinear conductivity by perturbation theory in the density
matrix formalism [22]. The density matrix elements p,,
evolve according to

a nm
inZl
ot

where n and m signifies the eigenstates of the unperturbed
Hamiltonian Hy. We denote the phenomenological damping
coefficients as y,,, and p© = fy(H,) is the relaxed density
matrix which is the normalized Fermi-Dirac distribution, such
that tr(p®) = 1. The full density matrix p(t), can be ex-
pressed as a power series in the field A

o(t) = ,0(0) 4 ,O(A) + p(AA) 4+ @

where the first term on the right-hand side is the relaxed
density matrix in the absence of the field, the second term is
linear with the field amplitude, the third term is square in the
field amplitude and so on.

= [HO + Hinta p]nm - ihynm (;Onm - P,ES:), (3)

C. Current density

Following the perturbation theory formalism, we calculate
average current density by using

(), 1) = tr(p(0)fop(x, 1)), &)

where the current density operator [27] is given by j,,(x, 1) =
j‘gp (x) + jﬁ‘p (x, 7). The first term being the momentum current
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density j{)’p(x) = ﬁ{Dop(x), p} and the second term is the
so called gauge current density jgp(x, t) = ﬁDop(x)A(x, t).
We expressed these operators by the charge density operator,
which we define as Dy, (x) = —elx)(x|. The current density
can be expressed as a power series in the field A

Gy =" (H”

= (NP + H V@, )+ HP@, )+, (6)

where n signifies the order in which the current density de-
pends on the field. Following Eq. (4), we find that the second-
order current density is (j)® (x, 1) = (j)*? + (j)(z’A), where
(J)YP) = tr(p@Ad) jf)’p(x)) is the second-order current den-
sity that arises from the momentum part and (j)*A =
tr(p®W j‘gp (x, 1)) is the second-order current density that arises
from the gauge part of the current density operator. The tem-
poral part of the second-order current density can be Fourier

expended

. 1 . —i(w;+wp
NP0 =2 NP o+ope @t )
Ll

Each Fourier coefficient in the direction of the generated field,
is related to the conductivity [28] by the following expression:

)P + o) - &

3
=Y 0o+ ) e) - &) e(wr) - &), (8)
jk=1

where ¢; is a unit vector in the ith direction and {i, j, k}
indicates Cartesian coordinates. Since the unperturbed system
is periodic in the lattice spacing, we Fourier expand spatial
part of the nonlinear conductivity,

@

. 2 . iG-
ot or) =) oo + o 6,

G
@ . 1 @)y iGx
ik (0 + wp; G) = v /V dx ik (x; 01 + wyp)e .
where G is the reciprocal lattice vector and V is the crystal
volume. The spatial Fourier component of the conductivity
can be selected via the phase-matching condition relevant to
the process of choice.

D. Second-order conductivity for spontaneous parametric
down-conversion of x rays into UV/visible radiation

Here we derive the expression for the conductivity relevant
to the process of SPDC of x rays into UV/visible radiation.
In this case, we simplify the expressions by assuming that the
x-ray wavelengths are far above any electronic transitions and
use the dipole approximation for the optical beam (but not for
the x rays). We adopt here the notation that is used for SPDC

J

and denote the input x-ray beam, the output x-ray beam, and
the optical beam as the pump, signal, and idler respectively.

Since the wavelengths of the x rays are also on the order of
the distance between the atomic planes, the reciprocal lattice
vector is used to comply with the requirement for momentum
conservation (phase matching), given by the equation k, +
G =k, + k;4, where G is the reciprocal lattice vector, and
k,, K, kiz stand for the pump, signal and idler wave vectors
respectively. Thus the measured intensity is proportional to
the Fourier coefficient that corresponds to the selected recip-
rocal lattice vector.

It is possible to write the Fourier component of the second-
order nonlinear conductivity that corresponds to the reciprocal
lattice vector G of the signal as a sum of two terms that are
originated from the gauge part and from the momentum part
of the current density operator:

e
mwp,

63

+ ———Bijr(wig, kit; G),  (10)

Vmw,w;

oijk(05;G) = Di(—wia; G)éij

Here, w;, wiq, and w, are the frequencies of the signal, idler,
and pump, respectively, and §;; is the Kronecker delta.

As described in Sec. IIB, in our procedure, we expand
the density matrix in the unperturbed basis using the Bloch
states. In this work, we are interested in referring the nonlinear
current density to microscopic and inter unit cell information,
hence we use the Wannier basis, which contains this infor-
mation. The |W,) is a Wannier function of band n. We use a
standard relation between the Bloch and Wannier basis, which
is given by

1 )
na) = = D RTR)W,), 11
R

where T(R) = e~7" is the translation operator. To further
simplify our formulas, we assume that the Wannier functions
are very localized (there is no overlap between neighboring
functions at different sites), such that the overlap between
nearest-neighbor Wannier functions is very weak as in the
case of insulators and semiconductors. By making this as-
sumption, we can separate the contribution of the intermolec-
ular interactions and the band structure. Since the optical
response is comprised of a sum over all quantum numbers, the
interaction dependence on the matrix elements and the band
structure is intertwined. However, by assuming that the
Wannier functions are very localized, the summation over the
matrix elements is reduced to a sum over only the band num-
bers. The rest of the terms depend on all quantum numbers
hence have the meaning of the spectral dependence of the
interaction. Following these steps we find that Dy (—w;y; G)
and B jx(wiq, Kiq; G) are given by

ih 2 . A
Di(—wia; G) = <%> Z (W |6 W, Wy [P - 1 [Wo Moy i, (81, Kia), (12)
nyny
Biji(wiq, kia; G) = Z hkig — G) - <an |€7"G'x[@i(P 8;) — &;(p - &)|Wy, >(Wnl p- ék|an)Inz,nl (&ia, Kia), (13)
nyny
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_(fO (Snl (q + kid)) - f0(8n2 (Q)))

(14)

In N (Sidv kid) = / q N s
v Q) sz eial (en, (@ + Kia) — €4, (@) — €ia) + iV, qikignaq

where we denote the spectral dependence of the interaction to
be I, »,(€ia, Kiq). The summation indices n; and n, stands for
band numbers, and the idler energy is given by &;; = hiw;y.

As we show in the Appendix, the function Dy(—w;s; G)
is the induced charge density tensor Fourier component.
Each term has a different polarization dependence; while the
first term is symmetric with respect to (i <> j), the tensor
Bjji(wiq, Kig; G) is antisymmetric with respect to (i <> j).
This polarization dependence implies that the first term is
nonvanishing when the polarization of the signal is parallel
to the pump, and the second term is nonvanishing when
they are orthogonal to each other. The different polariza-
tion dependence of the two terms can be used to probe the
contributions of the induced charge density, band transitions
dependence, and intermolecular interactions matrix elements.
The functions B;jx(wiq, Kig; G) and Di(—w;q; G) contain the
information on the interaction dependence on the idler mode
(the long wavelength), the band structure, and intermolecular
interactions matrix elements.

The information about the intermolecular interactions is
encoded in the matrix elements and the interaction de-
pendence on the band structure is given by the function
Iy, n,(€ia, Kig). It is a measure of the number of band transi-
tions (n; <> ny) with separation of k;; and population differ-
ence of fo(en, (q + Kig)) — fo(en,(q)) that are closely related
to the idler energy &;;,. Moreover, it is important to note that
for maximally localized Wannier functions (as assumed here)
there will only be contributions from interband transitions,
when the dipole approximation is assumed with respect to the
idler mode. This is because under this assumption the Wannier
functions are real [29].

III. MODEL CASE OF A SEMICONDUCTOR
WITH TWO BANDS

In this section, we focus on the nonlinear interaction in
semiconductors. We begin with the spectral dependence of
the nonlinear conductivity. Since we have already shown
that when the Wannier functions are localized, the spectral
dependence can be described by the function I, ,,(¢iq, Kia)
[Eq. (14)] it is sufficient to explore the spectral dependence
of this function. To get more insight we consider a simple
example of a semiconductor at zero temperature with two
energy bands, where the valence band is fully occupied and
the conduction band is completely vacant and in addition, we
assume that the damping coefficients are equal to a constant
y. Under these assumptions, the difference in the two Fermi-
Dirac distributions is proportional to a delta function and
therefore, the function given by Eq. (14) can be simplified by
expressing it using two functions we denote as I (g4, K;4) and
I_(¢&iq, Kiq), which satisfy the equation

Inl,l‘lz (Eids k[d)
= 81,,20m,, 114 (&ia, Kig) + 8,100, 21— (€ia, Kia),  (15)

(

and their expression is given by

82,1(e, Kig)
cial(e F eiq) £ihy]’

Lo, ki) = v / de (16)

where the integration is performed over states between the two
bands separated by a wave vector difference equals to k;; as
illustrated in Fig. 2, v is the volume of the primitive cell, and
the weight function in the integral is the joint density of states,

. . 1 ds
which is defined as gnl’nz(S,k) = m/‘S(e) m

where Aegy, n,(q.K) = ¢,,(q + k) —&,,(q). Note that for
k = 0 the expression reduces to the standard definition of the
joint-density of states [30], and can be considered as such for
a wave vector much smaller than a typical size of the first
Brillouin zone (k| « 27”). From Eq. (16) and from Fig. 2, it
is clear that ¢;; acts as a resonance in the integral form of
the function I, (¢4, K;y), and therefore is more sensitive to
the joint density of states than I_(g;4, kiy). This sensitivity
is related to the contribution that arises from the number of
energy transitions at the idler energy.

To illustrate this, we consider the following simple energy
dispersion:

e1(k) = Vislgi1 (Kl
e2(K) = &gqp + Vs (2 — [g1(K))), a7

where &g, is the gap energy, Vi, is the width of each band,
and g (k) is the band structure form function we used for this
example [31]. The dependence of the functions I (&;4, Kig ~
0) = L.(e;4) on small idler energies is evaluated numerically

£2(q)

Aeo 1(q", kiq)

1
1
1
1
/o
1
1
1
1

e1(q)

¢ ¢+ kg

FIG. 2. Schematic view of the energy difference between bands
(2 <> 1) at wave vector ¢g*, separated by k;;.
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FIG. 3. Band structure dependence of the nonlinear current den-
sity. (a) The term I, (§;;) (green) shows a clear peak at the band gap
energy while the term /_(8;;) (red) decreases monotonically with the
relative idler energy £;4. (b) The difference between the I, (§;4) and
the /_(&;4) term. The vertical purple line indicate band gap energy.

under the assumption that the width of the levels are very
narrow and therefore the damping coefficient y is neglected.

Furthermore, in order to see how I(g;y) scale with the
band gap energy and to investigate the dependence of the
choice of bandwidth V,;, we define dimensionless energy
parameters

- Eid ZVss
Eig = , = ,
Egap Egap
~ & (k) —e1(k)
Aek) = 22— — 14 B(1 — [a1(K)]), (18)

€gap

where &;;, B, and &(k) are the idler energy, bandwidth en-
ergy, and interband transition energy relative to the band gap
Energy &g,y respectively. With these definitions, the functions
I.(g;y) can be expressed by dimensionless functions times a
scale factor
La(e) = 80
gap

L) = s /B.z. ak

1

—_—, (19)
gig(Ae(K) F &ig)

B dependence
o L(E=1.B)
o L(E=1,8)-L(£4=1.8)

3.0

2.5

(arb. units)
N
o

-
a

N
o

85 90 95 100 105 110 115
B (arb. units)

FIG. 4. B dependence of the nonlinear current density: The func-
tions 7, (§,4) (blue) and the difference [I,.(8;y) — I_(8iq)] (red) at the
band gap energy (£;; = 1). Both decreases with the parameter S.

where [, (8;4) are dimensionless, and will be used for our
analysis. It is interesting to note that the difference function
I (giq) — I_(&;q) can be related to the induced charge density
when the dipole approximation is assumed with respect to
the idler mode. In this case, we find that Di(—w;s; G) =
fz(kl)(G)(h (¢ia) — I_(&iq)) where fz(kl) (G) encapsulates the
inter-molecular interactions with reépect to bands 2, 1 and
the reciprocal lattice vector G. I (g;y) — I_(g;y) reflects the
spectral dependence of the induced charge density on the joint
density of states.

We show the dependence of I.(8;;) and of their difference
in Fig. 3. The prominent peak in f+(§id) near the band gap
energy is due to its strong dependence on the large number of
interband transitions at the band gap, while 7_(&,;) decreases
monotonically. The difference I, (8;;) — I_(&;4) also exhibits
a very distinctive peak near the band gap energy. It is possible
to measure this peak if the spectral resolution of the detector is
higher than the FWHM of the peak profile. This enhancement
near the band gap energy demonstrates the sensitivity of the
nonlinear response and of the induced charge to the joint
density of states, and is also in agreement with a recent
experiment, showing an enhancement just at the band gap
energy [6].

To investigate how the bandwidth effects the model, we
evaluated 7,.(8;;) for various values of 8 = 2Vis/€gap- The
functions I (&;;) display the same behavior for all g differing
only by a factor. This difference is displayed in Fig. 4 where
the peaks of the functions decrease with growing values of 8.
This decrease is due to the broadening of the joint density of
states, as 8 grows, which leads to a reduction in the density
of transitions about the energy gap. The spectral dependence
of the optical response on 8, can be used to probe changes
in the band structure due to an external field, and also the
corresponding changes in fz(kl) (G).

After we have described the spectral dependence of the
nonlinear effects, we estimate the contribution of the inter-
molecular interactions in the case of two bands by working in
a two-dimensional subspace spanned by the Wannier states of
each band. Since the operator e/S* shares the same eigenstates
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as the position operator, we first find its matrix representation
in the eigenbasis of the position operator and then rotate
this matrix to the original basis. Next, we express the matrix
elements contained in Di(—w;q; G) and B;ji(wiq, Kig; G) in
terms of the position and momentum matrix elements and
obtain

h 2 A
Di(—wiy; G) = —<i>nke_lc'” sin(G - ¢)
mV
x (I (gia, Kig) — 1_(gia, kia)), (20)
Biji(wia, kia; G)

= me % cos(G - o)[fi(kiy — G) - (&i; — &;7;)]

x (I (gig, Kig) + 1_(giq, Kiq)), 21)
where
iy = (Wa|p - &c[Wi) = —(Wi[p - &|Wa), (22)
a = (Wilx|W)) = (Wa|x|W2), (23)
¢ = (Wilx|Wy) = (Wa|x|[W1), (24)

and the vectors (i, a, ¢) are real. This form of the matrix el-
ements is attained when assuming that the Wannier functions
are real, and that [x;, x;] = 0.

Generally speaking, even in the case of a simple semi-
conductor the estimation of the matrix elements requires
numerical calculations. However, since the Wannier functions
are commonly constructed using the linear combination of
atomic orbital (LCAO) approach, in which Wannier functions
are a constructed by a superposition of many atomistic wave
functions [32], we can get a rough estimation of the magnitude
of the nonlinear conductivity by approximating the Wannier
functions to be hydrogen wave functions of levels 1s and 2p.
For idler and pump photon energies at 1 eV and 10 keV,
respectively, we find that the first term of the conductivity
is on the order of (1077 A3W~2). The second term of the
conductivity is on the order of (=10~ A3 W2,

IV. SUMMARY AND CONCLUSIONS

In this work, we have shown that the contribution to the
nonlinear interaction arises from both band structure proper-
ties and atomic-scale interactions. Our results imply that it is
possible to extract atomic-scale information on the valence
electrons as predicted by previous publications [1,3,4,7,17,19]
but only if the band information can be separated from
the Wannier function contribution. For example, when the
Wannier functions are localized. Consequently, the spectral
dependence of the nonlinearity is essential for the construc-
tion of the microscopic information of the electronic states.
Moreover, the population difference between bands or within
a band also plays a role in the spectral dependence. When
considering more than two bands, there could be an effect of
interference between several spectral contributions including
interband and intraband transitions, provided that there is a
population difference between these transitions.

In contrast to previous publications [4,8], we have found
that the polarization of the signal is not only in the direction
of the polarization of the pump. The two polarization com-
ponents exhibits different spectral dependencies which can be
investigated by measuring each component.

We emphasize that since the nonlinear interaction we
discuss is a parametric process in nature (the system does
not change its state during the nonlinear interaction) it is
inherently ultrafast. It is therefore very likely that it would
be possible to use the nonlinear x-ray and long-wavelength
interaction for the study of ultrafast dynamics in solids. Our
theory implies that pump-prob measurements can be used
to study the femtosecond and subfemotosecond dynamics of
interesting processes. Examples include the variation of the
populations between bands, ultra-fast charge transfer between
electronic states, optically induced chemical potential varia-
tions, ultrafast (optically induced) dynamics of band struc-
tures, and ultra-fast phase transitions.

Our formalism can be combined with standard ab initio
methods for further studies of the nonlinear x-ray and
optical/UV mixing effects in many solid state systems.

We stress that nonlinear interactions can be used to reveal a
very broad band spectroscopic information ranging from sub
eV to several hundred of eV and structural information of the
valence electrons by using a single apparatus. By using SPDC
of x rays to long wavelengths, the energy scan can be done by
tuning the angle of the sample and the energy is selected by
the detection system.
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APPENDIX: INDUCED CHARGE DENSITY
AND THE CONDUCTIVITY

In this section, we derive the relation between the in-
duced charge density tensor and the second-order conductivity
which arises from the so called gauge part of the current
density operator.

We start with defining the average charge density to be

Pe(x, 1) = tr(p(t) Dop(x))

’ Al
=3 0" = 0O + o) 4o, A

where n signifies the order of each term with respect to the
field, such that p{%(x) is the average charge density in the
absence of an external field, and p{"(x,?) is the average
induced charge. The induced charge density can be Fourier
expanded in the field modes, namely,

,ogl)(x,t) = Zpﬁl)(x;wz)e”'”’”. (A2)
I

The Fourier coefficients of the induced charge density are
related to the electric field amplitudes via the induced charge
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density tensor

3
PPV (xiw) = Djxio)(e(@)-2). (A3
=1

The induced charge density tensor has the periodicity of the
lattice and therefore can be written as

Di(x; ) =) Dj(er; G,
G

1 .
Dj(w;;G) = v f dx D;(x; w)e . (A4)
|4

Finally, to relate the gauge part conductivity to the induced
charge density tensor, we note that

GO @, 1) = (W jA 1) = = oV, DA 7). (AS)
m

Using this relation along with Egs. (7)—-(9), we find

2,4)
Oijk

e e
= - Dj(w1; G)dix + ——Di(wy; G)§;j. (A6)
mawy mawy

() + o5 G)
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