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We introduce a Floquet spinor Bose-Einstein condensate induced by a periodically driven quadratic Zeeman
coupling whose frequency is larger than any other energy scales. By examining a spin-1 system available in
ultracold atomic gases, we demonstrate that such an external driving field has great effect on the condensate
through emergence of a unique spin-exchange interaction. We uncover that the ferromagnetic condensate has
several unconventional stationary states and thus exhibits rich continuous phase transitions. On the other hand,
the antiferromagnetic condensate is found to possess a nontrivial metastable region, which supports unusual
elementary excitations and hysteresis phenomena.
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I. INTRODUCTION

Quantum degenerate systems with multiple order param-
eters emerge in diverse fields of physics such as uncon-
ventional superconductors [1,2] and superfluid 3He [3,4] in
condensed matter, p-wave superfluids in neutron stars [5,6],
and color superconductors in quark matter [7,8]. Because of
the presence of nontrivial order-parameter manifolds, such
systems are known to exhibit a variety of phase structures,
low-energy excitations, and topological defects absent in sin-
gle order-parameter systems including conventional s-wave
superconductors.

Currently, spinor Bose-Einstein condensates (BECs) real-
ized in ultracold atomic gases offer testing grounds for exam-
ining fundamental properties of multiple order-parameter sys-
tems [9–14]. In fact, cold-atom experiments have successfully
observed rich phase structures [15–17]; exotic topological
excitations such as solitons [18–22], skyrmions [23–25], knots
[26,27], and vortices [25,28,29]; and universal nonequilibrium
dynamics [30–32].

One of the strengths in ultracold atomic gases is high
controllability of experimental parameters, e.g., atom-photon
interactions [33]. Of particular interest using this controlla-
bility is Floquet engineering [34–37], where a periodically
oscillating field is applied to a system and thereby generates
unconventional states absent in equilibrium [38,39]. In ultra-
cold atomic gases, Floquet engineering has successfully been
implemented [40–44], and one of the remarkable realizations
is an artificial gauge field [45–48]. Despite the surge of great
interest in Floquet engineering, such a technology in BECs
has mainly been limited to engineering of kinetic energy
terms.
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In this work, we introduce a Floquet spinor BEC induced
by a high-frequency modulation of an external field (see
Fig. 1) and uncover emergence of an unconventional spin-
exchange interaction. As a possible external field, we consider
a microwave, which causes an effective quadratic Zeeman
shift [16,17,49–52]. By employing high-frequency expansion
in the Floquet formalism [46,53,54], we obtain an effective
Hamiltonian having the unconventional interaction, which
is in sharp contrast to the case of an artificial gauge field
(note, however, Ref. [55]). Applying the theory of a weakly
interacting Bose gas [56], we demonstrate that the effective
Hamiltonian leads to several nontrivial stationary states and
elementary excitations absent in the nondriven system. In the
spinor BEC with a ferromagnetic (FM) interaction, we find
emergence of the unconventional stationary states and various
continuous phase transitions. The most notable state is a
tilted broken axisymmetry (TBA) phase, which spontaneously
breaks Z2 symmetry despite absence of the linear Zeeman
effect. In the system with an antiferromagnetic (AFM) interac-
tion, on the other hand, we find a metastable region where two
independent nonmagnetic states are stabilized simultaneously.
This leads to hysteresis phenomena, which do not emerge
in conventional spinor systems without the linear Zeeman
effect [57].

This paper is organized as follows. In Sec. II, we introduce
the theoretical model discussed in this work. In Sec. III, we
apply the high-frequency expansion to the model. Section IV
discusses possible stationary solutions for the obtained ef-
fective Hamiltonian. Sections V and VI respectively discuss
metastable states and corresponding hysteresis phenomena. In
Sec. VII, critical behaviors of the second-order transitions are
analyzed. Section VIII discusses realizations of our proposal
in cold-atom experiments. In Sec. IX, we summarize the
paper. Some technical details on the Bogoliubov theory and
critical behaviors are given in Appendixes.

II. THEORETICAL MODEL

We consider spin-1 atoms in a uniform system. Under
the influence of a microwave, the Hamiltonian, Ĥ = Ĥfree +
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FIG. 1. (a) Schematic illustration of a Floquet spin-1 Bose
gas induced by a microwave. Spheres with upward-pointing and
downward-pointing arrows show particles with the magnetic sub-
levels m = 1 and −1, and those without arrows do particles with
m = 0. (b) A modulation of microwave’s amplitude introduces a
time-dependent quadratic Zeeman coupling Q(t ) with the frequency
ω and the amplitude q1.

Ĥdint + Ĥsint + Ĥdrive, is given by [10,11]

Ĥfree =
∫

dr
1∑

m=−1

ψ̂†
m(r)

(
− h̄2

2M
∇2 + qm2

)
ψ̂m(r), (1)

Ĥdint = c0

2

∫
dr : n̂(r)n̂(r) :, (2)

Ĥsint = c2

2

∫
dr : F̂(r) · F̂(r) :, (3)

Ĥdrive =
∫

dr
1∑

m=−1

Q(t )m2ψ̂†
m(r)ψ̂m(r) (4)

:= Q(t )D̂, (5)

where ψ̂m(r) (m = 1, 0,−1) is the field operator of an atom
with mass M in a magnetic sublevel m at position r, c0

(c2) is the spin-independent (spin-dependent) coupling, q is
the static quadratic Zeeman coupling, Q(t ) is the driving
Zeeman coupling, and :: denotes normal ordering. The density
and spin density operators are respectively defined as n̂(r) =∑1

m=−1 ψ̂†
m(r)ψ̂m(r) and F̂μ(r) = ∑1

m,n=−1 ψ̂†
m(r)(Sμ)mnψ̂n(r)

with the spin-1 matrix (Sμ)mn (μ = x, y, z).

III. APPLICATION OF HIGH-FREQUENCY EXPANSION

We focus on the case of the periodic driving Q(t ) =
q1cos(ωt ) with the amplitude q1 and the frequency ω larger
than any other timescales. Such an implementation is ex-
perimentally achievable via tuning a microwave [62]. By
using high-frequency expansion [46,53,54], the system is well
described by the following effective (static) Hamiltonian,

Ĥeff = Ĥ0 + q2
1

4h̄2ω2
[[D̂, Ĥ0], D̂] + O(ω3) (6)

with Ĥ0 = Ĥfree + Ĥdint + Ĥsint. Substituting Eqs. (1)–(5) into
Eq. (6), we find that the double commutator gives an un-
conventional spin-dependent interaction as described in the
following.

Let us start with noting that the operators Ĥfree, Ĥdint,
and D̂ are invariant under the U (1)-gauge transformation
ψ̂m → ψ̂mexp(iθm) with the phase factor θm. This means that
these operators conserve the particle number N̂m for each

component m defined by

N̂m =
∫

drψ̂†
m(r)ψ̂m(r). (7)

This observation is related to the fact that the operator D̂
commutes with Ĥfree and Ĥdint. In fact, the straightforward
calculation leads to

[D̂, Ĥfree] = [D̂, Ĥdint] = 0. (8)

On the other hand, the spin-dependent interaction Hamilto-
nian Ĥsint does not commute with D̂. This can be seen when
we rewrite Ĥsint as follows:

Ĥsint = c2

2

∫
dr(: n̂(r)n̂(r) : −3Â†(r)Â(r)) (9)

with the spin-singlet-pair operator Â(r) defined by

Â(r) = 1√
3

(2ψ̂1(r)ψ̂−1(r) − ψ̂0(r)ψ̂0(r)). (10)

The operator Â†(r)Â(r) clearly breaks the particle number
conservation for each component and enhances the particle
exchange between different spin components, which leads
to the noncommutability between D̂ and Ĥsint. Using all the
above results, we obtain

[D̂, Ĥ0] = −3c2

2

∫
dr[D̂, Â†(r)Â(r)]

= −2c2

∫
dr(ψ̂†

0 (r)ψ̂†
0 (r)ψ̂1(r)ψ̂−1(r)

−ψ̂0(r)ψ̂0(r)ψ̂†
1 (r)ψ̂†

−1(r)). (11)

In a similar manner, we can calculate the double commutator
in Eq. (6):

[[D̂, Ĥ0], D̂] = −4c2

∫
dr(ψ̂†

0 (r)ψ̂†
0 (r)ψ̂1(r)ψ̂−1(r)

+ ψ̂0(r)ψ̂0(r)ψ̂†
1 (r)ψ̂†

−1(r)). (12)

Therefore, substituting Eq. (12) into Eq. (6), we obtain the
effective static Hamiltonian:

Ĥeff = Ĥ0 − c f

∫
dr(ψ̂†

1 (r)ψ̂†
−1(r)ψ̂0(r)ψ̂0(r) + H.c.) (13)

with c f = q2
1c2/h̄2ω2. Thus, the fast driving of the quadratic

Zeeman term induces the novel spin-exchange interaction
originating from the commutation relation [Ĥdrive, Ĥsint]. We
note that symmetry of the effective Hamiltonian is same as
that of Ĥ , which is invariant under U(1) phase rotation, U(1)
spin rotation along the z direction, and Z2 spin rotation along
the transverse direction.

IV. STATIONARY SOLUTIONS

We examine stationary states of Eq. (13) within the mean-
field approximation where ψ̂m are replaced by c-numbers �m.
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The mean-field energy functional is given by

E [�m, �∗
m] =

∫
dr

1∑
m=−1

�∗
m(r)

(
− h̄2

2M
∇2 + qm2

)
�m(r)

+
∫

dr
(

c0

2
n(r)2 + c2

2
F(r)2

)

−c f

∫
dr(�∗

1 (r)�∗
−1(r)�0(r)�0(r) + c.c.),

(14)

where the particle number density and the spin den-
sity vector are defined by n = ∑1

m=−1 |�m|2 and Fμ =∑1
m,n=−1 �∗

m(Sμ)mn�n, respectively. In what follows, we fo-
cus on uniform solutions of Eq. (14) and the macroscopic
wave function �m is assumed to be independent of space.
Then, the functional derivative with respective of �m leads
to the following coupled Gross-Pitaevskii equation:

μ�1 = (q + c2Fz )�1 + c2√
2

F−�0 − c f �
2
0�∗

−1, (15)

μ�0 = c2√
2

(F+�1 + F−�−1) − 2c f �1�
∗
0 �−1, (16)

μ�−1 = (q − c2Fz )�−1 + c2√
2

F+�0 − c f �
2
0�∗

1 (17)

with F± = Fx ± iFy and the chemical potential μ including the
spin-independent interaction c0n0 with a uniform density n0.

Denoting the macroscopic wave function by � = √
n0η

with a vector η and analytically solving Eqs. (15)–(17), we
find the following six stationary states. As known (inert)
states, we obtain an FM state ηFM = (1, 0, 0), a polar state
ηP = (0, 1, 0), and an AFM state ηAFM = (1, 0, 1)/

√
2 [10,11].

The rest are represented as

ηBA = (α,
√

1 − 2α2, α), (18)

ηTBA = (α − β/2,
√

1 − 2α2 − β2/2, α + β/2), (19)

ηTP = (−β/2,
√

1 − β2/2, β/2) (20)

with α = √
(c f n0 − 2c2n0 − q)/(4c f n0 − 8c2n0) and β =√

1 + q/c f n0. The state ηBA represents a broken-axisymmetry
(BA) state [63], where the nonzero magnetization lies in
the x-y plane as shown in Fig. 2(a), and U(1) phase and
spin symmetries are spontaneously broken and the remaining
symmetry is Z2. Note that the energy is preserved regardless
of rotations around the z axis.

The tilted broken axisymmetry (TBA) state ηTBA and tilted
polar (TP) one ηTP are unique to the Floquet spinor BEC,
and the spin configurations and the Majorana representations
are shown in Figs. 2(b) and 2(c). The TBA state ηTBA has
the negative value of Sz and can point to any directions in
the x-y plane in the same way as the BA state. Because of
symmetry of Eq. (13) about interchange between �1 and �−1,
Sz can be positive, which means that Z2 symmetry of the
effective Hamiltonian is spontaneously broken in the TBA
state. Therefore, the TBA state should be distinguished from
the similar state in the ferromagnetic spinor BEC with the
linear Zeeman term where Z2 symmetry along the z axis is
absent at the Hamiltonian level. On the other hand, ηTP has

x
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(a) BA state (b) TBA state

(c) TP state (d) Polar state

FIG. 2. Magnetization F and Majorana representation for
(a) BA, (b) TBA, (c) TP, and (d) polar states. The magnetization
in the BA state is restricted in the x-y plane, while that in the
TBA state has the nonzero z component. In contrast, the TP and
the polar states have no magnetization. Symmetry of each phase
can geometrically be visualized with the Majorana representation
expressed by two spheres [10,11,67]. Colors show values of z for
each sphere. If spheres are invariant under a transformation, a state
has the corresponding symmetry.

zero magnetization, and the Majorana representation of ηTP is
seen to be tilted in compared with ηP as shown in Figs. 2(c)
and 2(d). Thus, we name it a TP state.

We can obtain phase diagrams by evaluating energies of
these stationary states. Figure 3(a) is the result for the FM
interaction case (c2 < 0), which contains the nontrivial states,
ηTBA and ηTP. We can discuss orders of the transitions between
these different phases by calculating two derivatives of total
energy ∂E (q, c f )/∂c f and ∂E (q, c f )/∂q. Figures 3(c), 3(d)
and 3(e) show ∂E (q, c f )/∂q in three cases. As a result, we find
that for −2 < c f /|c2| < 0, all transitions become second or-
der. This is in sharp contrast to the non-driving case (c f = 0)
where a second-order transition is achieved only at the bound-
ary between the BA and the polar phases.

Figure 3(b) is the phase diagram for the AFM interaction
case (c2 > 0), where the transition line between the AFM
and polar phases is independent of c f and is first order as
shown in Fig. 3(f). As discussed in the next section, nontrivial
metastable states are induced due to the periodically driving
field.

V. METASTABLE STATES FOR c2 > 0

The AFM spinor gas is known not to have metastable
uniform stationary states when the linear Zeeman coupling is
absent. In this section, we unveil existence of the metastable
states in the AFM Floquet spinor Bose gas. We first nu-
merically solve Eqs. (15)–(17) using the imaginary time-step
method, in which independent Gaussian noises are added to
the initial macroscopic wave functions. Figure 4(a) shows
the numerical results, in which nematic tensor (Nzz = |�1|2 +
|�−1|2) exhibits the noisy behavior. This indicates presence of
metastable states.
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FIG. 3. (Left panels) Phase diagrams for (a) ferromagnetic and (b) antiferromagnetic interactions. In panel (a), while the FM, BA, and
polar phases emerge in the nondriving case, the TBA and TP phases do only for nonzero c f . In panel (b), the polar (AFM) state has the lowest
energy when q is positive (negative). (Middle and right panels) Dependences of mean-field energies and its derivative with respect to q. The
units of ordinates are arbitrary units. The four panels show the dependences along (c), (d), (e), and (f) depicted in panels (a) and (b). Figures
(c) and (f) clearly show the jumps of the derivative, which are hallmarks of a first-order phase transition.

We analytically understand the emergence of the metastable states for c2 > 0 by looking at elementary excitations for ηP
and ηAFM. By employing the Bogoliubov theory [10,11] incorporating fluctuations of �m up to second order, we obtain the
Bogoliubov Hamiltonian in each phase from Eq. (13) and obtain elementary excitations known as the Bogoliubov modes (see
Appendix A). In the AFM state, we have three excitations: a phonon mode related to U(1) phase symmetry, longitudinal spin
mode, and transverse spin mode. These energy spectra are given by

E (AFM)
D (k) = √

ε0,k(ε0,k + 2c0n0), (21)

E (AFM)
Sz

(k) = √
ε0,k(ε0,k + 2c2n0), (22)

E (AFM)
Sxy

(k) =
{

−√
(ε0,k − q + c2n0)2 − (c2n0 − c f n0)2 (q/c2n0 > 1),√

(ε0,k − q + c2n0)2 − (c2n0 − c f n0)2 (otherwise),
(23)

c f
/|c

2
|

q/|c2|n0

Nzz/n0

(a) cf/c2

q/c2n0

2

1

metastable
AFM state

metastable
polar state

(b)

−1

Eq. (24)

Eq. (25)

Eq. (26)

Eq. (29)

Eq. (30)

Eq. (31)

0

FIG. 4. (a) Parameter dependence of nematic tensor Nzz = |�1|2 + |�−1|2 numerically obtained by the imaginary-time evolutions
corresponding to Eqs. (15)–(17) with random initial noises. In the noisy region, Nzz/n0 has unity or zero. This implies that the AFM (polar) state
for positive (negative) q can be metastable in the noisy region. (b) Metastable region in the AFM spinor Bose gas. The inequalities (24)–(26)
and (29)–(31) determine the metastable regions. When q is positive (negative), the AFM (polar) state becomes metastable. Outside of it, these
metastable states become unstable against weak fluctuations and energy dissipation because the spectra have negative real or imaginary values.
This is completely consistent with panel (a).
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where ε0,k = h̄2k2/2M is single-particle kinetic energy and
E (AFM)

D (k), E (AFM)
Sxy

(k), and E (AFM)
Sz

(k) denote energy spectra
for density, transverse spin, and longitudinal spin fluctuations,
respectively. As usual, all the Bogoliubov modes take positive
values for q � 0, where the AFM state is the lowest-energy
state. What is surprising here is that these modes are positive
even for the positive q regime if the following inequalities are
satisfied:

q < c2n0, (24)

c f n0 > q, (25)

c f n0 < −q + 2c2n0. (26)

Thus, the AFM state can be still stable for q > 0, though it is
not a lowest-energy state.

On the other hand, in the polar phase, we obtain a density
mode and two degenerate spin modes whose energy spectra
are given by

E (P)
D (k) = √

ε0,k(ε0,k + 2c0n0), (27)

E (P)
S (k)

=
{−√

(ε0,k+q+c2n0)2−(c2n0−c f n0)2 (q/c2n0 <−1),√
(ε0,k+q+c2n0)2−(c2n0−c f n0)2 (otherwise).

(28)

As before, for q � 0, the polar state being the lowest-energy
state is stable because the energy spectra (27) and (28) are
positive. In addition, it can be stable even for a negative q
regime satisfying

q > −c2n0, (29)

c f n0 > −q, (30)

c f n0 < q + 2c2n0. (31)

The unusual stable region determined by Eqs. (24)–(26)
and (29)–(31) means that the AFM and polar states can exist
as metastable states, and the noisy region in Fig. 4(a) is indeed
identical to it as shown in Fig. 4(b). Thus, we expect hysteresis
loops when we adiabatically change q, q1, or ω along a closed
loop crossing the first-order transition.

We can discuss emergence of the metastable states from
the perspective of symmetry of Eq. (13). In the absence of
c f , the transition between the AFM and the polar phases is
known to be first order without a metastable state [10,11],
which is considered to be attributed to the restoration of SO(3)
spin rotation symmetry at q = 0 [64]. However, the nontrivial
spin-exchange interaction proportional to c f breaks SO(3)
rotational symmetry even at q = 0, so that it can stabilize the
polar (AFM) state in the limited negative (positive) regime.

VI. NUMERICAL INVESTIGATION
FOR THE HYSTERESIS PHENOMENON

As described in Sec. V, the Bogoliubov analysis predicts
the hysteresis phenomenon in the AFM spinor Bose gas. In

this section, we numerically demonstrate that slow sweep of
the static quadratic Zeeman coupling q can indeed induce the
hysteresis curve.

A. Formulation

To consider the slow sweep of q in the periodically driven
spinor Bose gas, we use adiabatic Floquet theory constructed
by Novičenko et al. [65]. Applying the formulation to the
Hamiltonian (1)–(5) with the time-dependent q(t ), we can
obtain the effective Hamiltonian:

Ĥeff =
∫

dr
1∑

m=−1

ψ̂†
m(r)

(
− h̄2

2M
∇2 + q(t )m2

)
ψ̂m(r)

+c0

2

∫
dr : n̂(r)n̂(r) :

+c2

2

∫
dr : F̂(r) · F̂(r) : −c f

∫
dr(ψ̂†

1 (r)

× ψ̂
†
−1(r)ψ̂0(r)ψ̂0(r) + H.c.). (32)

This is almost same as Eq. (13) except for the time dependence
of q(t ). We apply the mean-field approximation to Eq. (32)
and obtain the equation of motion for the macroscopic wave
functions �m (m = 1, 0,−1):

ih̄
∂

∂t
�1 = − h̄2

2M
∇2�1 + q(t )�1 + c0n�1

+ c2

(
1√
2

F−�0 + Fz�1

)
−c f �

∗
−1�

2
0 , (33)

ih̄
∂

∂t
�0 = − h̄2

2M
∇2�0 + c0n�0 + c2√

2
(F+�1 + F−�−1)

−2c f �1�
∗
0 �−1, (34)

ih̄
∂

∂t
�−1 = − h̄2

2M
∇2�−1 + q(t )�−1 + c0n�−1

+c2

(
1√
2

F+�0 − Fz�−1

)
−c f �

∗
1 �2

0 . (35)

We numerically solve Eqs. (33)–(35) starting from the
polar state � = √

n0(0, 1, 0) in a one-dimensional system
with c2 = c0/10. In this simulation, we neglect a kick (mi-
cromotion) operator, which causes fast periodic oscillations of
the observables with the frequency ω [34,65]. This is because
we expect that the effects may be suppressed by the ensemble
average.

The control parameter q(t ) is assumed to obey

q(t ) =
{

qini
(
1 − 2t

τch

)
(0 � t � τch )

qini
(−1 + 2t−2τch

τch

)
(τch < t � 2τch )

, (36)

with the initial value qini = 0.4c2n0 and the characteristic time
τch = 10 000 h̄/c0n0. The whole process for the parameter
control is illustrated in Fig. 5.

To identify emergence of the hysteresis phenomenon, we
need an order parameter for the AFM state. Then, we adopt a
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0.2

0.4−0.4 0.2−0.2

Metastable region

(a)

(b)

q/c2n0

FIG. 5. Schematic for the metastable region and the paths of the
control parameter q(t ). The shaded region denotes the metastable
region where the AFM and polar states are not the lowest energy
states in q > 0 and q < 0, respectively, but they are still metastable
against weak fluctuations and energy dissipation. The numerical
simulations consider two paths for (a) c f /c2 = 0 and (b) 0.2 where
the parameter q(t ) obeys Eq. (36). The former path (a) does not
cross the metastable region, and there is no hysteresis. On the other
hand, the latter one (b) passes the region, and the hysteresis curve is
expected to emerge.

nematic tensor for the zz component defined by

Nzz =
1∑

m,n=−1

�∗
m

(
S2

z

)
mn�n = |�1|2 + |�−1|2. (37)

The polar and the AFM states have Nzz = 0 and n0, respec-
tively. Thus, by monitoring Nzz in time, we can judge which
states grow or decay in the dynamics.

B. Numerical results

We perform numerical simulations for (a) c f = 0 and (b)
c f = 0.2c2 by starting from the polar state. As depicted in
Fig. 5, the former protocol (a) does not pass the metastable
region while the latter (b) crosses it. Thus, in the case (b),
the initial polar state should remain stable just before the
parameter gets across the point q/c2n0 = −0.2 in the forward
protocol. After getting out of the metastable region, the AFM
order, namely Nzz, rapidly grows in time. Subsequently, q
turns at the point q/c2n0 = −0.4, and the AFM state will
survive even in the positive q smaller than 0.2c2n0. In the
following, we numerically test this scenario.

Figure 6 shows the time evolution of Nzz for (a) c f = 0 and
(b) c f = 0.2c2. In the nondriven case (a), the polar state in the
negative q region becomes unstable and the AFM state grows
just after q becomes negative. This can be seen in the rapid
increase of Nzz. Here, note that the increase of Nzz appears to
occur around q/c2n0 ∼ 0.03 and there is a small time delay for
the emergence of the instability. This is because the strength
of the instability is small just after crossing the zero point
and thus it takes a little more time for the growth of Nzz. In
the backward path, the system shows the instability close to
q/c2n0 = 0, and the polar state revives.

On the other hand, the driven case (b) exhibits quite dif-
ferent dynamics, as shown in Fig. 6(b). The polar state is still

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
q/c2n0

0.00

0.25

0.50

0.75

1.00

N
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/n
0

(a) cf/c2 = 0 forward path

backward path

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
q/c2n0
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0.25

0.50
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N
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/n
0

(b) cf/c2 = 0.2 forward path

backward path

FIG. 6. Time evolution of Nzz for the paths (a) and (b) in Fig. 5.
The upper and lower panels show the numerical results of (a) and
(b), respectively. Comparing (a) with (b), we confirm that the driven
system shows a clear hysteresis curve (see text).

stable in the negative q regime because of Nzz ∼ 0. However,
after the control parameter q goes out of the metastable region,
Nzz grows in time. In the backward path, we also find that the
AFM state survives even in the positive q regime. Clearly, we
find the hysteresis in the driven case, which is consistent with
our theoretical prediction based on the Bogoliubov analysis.
Here, we comment on the instability in the backward path of
(b), where the instability point q/c2n0 ∼ 0.1 is a little different
from our theoretical prediction. We expect that this is at-
tributed to the energy change by the time evolution of q(t ). In
the backward path, the continuous parameter change can make
the condensates fluctuate and can enhance the instability. The
similar dynamics is also seen in the nondriven case, where
the instability in the backward path emerges faster than that in
the forward path, as shown in Fig. 6(a). Finally, we comment
on the experiment [66], in which the quadratic Zeeman cou-
pling slowly oscillates in the AFM spinor Bose gas with 23Na,
and the similar hysteresis phenomena are observed. However,
the frequency is not so fast, and thus our theoretical prediction
cannot readily be applicable to the experiment.

VII. CRITICAL BEHAVIORS FOR c2 < 0

We investigate critical behaviors near the second-order
phase transitions in Fig. 3(a). In particular, we focus on
(a) BA-polar, (b) BA-TBA, and (c) FM-TBA phase transi-
tions, since these transitions emerge in |c f /c2| < 1, where
the effective Hamiltonian approach works well. For conve-
nience, we introduce dimensionless variables x = q/|c2|n0

and y = c f /|c2| and denote the parameter space as R =
(x, y). The details of the calculation shown here are given in
Appendix B.

First, we consider the case (a), where the phase boundary
is given by R0 = (x0, x0 − 2) (1 < x0 � 2). As shown in in
Fig. 7(a), a point around the phase boundary is specified as
R = (x0 + rcos θ, x0 − 2 + rsin θ ) with r � 1, where r and
θ are the polar coordinates. Then, longitudinal and transverse
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FIG. 7. Polar coordinates (r, θ ) near the phase boundaries:
(a) BA-polar, (b) BA-TBA, and (c) FM-TBA transitions.

magnetizations in the BA phase are expressed as

Fz = 0, F⊥ ∝ r1/2, (38)

while magnetizations in the polar phase vanish. As first
pointed out in Ref. [68], such critical behaviors are same as
those of the XY model.

In the case (b), the transition point is denoted as R0 =
(x0,−x0) (0 < x0 < 1) as shown in Fig. 7(b). A point around
the phase boundary is specified by R = (x0 + rcos θ,−x0 +
rsin θ ) with r � 1. Then, longitudinal and transverse magne-
tizations in the TBA phase are given by

Fz ∝ r1/2, F⊥ − F0 ∝ r (39)

with the transverse magnetization at R0, F0. In terms of
symmetry, what is essential here is that Z2 spin rotational sym-
metry is spontaneously broken in the TBA phase while it is
unbroken in the BA phase. Indeed, the leading variance on the
magnetizations is the longitudinal one directly related to Z2

spin rotational symmetry, and the transition type corresponds
to the Ising model.

Finally, in the case (c), the transition point is denoted
as R0 = (0, y0) (−2 < y0 < 0). A point around the phase
boundary is specified by R = (rcos θ, y0 + rsin θ ) as shown
in Fig. 7(c). The magnetization behaviors in the TBA phase
are expressed as

Fz − n0 ∝ r, F⊥ ∝ r1/2, (40)

while in the FM phase the longitudinal magnetization coin-
cides with n0 and the transverse magnetization vanishes. In
this transition, U(1) spin rotational symmetry is of importance
since it is broken (unbroken) in the TBA (FM) phase. There-
fore, the XY -type transition is expected. In addition, by using
the Bogoliubov theory, the dynamical critical exponent z is
obtained as z = 2. Thus, the universality corresponds to that
of a single-component dilute Bose gas [69].

VIII. DISCUSSION

We now discuss the validity of the high-frequency expan-
sion. According to previous literature [70–73], when a dis-
crete lattice system is locally bounded, h̄ω must be larger than
the local energy. While our system is spatially continuous,
we may introduce the local chemical potential μ ∼ c0n0 as
an effective cutoff. Thus, μ < h̄ω is a necessary condition for
the validity. In addition, |c f /c2| = |q1/h̄ω|2 � 1 is required
to neglect higher order effects. Under these conditions, the
fundamental properties in Floquet spinor BECs discussed
above may be observed.

To realize an FM Floquet spin-1 BEC, we can consider
87Rb and 7Li as possible atomic species. Then, observation of

the TBA state can be an experimental signature of the Floquet
spinor BEC. The TBA state itself can be confirmed by emer-
gence of a spin domain along the longitudinal direction, which
is absent in the nondriving case for q > 0 [10,11,74,75]. On
the other hand, it may be difficult to realize the TP phase in
Fig. 3(a) because the condition |c f /c2| � 1 is broken. In addi-
tion, we can use 23Na to realize an AFM Floquet spin-1 BEC.
Then, the Floquet property is identified as presence of the
metastable state, which can be measured through absorption
images of magnetic sublevels in different times [58,61]. For
example, we consider an experiment in which the polar state
is initially prepared at q < 0. In the absence of the driving,
such a state is unstable against the dynamical instability and
the m = ±1 components turn to grow up as a function of time.
Namely, presence of metastability is proved as robustness of
the m = 0 component by the driving.

IX. CONCLUSION

We have theoretically studied a spin-1 Bose gas under the
periodically oscillating quadratic Zeeman coupling using
the high-frequency expansion and the Bogoliubov theory. In
the FM interaction case, we have found the emergence of
the unconventional TBA and the TP states in addition to
the known magnetic phases and the rich second-order phase
transitions. On the other hand, the systems with the AFM
interaction have the metastable states stabilized by the unusual
Bogoliubov excitations, which can lead to hysteresis phenom-
ena that do not emerge in undriven spinor BECs. We finally
note that our method to engineer many-body interactions is
applicable to various multicomponent quantum degenerate
systems other than spinor Bose gases. For example, systems
with strong dipole-dipole interactions, the Rabi coupling,
etc. may give nontrivial interactions induced by periodically
oscillating external fields.

ACKNOWLEDGMENTS

We would like to thank Y. Shin and M. Ueda for comments
in early stage of this work, and also thank S. Furukawa,
R. Hamazaki, S. Higashikawa, M. Nakagawa, and M.
Sato for fruitful discussions. K.F. is supported by a JSPS
fellowship (JSPS KAKENHI Grant No. JP16J01683). S.U. is
supported by JSPS KAKENHI Grant No. JP17K14366 and a
Waseda University Grant for Special Research Projects (No.
2019C-461).

APPENDIX A: BOGOLIUBOV THEORY
FOR THE EFFECTIVE HAMILTONIAN

Applying the Bogoliubov theory [10] to the effective
Hamiltonian (13), we derive energy spectra of elementary
excitations for the polar and the AFM states. Let us start
with rewriting the Hamiltonian (13) in terms of the bosonic
annihilation and creation operators in the wavenumber space.
The bosonic field operators are expanded as

ψ̂m(r) = 1√
V

∑
k

âm,keik·r, (A1)

ψ̂†(r) = 1√
V

∑
k

â†
m,ke−ik·r, (A2)
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where V denotes the system volume and the operators âm,k

and â†
m,k satisfy the bosonic commutation relations such as

[ân,k1 , â†
m,k2

] = δk1k2δnm. Substituting Eqs. (A1) and (A2) into
(13), we obtain

Ĥeff =
∑

k

∑
m

εm,kâ†
m,kâm,k + 1

V

∑
k1,k2,k3,k4

∑
m,n,p,q

�mn
pq δ(k1

+k2 − k3 − k4)â†
m,k1

â†
p,k2

ân,k3 âq,k4

−c f

V

∑
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)

× (â†
1,k1

â†
−1,k2

â0,k3 â0,k4 + H.c) (A3)

with the single-particle energy εm,k = h̄2k2/2M + qm2 and
the interaction coupling �mn

pq defined by

�mn
pq = c0

2
δnpδmq + c2

2
(S)mn · (S)pq. (A4)

We use the Bogoliubov approximation, in which the zero
momentum operators âm,0 (m = 1, 0,−1) are replaced by
c-numbers φm = √

N0ηm (m = 1, 0,−1) with the condensed
particle number N0. By using the number conserving theory
[10], the Hamiltonian (A4) is approximated to

Ĥeff 
 Ĥkin + Ĥint + Ĥflo, (A5)

Ĥkin = Ekin +
∑
k �=0

∑
m

{
εm,k −

∑
n

εn,0|ηn|2
}

â†
m,kâm,k,

(A6)

Ĥint = Eint − n0(c0 + c2 f 2)
∑

m

∑
k �=0

â†
m,kâm,k

+n0

∑
m,n,p,q

∑
k �=0

(
�mn

pq η∗
mη∗

pân,kâq,−k+�mn
pq ηnηqâ†

m,kâ†
p,−k

)

+n0

∑
m,n,p,q

∑
k �=0

(
�mn

pq +�pq
mn+�pn

mq+�mq
pn

)
η∗

pηqâ†
m,kân,k,

(A7)

Ĥflo = Eflo + 2c f n0η
∗
1η

∗
−1η

2
0

∑
k �=0

∑
m

â†
m,kâm,k

−c f n0

∑
k �=0

(
η∗

1η
∗
−1â0,kâ0,−k + 2η∗

1η0â†
−1,kâ0,k

+2η∗
−1η0â†

1,kâ0,k + η2
0â†

1,kâ†
−1,−k

) + H.c. (A8)

with the total particle number density n0 = N/V , the to-
tal particle number N , the normalized spin vector fμ =∑1

m,n=−1 η∗
m(Sμ)mnηn, and the trivial constants Ekin, Eint, and

Eflo. The quadratic Hamiltonian (A5)–(A8) is the general
form for any stationary states. In what follows, we consider
the polar and the AFM states, and analytically calculate the
energy spectra.

1. Polar state

We derive the energy spectra of elementary excitations in
the polar state using Eqs. (A5)–(A8). The spinor wave func-
tion is given by ηP = (0, 1, 0), which leads to the following
Bogoliubov Hamiltonian:

Ĥpolar = Ĥ (1)
polar + Ĥ (2)

polar + const., (A9)

Ĥ (1)
polar = 1

2

∑
k �=0

(â†
0,k, â0,−k)

(
ε0,k + c0n0 c0n0

c0n0 ε0,k + c0n0

)(
â0,k

â†
0,−k

)
, (A10)

Ĥ (2)
polar =

∑
k �=0

(â†
1,k, â−1,−k)

(
ε1,k + c2n0 c2n0 − c f n0

c2n0 − c f n0 ε1,k + c2n0

)(
â1,k

â†
−1,−k

)
. (A11)

Employing the Bogoliubov transformation, we diagonalize Eqs. (A10) and (A11) and then obtain the energy spectra:

E (P)
D (k) = √

ε0,k(ε0,k + 2c0n0), (A12)

E (P)
S (k) =

{−√
(ε0,k + q + c2n0)2 − (c2n0 − c f n0)2 (q/c2n0 < −1),√

(ε0,k + q + c2n0)2 − (c2n0 − c f n0)2 (otherwise).
(A13)

The emergence of the negative excitation energy in Eq. (A13) is attributed to negative values appearing in the diagonal matrix
elements in Eq. (A11). We actually confirm that ε1,k + c2n0 can have negative values when q/c2n0 < −1. This causes the
inconsistency to determine the Bogoliubov coefficients if we choose the positive branch of the spectra. However, when we
choose the negative branch, such problem does not occur in the region q/c2n0 < −1.

2. Antiferromagnetic state

We consider the AFM state ηAFM = (1, 0, 1)/
√

2 and derive the energy spectra. In a similar manner to the polar state, we
obtain the Bogoliubov Hamiltonian:

ĤAFM = Ĥ (1)
AFM + Ĥ (2)

AFM + const., (A14)
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Ĥ (1)
AFM = 1

2

∑
k �=0

(â†
0,k, â0,−k)

(
ε0,k − q + c2n0 c2n0 − c f n0

c2n0 − c f n0 ε0,k − q + c2n0

)(
â0,k

â†
0,−k

)
, (A15)

Ĥ (2)
AFM = 1

2

∑
k �=0

(â†
1,k, â†

−1,k, â1,−k, â−1,−k )

⎛
⎜⎜⎜⎝

ε0,k + a b a b

b ε0,k + a b a

a b ε0,k + a b

b a b ε0,k + a

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

â1,k

â−1,k

â†
1,−k

â†
−1,−k

⎞
⎟⎟⎟⎟⎠ (A16)

with a = (c0 + c2)n0/2 and b = (c0 − c2)n0/2. Diagonalizing Eqs. (A15) and (A16) via the Bogoliubov transformation, we can
obtain the following energy spectra:

E (AFM)
D (k) = √

ε0,k(ε0,k + 2c0n0), (A17)

E (AFM)
Sz

(k) = √
ε0,k(ε0,k + 2c2n0), (A18)

E (AFM)
Sxy

(k) =
{−√

(ε0,k − q + c2n0)2 − (c2n − c f n0)2 (q/c2n0 > 1),√
(ε0,k − q + c2n0)2 − (c2n − c f n0)2 (otherwise).

(A19)

As is the case with the polar state, the negative excitation
energy emerges in Eq. (A19). The origin is negative values
of the diagonal matrix elements in Eq. (A15).

APPENDIX B: CRITICALITY OF
THE PHASE TRANSITIONS

In Sec. VII, we discuss the criticality of three phase tran-
sitions, namely BA-polar, BA-TBA, and FM-TBA transitions
in Fig. 3(a). This section gives the detailed derivation of the
critical exponents under the mean-field approximation.

1. BA-polar transition

It is convenient to introduce the dimensionless parameters
x = q/|c2|n0 and y = c f /|c2|. Then, we can specify the pa-
rameters close to the BA-polar transition as shown in Fig. 7(a),
which is given by(

x
y

)
=

(
x0

x0 − 2

)
+ r

(
cosθ
sinθ

)
(B1)

with the parameter x0 ∈ (1, 2]. Using this notation, we re-
express α and find that it is proportional to r:

α = 1

2

√
rsin θ − rcos θ

x0 + rsin θ
∝ r1/2 (r � 1). (B2)

Then, the transverse F⊥ and the longitudinal Fz amplitudes of
the spin density vector in the BA state become

F⊥(x, y) =
√

F 2
x + F 2

y

= 2n0α
√

2 − 4α2

∝ r1/2 (r � 1), (B3)

Fz(x, y) = 0. (B4)

Here, we use the expression of ηBA in Eq. (18).

2. BA-TBA transition

We consider the BA-TBA phase transition in Fig. 7(b), in
which the parameters close to the transitions are parametrized
by (

x
y

)
=

(
x0

−x0

)
+ r

(
cos θ

sin θ

)
(B5)

with the parameter x0 ∈ (0, 1). Then, by using Eq. (B5), α and
β are approximated to

α 
 1

2

√
2 − 2x0

2 − x0

(
1 + 1

2
f (θ, x0)r

)
(r � 1), (B6)

β 
 g(θ, x0)r1/2 (r � 1) (B7)

with the real functions f (θ, x0) and g(θ, x0) defined by

f (θ, x0) = sin θ − cos θ

2 − 2x0
− sin θ

2 − x0
, (B8)

g(θ, x0) =
√

− sin θ + cos θ

x0
. (B9)

Substituting Eqs. (B6) and (B7) into the expressions F⊥ and
Fz for the TBA state, we can derive

F⊥(x, y) = 2
√

2n0α

√
1 − 2α2 − 1

2
β2

⇔ F⊥(x, y) − F⊥(x0,−x0) ∝ r (r � 1),

(B10)

Fz(x, y) = −2n0αβ


 −
√

2 − 2x0

2 − x0
n0g(θ, x0)r1/2 (r � 1)

∝ r1/2. (B11)

3. FM-TBA transition

Finally, we calculate the critical exponents of the FM-TBA
transition as shown in Fig. 7(c). The parameters close to the
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phase transition points are specified by

(
x
y

)
=

(
0
y0

)
+ r

(
cos θ

sin θ

)
(B12)

with the parameter y0 ∈ (0,−2). Then, α and β can be calcu-
lated as

α 
 1

2

(
1 − rcos θ

4 + 2y0

)
(r � 1), (B13)

β 
 1 + rcos θ

2y0
(r � 1). (B14)

In a similar manner used in the other cases, we can derive

F⊥(x, y) = 2
√

2n0α

√
1 − 2α2 − 1

2
β2


 n0

√
rcos θ

√
1

2 + y0
− 1

y0
(r � 1)

∝ r1/2, (B15)

Fz(x, y) = −2n0αβ


 −n0 + n0rcos θ

(
1

4 + 2y0
− 1

2y0

)
(r � 1)

⇔ Fz(x, y) − Fz(0, y0) ∝ r. (B16)

In the main text, we also mention the dynamical critical
exponent z, which can be seen from Green’s function about
the transverse spin fluctuation. By applying the Bogoliubov

theory to the FM state, it is obtained as

GS (ω, k) = 1

−h̄ω + h̄2k2

2M − q
. (B17)

This result means that z = 2 and q plays the same role with
the chemical potential in a single-component Bose gas [69].
Since we treat three dimensions, which is larger than the upper
critical dimension of a single-component Bose gas (d = 2),
the mean-field level treatment above is reasonable.

4. Comments on existence of the second-order phase transition

Recently, Mathey and Diehl have discussed existence of
second-order phase transitions in open Floquet systems [76]
and unveiled absence of criticality in a stochastic model under
a periodic driving forces by employing the perturbative renor-
malization group method. However, our system considered
here does not include stochastic noises, and then their results
cannot readily apply to our Floquet spinor Bose gas.

Also, we comment on higher-order corrections in the high-
frequency expansion. Our results are based on the leading
high-frequency expansion, and the condition |c f /c2| � 1 is
necessary to assure the validity. Thus, the TP phase in Fig. 3(a)
is clearly breaks the condition, so that we expect that the
phase may be difficult to realize and the order of the transition
may change. We leave the higher order effects on the Floquet
spinor Bose gas including the realization of the TP phase and
the criticality for other phases close to |c f /c2| = 1 as a future
work.
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