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Phase reduction of limit-torus solutions to partial differential algebraic equations
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A limit-torus solution describes a traveling and oscillating solution. It is characterized by two phase variables,
spatial phase and temporal phase, which indicate the position and oscillation of the solution, respectively.
Here, we develop a theoretical framework for the phase reduction of limit-torus solutions to partial differential
algebraic equations or partial differential equations with constraints. We derive phase sensitivity functions for the
two phases; these functions quantify the spatiotemporal phase responses of the solution under weak perturbations
applied at each spatial point and at each time. We consider oscillatory thermal convection in a two-dimensional
incompressible Navier-Stokes flow system with lateral periodicity as a prototype.
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I. INTRODUCTION

Nature provides a rich variety of rhythmic systems and
synchronization phenomena [1–5]. A rhythmic system is typ-
ically described by a limit-cycle solution to an ordinary dif-
ferential equation. Phase reduction of ordinary limit-cycle os-
cillators is a robust method that has been extensively utilized
for analyzing the synchronization properties of the oscillators
[1–12]. Subsequently, collective synchronization exhibited by
coupled phase oscillators has been widely investigated for
globally coupled systems, nonlocally coupled systems, and
complex network systems [1–19].

We recently demonstrated a phase reduction method for
limit-cycle solutions to the following partial differential equa-
tions: (i) nonlinear Fokker-Planck equations representing
collective oscillations of globally coupled noisy dynamical
elements [20,21], (ii) fluid equations representing oscilla-
tory thermal convection in ordinary Hele-Shaw cells [22,23],
(iii) reaction-diffusion equations representing spatiotemporal
rhythms in chemical and biological systems [24,25], and
(iv) fourth-order nonlinear partial differential equations rep-
resenting beating flagella [26]; more precisely, the first and
second equations are partial differential integral equations.
This method can be considered as a generalization of the
conventional phase reduction method for ordinary differential
equations.

Several rhythmic spatiotemporal patterns can be described
by limit-cycle solutions to partial differential equations
[27–41]. However, some systems possess additional spatial
translational symmetry, and therefore, rhythmic spatiotempo-
ral patterns in the systems cannot be described by limit-cycle
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solutions. For example, annuli and spheres possess continuous
rotational symmetry, namely, continuous translational sym-
metry in the azimuthal direction [36–42]. The presence of spa-
tiotemporal rhythms in these systems causes the emergence
of two phase modes: spatial phase and temporal phase. Such
spatiotemporal rhythms are described by limit-torus solutions.
The synchronization of spatiotemporal rhythms with the two
phase modes has been experimentally investigated [43–45]
in systems of rotating fluid annuli that exhibit rotating and
oscillating convection (i.e., amplitude vacillation [40–42]),
which is an analog of atmospheric circulation. Hence, in a
recent study [46], we developed a generalized phase reduction
method for limit-torus solutions to partial differential equa-
tions. Here, we considered oscillatory thermal convection in
a cylindrical Hele-Shaw cell that is laterally periodic. Owing
to its cylindrical shape, this cell exhibits spatial translational
symmetry in the lateral direction. The oscillatory thermal
convection was therefore described by a limit-torus solution,
which possessed both spatial and temporal phases.

However, rotating and oscillating convection in a system of
rotating fluid annulus is described by an incompressible fluid
equation. This equation can be considered as a partial differ-
ential algebraic equation because there is no dynamical equa-
tion for the pressure but only an incompressible condition.
Therefore, a phase reduction method for limit-torus solutions
to partial differential algebraic equations is highly desirable.
This is the objective of the present study. As a significant
extension of the earlier study [46], we consider traveling and
oscillating thermal convection in a two-dimensional incom-
pressible Navier-Stokes flow system that is laterally periodic.
The dynamics of such a system can be described by a partial
differential algebraic equation. Moreover, the traveling and
oscillating thermal convection is described by a limit-torus
solution that exhibits both spatial and temporal phases. Here,
we develop a theoretical framework for the phase reduction
of traveling and oscillating thermal convection. This theory
can be considered as a generalized phase reduction method for
limit-torus solutions to partial differential algebraic equations.
Further, this method enables us to describe the dynamics
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of the thermal convection by two phases (i.e., spatial and
temporal phases) and facilitates the theoretical analysis of spa-
tiotemporal phase synchronization properties of the thermal
convection in weakly coupled systems.

This paper is organized as follows. In Sec. II with Ap-
pendix A, we formulate a theory for the phase reduction
of traveling and oscillating thermal convection. In Sec. III
with Appendixes B and C, we illustrate the theory using
a numerical analysis of the thermal convection. Concluding
remarks are given in Sec. IV.

II. PHASE DESCRIPTION OF LIMIT-TORUS SOLUTIONS

In this section, we present a theoretical framework for
the phase description of oscillatory thermal convection in a
two-dimensional incompressible Navier-Stokes flow system
that is laterally periodic. This theory can be considered as a
generalization of our phase description method for oscillatory
thermal convection in the Darcy flow system [46].

A. Dimensionless form of incompressible
Navier-Stokes equations

The two-dimensional incompressible Navier-Stokes equa-
tion under the Boussinesq approximation can be expressed as
follows [27,28,38,39]:

0 = ∇ · v, (1)

∂

∂t
v(x, y, t ) = −v · ∇v − ∂ p

∂x
+ Pr ∇2v, (2)

∂

∂t
w(x, y, t ) = −v · ∇w − ∂ p

∂y
+ Pr Ra θ + Pr ∇2w, (3)

∂

∂t
θ (x, y, t ) = −v · ∇θ + w + ∇2θ, (4)

where p, v = (v, w)T, and θ denote the pressure, fluid veloc-
ity field, and convective component of the temperature field,
respectively. Here, Eqs. (1), (2) and (3), and (4) represent
the incompressible condition for the fluid velocity field v,
Navier-Stokes flow under the Boussinesq approximation, and
advection-diffusion process for the convective component
of the temperature, respectively. The Prandtl number and
Rayleigh number are denoted by Pr and Ra, respectively.

The system is defined in the following region: x ∈ [0, 2L)
and y ∈ [−1,+1]. The boundary conditions of the system
are as follows. First, this system is assumed to be laterally
periodic, and therefore, it satisfies the 2L-periodic boundary
condition on x, i.e.,

v(x + 2L, y, t ) = v(x, y, t ), (5)

w(x + 2L, y, t ) = w(x, y, t ), (6)

θ (x + 2L, y, t ) = θ (x, y, t ). (7)

Second, this system satisfies the Dirichlet zero boundary
condition on y, i.e.,

v(x, y, t )|y=±1 = 0, (8)

w(x, y, t )|y=±1 = 0, (9)

θ (x, y, t )|y=±1 = 0. (10)

Here, the convective component of the temperature field is
defined as

T (x, y, t ) = −y + θ (x, y, t ). (11)

The dynamics of the temperature field T (x, y, t ) is described
by the following advection-diffusion equation:

∂

∂t
T (x, y, t ) = −v · ∇T + ∇2T . (12)

The boundary condition for the temperature field on y is given
by

T (x, y, t )|y=±1 = ∓1, (13)

where the temperature at the bottom (y = −1) is higher than
that at the top (y = +1). Substituting Eq. (11) into Eqs. (12)
and (13), we can obtain Eqs. (4) and (10), respectively.

Owing to the existence an incompressible condition rep-
resented by Eq. (1), a set of Eqs. (1), (2), (3), and (4) can
be considered as a partial differential algebraic equation (see,
e.g., Refs. [47,48]). In other words, there is no dynamical
equation for the pressure p(x, y, t ). The above equations can
be expressed in the following matrix form:

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ∂

∂t

⎛
⎜⎝

p
v

w

θ

⎞
⎟⎠=

⎛
⎜⎜⎝

∇ · v

−v · ∇v − ∂x p
−v · ∇w − ∂y p + Pr Ra θ

−v · ∇θ + w

⎞
⎟⎟⎠

+

⎛
⎜⎝

0 0 0 0
0 Pr 0 0
0 0 Pr 0
0 0 0 1

⎞
⎟⎠∇2

⎛
⎜⎝

p
v

w

θ

⎞
⎟⎠.

(14)

Introducing the variable X (x, y, t ) as

X (x, y, t ) = (p, v, w, θ )T, (15)

Eq. (14) can be rewritten as

M̂
∂

∂t
X (x, y, t ) = F [X ] + D̂∇2X , (16)

where the first term on the right-hand side is given by

F [X ] =

⎧⎪⎨
⎪⎩

∇ · v,

−v · ∇v − ∂x p,
−v · ∇w − ∂y p + Pr Ra θ,

−v · ∇θ + w,

(17)

and the two matrices are given by

M̂ =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, D̂ =

⎛
⎜⎝

0 0 0 0
0 Pr 0 0
0 0 Pr 0
0 0 0 1

⎞
⎟⎠. (18)

It is evident that the above matrices are singular. In particular,
as M̂ is singular, Eq. (16) can be considered as a partial
differential algebraic equation or a partial differential equation
with constraints (see, e.g., Refs. [47,48]).
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B. Limit-torus solutions and their Floquet-type systems

In general, a stable limit-torus solution of Eq. (16), which
represents traveling and oscillating thermal convection, can be
described as (e.g., see Figs. 2–4 in Sec. III A)

X (x, y, t ) = X 0(x − �, y,�), �̇(t ) = c, �̇(t ) = ω.

(19)

Here, the spatial and temporal phases are denoted by �

and �, respectively. These phases indicate the position and
oscillation of the thermal convection, respectively. Further, the
traveling velocity c and oscillation frequency ω are constant.
The limit-torus solution X 0(x − �, y,�) satisfies both the 2L
periodicity with respect to (x − �) and the 2π periodicity
with respect to �, i.e.,

X 0(x − � + 2L, y,�) = X 0(x − �, y,�), (20)

X 0(x − �, y,� + 2π ) = X 0(x − �, y,�). (21)

Substituting Eq. (19) into Eq. (16), we find that X 0(x −
�, y,�) satisfies the following equation:[

−cM̂
∂

∂x
+ ωM̂

∂

∂�

]
X 0(x − �, y,�) = F [X 0] + D̂∇2X 0.

(22)

The components of X 0(x − �, y,�) can be defined as

X 0(x − �, y,�) = (p0, v0, w0, θ0)T. (23)

Further, the components of u(x − �, y,�, t ) are defined as

u(x − �, y,�, t ) = (p1, v1, w1, θ1)T. (24)

Here, we consider that u(x − �, y,�, t ) represents a small
disturbance to X 0(x − �, y,�). Under this condition, the
small perturbation solution can be expressed as

X (x, y, t ) = X 0(x − �, y,�) + u(x − �, y,�, t ). (25)

Equation (16) is then linearized with respect to u(x −
�, y,�, t ) as follows:

M̂
∂

∂t
u(x − �, y,�, t ) = L̂(x − �, y,�)u(x − �, y,�, t ).

(26)

Here, the linear operator L̂(x − �, y,�) is given by

L̂(x − �, y,�)u(x − �, y,�)

=
[

L̂(x − �, y,�) + cM̂
∂

∂x
− ωM̂

∂

∂�

]
u(x − �, y,�),

(27)

where

L̂(x − �, y,�)u(x − �, y,�)

= [Ĵ (x − �, y,�) + D̂∇2]u(x − �, y,�). (28)

The explicit form of Ĵ (x − �, y,�)u(x − �, y,�), which
can be derived from F [X ], is given by Eq. (A7) in Appendix
A. In Eqs. (27) and (28), we omitted the t dependence of the
function u(x − �, y,�, t ) and denoted it as u(x − �, y,�)

because we consider only the eigenvalue problem of the
linear operator L̂(x − �, y,�). As in the limit-torus solution
X 0(x − �, y,�), the function u(x − �, y,�) satisfies the 2L
periodicity with respect to (x − �), the Dirichlet zero bound-
ary condition with respect to y, and the 2π periodicity with
respect to �. Note that the linear operator L̂(x − �, y,�)
is periodic with respect to both (x − �) and �. Therefore,
Eq. (26) represents a Floquet-type system with two zero
eigenvalues, which are associated with spatial and temporal
translational symmetry breaking.

As in Eq. (24), we define the components of u∗(x −
�, y,�) as

u∗(x − �, y,�) = (p∗
1, v∗

1 , w∗
1, θ∗

1 ). (29)

Further, we also define the inner product of two functions as

[[u∗(x − �, y,�), u(x − �, y,�)]]

= 1

2π

∫ 2π

0
d�

∫ 2L

0
dx

∫ +1

−1
dy u∗(x−�, y,�) · u(x−�, y,�),

(30)

where u∗(x − �, y,�) · u(x − �, y,�) = p∗
1 p1 + v∗

1v1 +
w∗

1w1 + θ∗
1 θ1, using Eqs. (24) and (29). We introduce the

adjoint operator of L̂(x − �, y,�) as

[[u∗(x − �, y,�), L̂(x − �, y,�)u(x − �, y,�)]]

= [[L̂∗(x − �, y,�)u∗(x − �, y,�), u(x − �, y,�)]]

+ S[u∗(x − �, y,�), u(x − �, y,�)], (31)

where the bilinear concomitant is denoted by S[u∗(x −
�, y,�), u(x − �, y,�)]. Using partial integration, the ad-
joint operator L̂∗(x − �, y,�) can be expressed as

L̂∗(x − �, y,�)u∗(x − �, y,�)

=
[

L̂∗(x−�, y,�)−cM̂T ∂

∂x
+ ωM̂T ∂

∂�

]
u∗(x−�, y,�),

(32)

where

L̂∗(x − �, y,�)u∗(x − �, y,�)

= [Ĵ ∗(x − �, y,�) + D̂T∇2]u∗(x − �, y,�). (33)

The explicit form of Ĵ ∗(x − �, y,�)u∗(x − �, y,�), which
can be derived from Ĵ (x − �, y,�)u(x − �, y,�), is given
by Eq. (A10) in Appendix A. As in u(x − �, y,�), the
function u∗(x − �, y,�) also satisfies the 2L periodicity with
respect to (x − �), the Dirichlet zero boundary condition
with respect to y, and the 2π periodicity with respect to �.
Details of the adjoint operator including the adjoint boundary
conditions are given in Appendix A.

C. Floquet zero eigenfunctions and their orthonormalization

Here, we use the Floquet and adjoint eigenfunctions as-
sociated with the two zero eigenvalues of L̂(x − �, y,�)
and L̂∗(x − �, y,�). From Eqs. (27) and (32), the zero
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eigenfunctions satisfy the following conditions:

L̂(x − �, y,�)U s(x − �, y,�) =
[

L̂(x − �, y,�) + cM̂
∂

∂x
− ωM̂

∂

∂�

]
U s(x − �, y,�) = 0, (34)

L̂(x − �, y,�)U t (x − �, y,�) =
[

L̂(x − �, y,�) + cM̂
∂

∂x
− ωM̂

∂

∂�

]
U t (x − �, y,�) = 0, (35)

L̂∗(x − �, y,�)U∗
s (x − �, y,�) =

[
L̂∗(x − �, y,�) − cM̂T ∂

∂x
+ ωM̂T ∂

∂�

]
U∗

s (x − �, y,�) = 0, (36)

L̂∗(x − �, y,�)U∗
t (x − �, y,�) =

[
L̂∗(x − �, y,�) − cM̂T ∂

∂x
+ ωM̂T ∂

∂�

]
U∗

t (x − �, y,�) = 0. (37)

Note that the two Floquet zero eigenfunctions, i.e., U s(x − �, y,�) for the spatial phase and U t (x − �, y,�) for the temporal
phase, can be chosen as (e.g., see Figs. 6–11 in Sec. III B)

U s(x − �, y,�) = ∂

∂x
X 0(x − �, y,�), (38)

U t (x − �, y,�) = ∂

∂�
X 0(x − �, y,�), (39)

which can be confirmed by differentiating Eq. (22) with respect to x and �, respectively. For the inner product given by Eq. (30)
with the two Floquet zero eigenfunctions given by Eqs. (38) and (39), the corresponding two adjoint zero eigenfunctions, i.e.,
U∗

s (x − �, y,�) for the spatial phase and U∗
t (x − �, y,�) for the temporal phase, can be orthonormalized as

[[U∗
p(x − �, y,�), M̂Uq(x − �, y,�)]] = 1

2π

∫ 2π

0
d�

∫ 2L

0
dx

∫ +1

−1
dy U∗

p(x − �, y,�) · M̂Uq(x − �, y,�) = δpq, (40)

where p, q = s, t. Note that the singular diagonal matrix M̂ = diag(0, 1, 1, 1), which is defined in Eq. (18), has been inserted in
Eq. (40) because of the form of Eq. (16). This is the key point of the proposed phase reduction method for partial differential
algebraic equations. Here, we also note that the following condition is satisfied:

∂

∂�

[∫ 2L

0
dx

∫ +1

−1
dy U∗

p(x − �, y,�) · M̂Uq(x − �, y,�)

]

=
∫ 2L

0
dx

∫ +1

−1
dy

[
U∗

p(x − �, y,�) · M̂
∂

∂�
Uq(x − �, y,�) + M̂T ∂

∂�
U∗

p(x − �, y,�) · Uq(x − �, y,�)

]

= 1

ω

∫ 2L

0
dx

∫ +1

−1
dy

[
U∗

p(x − �, y,�) ·
{

L̂(x − �, y,�) + cM̂
∂

∂x

}
Uq(x − �, y,�)

−
{

L̂∗(x − �, y,�) − cM̂T ∂

∂x

}
U∗

p(x − �, y,�) · Uq(x − �, y,�)

]
= 0, (41)

where we used Eqs. (34), (35), (36), and (37). This implies that the following orthonormalization condition is satisfied
independently for each �: ∫ 2L

0
dx

∫ +1

−1
dy U∗

p(x − �, y,�) · M̂Uq(x − �, y,�) = δpq. (42)

Here, we describe a numerical method for obtaining the adjoint zero eigenfunctions (see Appendix C for more details). From
Eqs. (36) and (37), the adjoint zero eigenfunctions satisfy

ωM̂T ∂

∂�
U∗

p(x − �, y,�) = −
[
Ĵ ∗(x − �, y,�) + D̂T∇2 − cM̂T ∂

∂x

]
U∗

p(x − �, y,�), (43)

for p = s, t, which can be transformed as

M̂T ∂

∂s
U∗

p(x − �, y,−ωs) =
[
Ĵ ∗(x − �, y,−ωs) + D̂T∇2 − cM̂T ∂

∂x

]
U∗

p(x − �, y,−ωs) (44)

by substituting � = −ωs. A relaxation method using Eq. (44), which can also be called the adjoint method (see Refs. [6–12] for
limit-cycle solutions to ordinary differential equations, Refs. [20–26] for limit-cycle solutions to partial differential equations,
and Ref. [46] for limit-torus solutions to partial differential equations), is convenient to obtain the adjoint zero eigenfunctions
associated with limit-torus solutions to partial differential algebraic equations.
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In the following two subsections, we derive a set of phase equations for traveling and oscillating thermal convection using the
limit-torus solution, its Floquet zero eigenfunctions, and adjoint zero eigenfunctions.

D. Traveling and oscillating convection with weak perturbations

Here, we consider traveling and oscillating thermal convection with a weak perturbation that is described by the following
equation:

M̂
∂

∂t
X (x, y, t ) = F [X ] + D̂∇2X + εP(x, y, t ). (45)

The weak perturbation is denoted by εP(x, y, t ). We assume that the perturbed solution is always near the orbit of the limit-torus
solution X 0(x − �, y,�). Using the two adjoint zero eigenfunctions, we project the dynamics of the perturbed equation (45)
onto the unperturbed limit-torus solution with respect to the spatial and temporal phases as follows:

−�̇(t ) =
∫ 2L

0
dx

∫ +1

−1
dy U∗

s (x − �, y,�) ·
[

M̂
∂

∂t
X (x, y, t )

]

=
∫ 2L

0
dx

∫ +1

−1
dy U∗

s (x − �, y,�) · [F [X ] + D̂∇2X + εP(x, y, t )]

�
∫ 2L

0
dx

∫ +1

−1
dy U∗

s (x − �, y,�) · [F [X 0] + D̂∇2X 0 + εP(x, y, t )]

=
∫ 2L

0
dx

∫ +1

−1
dy U∗

s (x − �, y,�) ·
[
−cM̂

∂X 0

∂x
+ ωM̂

∂X 0

∂�
+ εP(x, y, t )

]

=
∫ 2L

0
dx

∫ +1

−1
dy U∗

s (x − �, y,�) · [−cM̂U s(x − �, y,�) + ωM̂U t (x − �, y,�) + εP(x, y, t )]

= −c + ε

∫ 2L

0
dx

∫ +1

−1
dy U∗

s (x − �, y,�) · P(x, y, t ), (46)

and

�̇(t ) =
∫ 2L

0
dx

∫ +1

−1
dy U∗

t (x − �, y,�) ·
[

M̂
∂

∂t
X (x, y, t )

]

=
∫ 2L

0
dx

∫ +1

−1
dy U∗

t (x − �, y,�) · [F [X ] + D̂∇2X + εP(x, y, t )]

�
∫ 2L

0
dx

∫ +1

−1
dy U∗

t (x − �, y,�) · [F [X 0] + D̂∇2X 0 + εP(x, y, t )]

=
∫ 2L

0
dx

∫ +1

−1
dy U∗

t (x − �, y,�) ·
[
−cM̂

∂X 0

∂x
+ ωM̂

∂X 0

∂�
+ εP(x, y, t )

]

=
∫ 2L

0
dx

∫ +1

−1
dy U∗

t (x − �, y,�) · [−cM̂U s(x − �, y,�) + ωM̂U t (x − �, y,�) + εP(x, y, t )]

= ω + ε

∫ 2L

0
dx

∫ +1

−1
dy U∗

t (x − �, y,�) · P(x, y, t ), (47)

where we approximated X (x, y, t ) by the unperturbed limit-torus solution X 0(x − �, y,�), and also used Eqs. (22), (38),
(39), and (42). Consequently, the two phase equations describing the traveling and oscillating thermal convection under weak
perturbation are approximately obtained in the following forms:

�̇(t ) = c + ε

∫ 2L

0
dx

∫ +1

−1
dy Zs(x − �, y,�) · P(x, y, t ), (48)

�̇(t ) = ω + ε

∫ 2L

0
dx

∫ +1

−1
dy Zt (x − �, y,�) · P(x, y, t ), (49)

where the phase sensitivity functions for the spatial and temporal phases are defined as (e.g., see Figs. 12–17 in Sec. III B)

Zs(x − �, y,�) = −U∗
s (x − �, y,�), (50)

Zt (x − �, y,�) = +U∗
t (x − �, y,�). (51)
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These phase equations are the main results of this paper. The
phase sensitivity functions quantify the spatiotemporal phase
responses of the thermal convection to weak perturbations
applied at each spatial point and at each time. The coupling of
spatial and temporal phases, as clear from Eqs. (48) and (49),
manifests in a nontrivial spatiotemporal phase dynamics.

Here, the components of the phase sensitivity functions for
the spatial and temporal phases are defined as

Zs(x − �, y,�) = (
Z (s)

p , Z (s)
v , Z (s)

w , Z (s)
θ

)
, (52)

Zt (x − �, y,�) = (
Z (t)

p , Z (t)
v , Z (t)

w , Z (t)
θ

)
. (53)

As is clear from Eq. (A18) in Appendix A, not only the fluid
velocity field v but also its phase sensitivity functions are
divergence-free, which can be expressed as follows:

∂xZ (s)
v + ∂yZ (s)

w = 0, (54)

∂xZ (t)
v + ∂yZ (t)

w = 0. (55)

Here, we consider scalar-potential-based perturbations to the
fluid velocity field as follows:

P(x, y, t ) = (0, −∂x
, −∂y
, 0)T, (56)

where the scalar potential is denoted by 
. In this case, the
spatial and temporal phase responses given in Eqs. (48) and
(49) become zero, i.e.,∫ 2L

0
dx

∫ +1

−1
dy Zs(x − �, y,�) · P(x, y, t )

= −
∫ 2L

0
dx

∫ +1

−1
dy

(
Z (s)

v ∂x
 + Z (s)
w ∂y


)

=
∫ 2L

0
dx

∫ +1

−1
dy

(
∂xZ (s)

v + ∂yZ (s)
w

)

 = 0, (57)

∫ 2L

0
dx

∫ +1

−1
dy Zt (x − �, y,�) · P(x, y, t )

= −
∫ 2L

0
dx

∫ +1

−1
dy

(
Z (t)

v ∂x
 + Z (t)
w ∂y


)

=
∫ 2L

0
dx

∫ +1

−1
dy

(
∂xZ (t)

v + ∂yZ (t)
w

)

 = 0, (58)

where we used Eqs. (54), (55), and (A15). This implies that
application of scalar-potential-based perturbations to the fluid
velocity field does not affect the spatial and temporal phases.
Here, we note that such a perturbation in incompressible fluid
equations can be absorbed into the pressure term, which is
clear from the following equations:

0 = ∇ · v, (59)

∂

∂t
v(x, y, t ) = −v · ∇v−∇p + Pr Ra θ ey + Pr ∇2v−ε∇
,

(60)
∂

∂t
θ (x, y, t ) = −v · ∇θ + v · ey + ∇2θ, (61)

where ey is a unit vector for y. Therefore, the divergence-free
property described by Eqs. (54) and (55) holds naturally and
universally for incompressible fluids.

We now consider the case when the perturbation can be
described by a product of two functions, i.e.,

P(x, y, t ) = A(x, y)q(t ). (62)

This signifies that the space dependence and time dependence
of the perturbation are separated. In this case, Eqs. (48) and
(49) can be written as

�̇(t ) = c + εζs(�,�)q(t ), (63)

�̇(t ) = ω + εζt (�,�)q(t ), (64)

where the effective phase sensitivity functions for the spatial
and temporal phases are expressed as

ζs(�,�) =
∫ 2L

0
dx

∫ +1

−1
dy Zs(x − �, y,�) · A(x, y), (65)

ζt (�,�) =
∫ 2L

0
dx

∫ +1

−1
dy Zt (x − �, y,�) · A(x, y). (66)

We note that the forms of Eqs. (63) and (64) are essentially
the same as those of the phase equations, which were derived
for a perturbed limit-torus oscillator described by a finite-
dimensional dynamical system (see Ref. [49]). This implies
that a traveling and oscillating solution to a partial differential
algebraic equation can be reduced to a set of phase equations,
as in an ordinary limit-torus oscillator.

E. Weakly coupled systems of traveling
and oscillating convection

Here, we consider weakly coupled systems of traveling
and oscillating thermal convection that are described by the
following equation:

M̂
∂

∂t
Xσ (x, y, t ) = F [Xσ ] + D̂∇2Xσ + εG[Xσ , X τ ], (67)

for (σ, τ ) = (1, 2) or (2, 1), where the weak coupling term
is denoted by εG[Xσ , X τ ]. In the absence of coupling, each
system is assumed to exhibit a stable limit-torus solution given
as

Xσ (x, y, t )=X 0(x−�σ , y,�σ ), �̇σ (t )=c, �̇σ (t )=ω.

(68)

Here, we assume that the coupling between the systems is
sufficiently weak. Under these assumptions, as in Sec. II D, we
can obtain a set of phase equations from Eq. (67) as follows:

�̇σ (t ) = c + ε

∫ 2L

0
dx

∫ +1

−1
dy Zs(x − �σ , y,�σ )

· G[X 0(x − �σ , y,�σ ), X 0(x − �τ , y,�τ )]

≡ c + ε�̃s(�σ − �τ ,�σ ,�τ ), (69)

�̇σ (t ) = ω + ε

∫ 2L

0
dx

∫ +1

−1
dy Zt (x − �σ , y,�σ )

· G[X 0(x − �σ , y,�σ ), X 0(x − �τ , y,�τ )]

≡ ω + ε�̃t (�σ − �τ ,�σ ,�τ ), (70)

where we approximated Xσ (x, y, t ) by the unperturbed limit-
torus solution X 0(x − �σ , y,�σ ). These two functions, i.e.,
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�̃s(�σ − �τ ,�σ ,�τ ) for the spatial phase and �̃t (�σ −
�τ ,�σ ,�τ ) for the temporal phase, depend on the spatial
phase difference between the systems and the temporal phases
of both systems.

Introducing the slow phase variables as

�σ (t ) = ct + �̄σ (t ), (71)

�σ (t ) = ωt + �̄σ (t ), (72)

we can rewrite Eqs. (69) and (70) as

d

dt
�̄σ (t ) = ε�̃s(�̄σ − �̄τ , ωt + �̄σ , ωt + �̄τ ), (73)

d

dt
�̄σ (t ) = ε�̃t (�̄σ − �̄τ , ωt + �̄σ , ωt + �̄τ ). (74)

When we apply the averaging method [2] with respect to
the temporal phases, Eqs. (73) and (74) can be written as
follows:

d

dt
�̄σ (t ) = ε

2π

∫ 2π

0
dλ �̃s(�̄σ − �̄τ , λ + �̄σ , λ + �̄τ )

≡ ε�s(�̄σ − �̄τ , �̄σ − �̄τ ), (75)

d

dt
�̄σ (t ) = ε

2π

∫ 2π

0
dλ �̃t (�̄σ − �̄τ , λ + �̄σ , λ + �̄τ )

≡ ε�t (�̄σ − �̄τ , �̄σ − �̄τ ). (76)

Therefore, we obtain the following phase equations:

�̇σ (t ) = c + ε�s(�σ − �τ ,�σ − �τ ), (77)

�̇σ (t ) = ω + ε�t (�σ − �τ ,�σ − �τ ), (78)

where the phase coupling functions for the spatial and tempo-
ral phases can be described as

�s(�,�) = 1

2π

∫ 2π

0
dλ

∫ 2L

0
dx

∫ +1

−1
dy Zs(x−�, y, λ + �)

· G[X 0(x − �, y, λ + �), X 0(x, y, λ)], (79)

�t (�,�) = 1

2π

∫ 2π

0
dλ

∫ 2L

0
dx

∫ +1

−1
dy Zt (x − �, y, λ + �)

· G[X 0(x−�, y, λ + �), X 0(x, y, λ)]. (80)

The phase coupling functions, i.e., �s(�σ − �τ ,�σ − �τ )
for the spatial phase and �t (�σ − �τ ,�σ − �τ ) for the
temporal phase, depend only on the spatial and temporal phase
differences.

Let the spatial and temporal phase differences be defined
as

Δ�(t ) = �1(t ) − �2(t ), (81)

Δ�(t ) = �1(t ) − �2(t ). (82)

Using Eqs. (77) and (78), we obtain the following equations,

d

dt
Δ�(t ) = ε�(a)

s (Δ�,Δ�), (83)

d

dt
Δ�(t ) = ε�

(a)
t (Δ�,Δ�), (84)

where the antisymmetric components of the phase coupling
functions are defined as (e.g., see Figs. 18 and 19 in Sec. III C)

�(a)
s (Δ�,Δ�) = �s(Δ�,Δ�) − �s(−Δ�,−Δ�), (85)

�
(a)
t (Δ�,Δ�) = �t (Δ�,Δ�) − �t (−Δ�,−Δ�). (86)

These two functions, �(a)
s (Δ�,Δ�) and �

(a)
t (Δ�,Δ�), sat-

isfy the following properties:

�(a)
s (−Δ�,−Δ�) = −�(a)

s (Δ�,Δ�), (87)

�
(a)
t (−Δ�,−Δ�) = −�

(a)
t (Δ�,Δ�), (88)

which represent the antisymmetry with respect to the origin,
i.e., Δ� = Δ� = 0.

Finally, we note that the forms of Eqs. (77) and (78) are the
same as that of the phase equations that are derived for weakly
coupled limit-torus oscillators described by finite-dimensional
dynamical systems (see Ref. [49]). This implies that, as in
an ordinary limit-torus oscillator, weakly coupled systems
with traveling and oscillating solutions to a partial differential
algebraic equation can be reduced to a set of phase equations.

III. NUMERICAL ANALYSIS OF LIMIT-TORUS
SOLUTIONS

In this section, we perform a numerical analysis of travel-
ing and oscillating thermal convection to illustrate the theory
formulated in Sec. II. The numerical methods for fluid equa-
tions and adjoint equations are summarized in Appendixes B
and C, respectively. The number of grid points for x, y, and
� are Nx = 256, Ny + 1 = 129, and N� = 1024, respectively.
The time step is �t = 10−4–10−5 (primarily, �t = 10−4).
The parameters are fixed, i.e., Pr = 6.8, Ra = 5000, and
2L = 4. The value of Pr is the typical one for water at room
temperature. The values of the others were chosen such that
the system can exhibit oscillatory thermal convection. The
initial values were prepared such that the system exhibits
oscillatory thermal convection with a pair of vortices. The
traveling velocity and oscillation frequency are c = 0 and
ω � 108, respectively. As c = 0, the traveling and oscillating
thermal convection can be considered as oscillatory thermal
convection with a spatially translational mode.1

A. Thermal convection solutions

The components of the limit-torus solution X 0(x −
�, y,�) are defined as

X 0(x − �, y,�) = (p0, v0, w0, θ0)T, v0 = (v0, w0)T,

(89)

1We have not found a case of nonzero traveling velocity in our
numerical simulations of this system although we have varied the
Prandtl number, Rayleigh number, and aspect ratio (i.e., Pr, Ra, and
L). Therefore, we consider only the case of zero traveling velocity
in this paper. Here, we note that the theory formulated in Sec. II is
applicable for the case of non-zero traveling velocity. This point is
further discussed in Sec. IV.
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FIG. 1. Snapshots of T0(x − �, y, �) with � = 2 for (a) �/π =
0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

where the convective component of the temperature field is
defined as

T0(x − �, y,�) = −y + θ0(x − �, y,�). (90)

Figure 1 shows the snapshots of the temperature field T0(x −
�, y,�) with � = 2 for [Fig. 1(a)] �/π = 0.0, [Fig. 1(b)]
�/π = 0.5, [Fig. 1(c)] �/π = 1.0, and [Fig. 1(d)] �/π =
1.5. Figure 2 shows the snapshots of the convective com-
ponent θ0(x − �, y,�). Figures 3 and 4 show the snapshots
of the horizontal fluid velocity v0(x − �, y,�) and the ver-
tical fluid velocity w0(x − �, y,�), respectively. Equation
(1) suggests that the fluid velocity field is incompressible or
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FIG. 2. Snapshots of θ0(x − �, y, �) with � = 2 for (a) �/π =
0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

divergence-free (see Figs. 3 and 4), i.e.,

∂xv0 + ∂yw0 = 0. (91)

Because the traveling velocity is zero, i.e.,

c = 0, (92)

the limit-torus solution X 0(x − �, y,�), representing the os-
cillatory thermal convection, exhibits the following reflection
properties (see Figs. 2–4):

θ0(−(x − �), y,�) = +θ0(x − �, y,�), (93)

v0(−(x − �), y,�) = −v0(x − �, y,�), (94)

w0(−(x − �), y,�) = +w0(x − �, y,�). (95)
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For visualizing the temporal phase of the limit-torus in
the infinite-dimensional state space, we project the limit-torus
solution X 0(x − �, y,�) onto the following quantity with
k = 3:

Hk (�) =
∫ 2L

0
dx

∫ +1

−1
dy θ0(x − �, y,�) sin

(
kπ

y + 1

2

)
,

(96)

which is a real number and depends only on the temporal
phase �. Figure 5 shows H3(�), which satisfies the fol-
lowing property: H3(� + π ) = −H3(�). To determine the
spatial phase of the limit-torus solution X 0(x − �, y,�), we
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FIG. 4. Snapshots of w0(x − �, y, �) with � = 2 for (a) �/π =
0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

introduce the following complex parameter:

A(�,�) =
∫ 2L

0
dx

∫ +1

−1
dy θ0(x − �, y,�)

× exp

(
iπ

x

L

)
sin

(
π

y + 1

2

)
. (97)

Consequently, the spatial phase � is given as
�

L
= arg A

π
. (98)

As seen in Fig. 1, the spatial phase � indicates the position of
the hot plume in the thermal convection, whereas the temporal
phase � indicates its oscillation.
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FIG. 5. Wave form of H3(�). The parameters are fixed, i.e., Pr =
6.8, Ra = 5000, and 2L = 4. The traveling velocity and oscillation
frequency are c = 0 and ω � 108, respectively.

B. Phase sensitivity functions

The components of the Floquet zero eigenfunctions for the
spatial and temporal phases are defined as

U s(x − �, y,�) = (
U (s)

p , U (s)
v , U (s)

w , U (s)
θ

)T
, (99)

U t (x − �, y,�) = (
U (t)

p , U (t)
v , U (t)

w , U (t)
θ

)T
. (100)

Figures 6, 7, and 8 show the snapshots of the Floquet
zero eigenfunction for the spatial phase, U (s)

θ (x − �, y,�),
U (s)

v (x − �, y,�), and U (s)
w (x − �, y,�), respectively. Fig-

ures 9, 10, and 11 show the snapshots of the Floquet
zero eigenfunction for the temporal phase, U (t)

θ (x − �, y,�),
U (t)

v (x − �, y,�), and U (t)
w (x − �, y,�), respectively.

As in Eqs. (52) and (53), the components of the phase
sensitivity functions for the spatial and temporal phases are
defined as

Zs(x − �, y,�) = (
Z (s)

p , Z (s)
v , Z (s)

w , Z (s)
θ

)
, (101)

Zt (x − �, y,�) = (
Z (t)

p , Z (t)
v , Z (t)

w , Z (t)
θ

)
. (102)

Figures 12, 13, and 14 show the snapshots of the phase
sensitivity function for the spatial phase, Z (s)

θ (x − �, y,�),
Z (s)

v (x − �, y,�), and Z (s)
w (x − �, y,�), respectively. Fig-

ures 15, 16, and 17 show the snapshots of the phase sensitivity
function for the temporal phase, Z (t)

θ (x − �, y,�), Z (t)
v (x −

�, y,�), and Z (t)
w (x − �, y,�), respectively.

From Eqs. (50), (51), and (42), the following orthonormal-
ization conditions can be obtained (see Figs. 6–17):

−
∫ 2L

0
dx

∫ +1

−1
dy

[
Z (s)

v U (s)
v + Z (s)

w U (s)
w + Z (s)

θ U (s)
θ

] = 1,

(103)

−
∫ 2L

0
dx

∫ +1

−1
dy

[
Z (s)

v U (t)
v + Z (s)

w U (t)
w + Z (s)

θ U (t)
θ

] = 0,

(104)
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FIG. 6. Snapshots of U (s)
θ (x − �, y, �) with � = 2 for

(a) �/π = 0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

+
∫ 2L

0
dx

∫ +1

−1
dy

[
Z (t)

v U (s)
v + Z (t)

w U (s)
w + Z (t)

θ U (s)
θ

] = 0,

(105)

+
∫ 2L

0
dx

∫ +1

−1
dy

[
Z (t)

v U (t)
v + Z (t)

w U (t)
w + Z (t)

θ U (t)
θ

] = 1,

(106)

where we used Eqs. (99), (100), (101), (102), and (18). From
Eqs. (38), (39), and (91), the Floquet zero eigenfunctions
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for the spatial and temporal phases are divergence-free (see
Figs. 7, 8, 10, and 11), i.e.,

∂xU
(s)
v + ∂yU

(s)
w = 0, (107)

∂xU
(t)
v + ∂yU

(t)
w = 0. (108)

As mentioned also in context of Eqs. (54) and (55), the
phase sensitivity functions for the spatial and temporal
phases are also divergence-free (see Figs. 13, 14, 16, and
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w (x − �, y, �) with � = 2 for
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17), i.e.,

∂xZ (s)
v + ∂yZ (s)

w = 0, (109)

∂xZ (t)
v + ∂yZ (t)

w = 0. (110)

From Eqs. (93), (94), (95), and (38), the Floquet zero eigen-
function for the spatial phase exhibits the following reflection
properties (see Figs. 6–8):

U (s)
θ (−(x − �), y,�) = −U (s)

θ (x − �, y,�), (111)

U (s)
v (−(x − �), y,�) = +U (s)

v (x − �, y,�), (112)

U (s)
w (−(x − �), y,�) = −U (s)

w (x − �, y,�). (113)
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From Eqs. (93), (94), (95), and (39), the Floquet zero eigen-
function for the temporal phase exhibits the following reflec-
tion properties (see Figs. 9–11):

U (t)
θ (−(x − �), y,�) = +U (t)

θ (x − �, y,�), (114)

U (t)
v (−(x − �), y,�) = −U (t)

v (x − �, y,�), (115)

U (t)
w (−(x − �), y,�) = +U (t)

w (x − �, y,�). (116)
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Similarly, the phase sensitivity function for the spatial phase
exhibits the following reflection properties (see Figs. 12–14):

Z (s)
θ ( − (x − �), y,�) = −Z (s)

θ (x − �, y,�), (117)

Z (s)
v ( − (x − �), y,�) = +Z (s)

v (x − �, y,�), (118)

Z (s)
w ( − (x − �), y,�) = −Z (s)

w (x − �, y,�), (119)

and the phase sensitivity function for the temporal
phase exhibits the following reflection properties (see
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Figs. 15–17):

Z (t)
θ (−(x − �), y,�) = +Z (t)

θ (x − �, y,�), (120)

Z (t)
v (−(x − �), y,�) = −Z (t)

v (x − �, y,�), (121)

Z (t)
w (−(x − �), y,�) = +Z (t)

w (x − �, y,�). (122)

C. Phase coupling functions

In this subsection, we calculate the phase coupling func-
tions obtained in Sec. II E. As an example, we consider the
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θ (x − �, y, �) with � = 2 for

(a) �/π = 0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

following thermal coupling:

G[Xσ , X τ ] = [ 0, 0, 0, θτ (x, y, t ) − θσ (x, y, t )]T, (123)

for which the phase coupling functions given by Eqs. (79) and
(80) can be written in the following forms:

�s(�,�) = 1

2π

∫ 2π

0
dλ

∫ 2L

0
dx

∫ +1

−1
dy Z (s)

θ (x−�, y, λ+�)

× [θ0(x, y, λ) − θ0(x − �, y, λ + �)], (124)
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�t (�,�) = 1

2π

∫ 2π

0
dλ

∫ 2L

0
dx

∫ +1

−1
dy Z (t)

θ (x−�, y, λ+�)

× [θ0(x, y, λ) − θ0(x − �, y, λ + �)]. (125)

Figures 18 and 19 show the antisymmetric components of the
phase coupling functions, �(a)

s (Δ�,Δ�) and �
(a)
t (Δ�,Δ�),

respectively. As shown in Eqs. (87) and (88), both
�(a)

s (Δ�,Δ�) and �
(a)
t (Δ�,Δ�) exhibit antisymmetry with

respect to the origin, i.e., Δ� = Δ� = 0.
Here, we describe another symmetry of the antisymmetric

components of the phase coupling functions in this spatial
reflection symmetric case (see Figs. 2, 12, and 15). From
Eqs. (93), (117), and (120), the phase coupling functions,
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FIG. 14. Snapshots of Z (s)
w (x − �, y, �) with � = 2 for

(a) �/π = 0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

�s(Δ�,Δ�) and �t (Δ�,Δ�), exhibit the following reflec-
tion antisymmetry and reflection symmetry, respectively:

�s(−Δ�,Δ�) = −�s(Δ�,Δ�), (126)

�t (−Δ�,Δ�) = +�t (Δ�,Δ�). (127)

Therefore, the antisymmetric components of the phase cou-
pling functions, �(a)

s (Δ�,Δ�) and �
(a)
t (Δ�,Δ�), also ex-

hibit the following reflection antisymmetry and reflection
symmetry (see Figs. 18 and 19):

�(a)
s (−Δ�,Δ�) = −�(a)

s (Δ�,Δ�), (128)

�
(a)
t (−Δ�,Δ�) = +�

(a)
t (Δ�,Δ�). (129)
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Further, considering Eqs. (87), (88), (128), and (129), we can
also obtain the following properties (see Figs. 18 and 19):

�(a)
s (Δ�,−Δ�) = +�(a)

s (Δ�,Δ�), (130)

�
(a)
t (Δ�,−Δ�) = −�

(a)
t (Δ�,Δ�). (131)

It is evident from the above properties that the investiga-
tion of only the following region: (Δ�/L,Δ�/π ) ∈ [0, 1] ×
[0, 1] is sufficient. Figure 20 shows the nullclines, equilib-
rium points, and typical orbits of the spatiotemporal phase
differences in this region. The typical orbits were obtained
from the numerical solutions of Eqs. (83) and (84). As
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FIG. 16. Snapshots of Z (t)
v (x − �, y, �) with � = 2 for

(a) �/π = 0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

seen in Fig. 20, the spatial and temporal in-phase state, i.e.,
(Δ�/L,Δ�/π ) = (0, 0), is globally stable under the phase
reduction approximation. The spatial phase difference Δ�

monotonously decreases to zero, whereas the temporal phase
difference Δ� first increases slightly and then becomes zero.

D. Direct numerical simulations

In this subsection, we compare the time evolution of spa-
tiotemporal phase differences between the theoretical values
obtained in Sec. III C (shown in Fig. 20) and the direct numer-
ical simulations of two weakly coupled systems exhibiting os-
cillatory thermal convection described by Eqs. (67) and (123).
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(a) �/π = 0.0, (b) �/π = 0.5, (c) �/π = 1.0, and (d) �/π = 1.5.

Figures 21 and 22 show comparisons of the time evolution of
the spatial and temporal phase differences, respectively. Fig-
ure 23 shows comparisons of the orbits of the spatiotemporal
phase differences. There is an excellent agreement between
the theoretical and simulation results.

IV. CONCLUDING REMARKS

In this paper, we formulated a theory for the phase reduc-
tion of traveling and oscillating thermal convection in incom-
pressible Navier-Stokes flow systems, namely, limit-torus so-
lutions to partial differential algebraic equations. In particular,
we derived the spatiotemporal phase sensitivity functions for
the thermal convection and analyzed the spatiotemporal phase
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FIG. 18. Antisymmetric component of the phase coupling func-
tion for the spatial phase, �(a)

s (Δ�,Δ�).

synchronization between a pair of weakly coupled systems
exhibiting the thermal convection. The phase reduction theory
enabled us to prove the global stability of the spatial and
temporal in-phase state.

The important implications of this study are as follows.
First, as observed in Eqs. (109) and (110), the phase sensitivity
functions of fluid velocity fields for spatial and temporal
phases are divergence-free for incompressible Navier-Stokes
flow systems. This is true for both limit-torus and limit-cycle
solutions. Further, the temperature field is not essential for
this divergence-free property. Therefore, the phase sensitivity
function of a fluid velocity field (for the temporal phase)
should be divergence-free for periodic flows such as Kármán’s
vortex street in incompressible Navier-Stokes flow systems
[50,51]. The phase reduction theory formulated in this paper
will prove to be useful for analyzing the periodic flows.

Second, while an incompressible Navier-Stokes flow sys-
tem is a representative example of partial differential algebraic
equation, another typical example is a partial differential
equation with a constraint that represents some conservation.
In Ref. [26], we formulated a theory for the phase reduction
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FIG. 19. Antisymmetric component of the phase coupling func-
tion for the temporal phase, �

(a)
t (Δ�, Δ�).
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FIG. 20. Nullclines, equilibrium points, and typical orbits of
the spatiotemporal phase differences in the following region:
(Δ�/L, Δ�/π ) ∈ [0, 1] × [0, 1]. The solid (blue) and broken (red)
lines indicate the nullclines of �(a)

s (Δ�,Δ�) and �
(a)
t (Δ�, Δ�),

respectively. The filled circle (•) indicates the stable equilibrium
point (Δ�/L,Δ�/π ) = (0, 0), whereas the times signs (×) indicate
the unstable equilibrium points (Δ�/L,Δ�/π ) = (0, 1), (1, 0), and
(1, 1). The dotted (green) lines indicate the typical orbits of the
spatiotemporal phase differences whose initial values indicated by
the plus signs (+) are (Δ�/L, Δ�/π ) = (0.75, 0.25), (0.75, 0.50),
and (0.75, 0.75).

of a beating flagellum represented by a limit-cycle solution of
a partial differential equation model proposed by Goldstein
et al. in Ref. [52]. Although this model does not enforce
filament length conservation beyond linear order, a model that
enforces the length conservation is proposed by De Canio
et al. in Ref. [53]. We can use the present idea to formu-
late a theory for the phase reduction of a beating flagellum
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FIG. 21. Comparisons of the time evolution of the spatial phase
differences, Δ�/L vs εt , obtained by direct numerical simulations
(ε = 0.1 and 0.2) and the theoretical formulation (theory). The
initial values are (Δ�/L,Δ�/π ) = (0.75, 0.25), (0.75, 0.50), and
(0.75, 0.75).

0.00

0.25

0.50

0.75

1.00

0.0 1.0 2.0 3.0 4.0 5.0

ΔΘ
 / 

π

t

 = 0.1
 = 0.2
theory

FIG. 22. Comparisons of the time evolution of the temporal
phase differences, Δ�/π vs εt , obtained by direct numerical sim-
ulations (ε = 0.1 and 0.2) and the theoretical formulation (theory).
The initial values are (Δ�/L, Δ�/π ) = (0.75, 0.25), (0.75, 0.50),
and (0.75, 0.75).

represented by a limit-cycle solution to a partial differential
equation constrained with filament length conservation.

Third, we have presented three types of phase re-
duction methods and corresponding solutions for partial
differential equations with and without constraints for
the field X (x, y, t ). (i) A traveling solution: X (x, y, t ) =
X 0(x − �(t ), y) with �̇(t ) = c. (ii) An oscillating solution:
X (x, y, t ) = X 0(x, y,�(t )) with �̇(t ) = ω. (iii) A traveling
and oscillating solution: X (x, y, t ) = X 0(x − �(t ), y,�(t ))
with �̇(t ) = c and �̇(t ) = ω. The phase reduction method
for type (i) has been developed in Refs. [54–57] for trav-
eling solutions to nonlinear Fokker-Planck equations; this
method is closely related to the phase reduction method
for spatially periodic patterns in that the phase mode
is associated with spatial translational symmetry breaking
[58–63] (see also Refs. [2,27–30,64–66]).2 As mentioned in
Refs. [20,22,24,46], type (i) can be considered as a special
case of type (ii). Type (ii) can be considered as a limit-cycle
solution that exhibits only one phase mode, whereas type (iii)
can be considered as a limit-torus solution that exhibits two
phase modes. The phase reduction methods developed in this
paper and in Ref. [46] belong to type (iii), and they can be
considered as a generalization of our phase reduction methods
for type (ii) developed in Refs. [20–26].

Fourth, we have investigated the spatial reflection sym-
metry of rhythmic patterns. The traveling velocity c is zero
(nonzero) when the rhythmic pattern does not break (breaks)
the spatial reflection symmetry. The traveling velocity of the
thermal convection studied in this paper is zero; however, the

2When there exists a conserved quantity in a system, the con-
served quantity should also be taken into account in the theory (see
Refs. [62,63,66]). For example, in the case of stress-free boundary
conditions instead of no-slip boundary conditions, the horizontal
mean flow is a conserved quantity associated with the Galilean
invariance of the Navier-Stokes equation. Consequently, the phase
dynamics becomes second-order in time (see Refs. [62,63]).

033130-17



YOJI KAWAMURA PHYSICAL REVIEW RESEARCH 1, 033130 (2019)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

ΔΘ
 / 

π

ΔΦ / L

 = 0.1
 = 0.2
theory

FIG. 23. Comparisons of the orbits of the spatiotemporal phase
differences, Δ�/π vs Δ�/L, obtained with direct numerical sim-
ulations (ε = 0.1 and 0.2) and the theoretical formulation (theory).
The initial values are (Δ�/L,Δ�/π ) = (0.75, 0.25), (0.75, 0.50),
and (0.75, 0.75).

phase reduction method itself is applicable for the case of
nonzero traveling velocity. If the reflection symmetry of limit-
torus solution is broken, the corresponding symmetry of phase
sensitivity and phase coupling functions are also broken.

Fifth, our phase reduction approach has wide applicability.
Apart from thermal convection described in this paper, this
approach will be applied to other phenomena described by
limit-torus solutions, i.e., traveling and oscillating solutions.
For example, traveling and oscillating localized convection
(i.e., a traveling breather) in a binary fluid system (see,
e.g., Ref. [67]) and rotating and oscillating convection (i.e.,
amplitude vacillation [40–42]) in a rotating fluid annulus

system (see, e.g., Ref. [68,69]). Further, the numerical meth-
ods based on Refs. [70–72], which are summarized in Ap-
pendixes B and C, can be generalized for rotating flows
[73,74]. In addition, as mentioned in Ref. [46], similar phase
reduction methods can be developed for oscillating spots
of zero traveling velocity (see, e.g., Ref. [75]) or traveling
breathers of nonzero traveling velocity (see, e.g., Ref. [76])
in reaction-diffusion systems.

Finally, the proposed method can be considered as a gen-
eralized phase reduction method, which can be elucidated as
follows. The first point is the generalization from limit-cycle
solutions (i.e., oscillating solutions) to limit-torus solutions
(i.e., traveling and oscillating solutions). The second point
is the generalization from ordinary differential equations to
partial differential equations (e.g., reaction-diffusion equa-
tions [24,25] and beating flagella [26]), partial differential
integral equations (e.g., nonlinear Fokker-Planck equations
[20,21] and Hele-Shaw cells [22,23,46]), and partial differ-
ential algebraic equations (e.g., incompressible Navier-Stokes
equations including rotating fluid annuli). That is, in this pa-
per, we developed the phase reduction method for limit-torus
solutions to partial differential algebraic equations. The future
scope of this study involves the development of an advanced
theory, which can be applied to rotating fluid annulus [43–45]
introduced in Sec. I. We believe that such a study will provide
novel insights into meteorology (see, e.g., Refs. [77,78]).
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APPENDIX A: EXPLICIT FORMS OF ADJOINT SYSTEMS

In this Appendix, we describe the details of the derivation of the adjoint operator L̂∗(x − �, y,�) including the adjoint
boundary conditions encountered in Sec. II B (see also, e.g., Refs. [79–81] for mathematical terms). Here, we denote the
components of u(x − �, y,�) as

u(x − �, y,�) = (p1, v1, w1, θ1)T, v1 = (v1, w1)T. (A1)

Further, we also denote the components of u∗(x − �, y,�) as

u∗(x − �, y,�) = (p∗
1, v∗

1 , w∗
1, θ∗

1 ), v∗
1 = (v∗

1 , w∗
1 ). (A2)

From Eqs. (27) and (28), the linear operator L̂(x − �, y,�) is given by

L̂(x − �, y,�)u(x − �, y,�) =
[
Ĵ (x − �, y,�) + D̂∇2 + cM̂

∂

∂x
− ωM̂

∂

∂�

]
u(x − �, y,�). (A3)

From Eqs. (32) and (33), the adjoint operator L̂∗(x − �, y,�) is given by

L̂∗(x − �, y,�)u∗(x − �, y,�) =
[
Ĵ ∗(x − �, y,�) + D̂T∇2 − cM̂T ∂

∂x
+ ωM̂T ∂

∂�

]
u∗(x − �, y,�). (A4)

Here, the two singular diagonal matrices defined in Eq. (18) are symmetric, i.e.,

M̂ = M̂T =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, D̂ = D̂T =

⎛
⎜⎝

0 0 0 0
0 Pr 0 0
0 0 Pr 0
0 0 0 1

⎞
⎟⎠. (A5)
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For readability, Eq. (17) is reproduced as

F [X ] =

⎧⎪⎨
⎪⎩

∇ · v,

−v · ∇v − ∂x p,
−v · ∇w − ∂y p + Pr Ra θ,

−v · ∇θ + w.

(A6)

The linearization of Eq. (A6) around the limit-torus solution X 0(x − �, y,�) [denoted by Eq. (23)] implies

Ĵ u =

⎧⎪⎨
⎪⎩

∇ · v1,

−v1 · ∇v0 − v0 · ∇v1 − ∂x p1,

−v1 · ∇w0 − v0 · ∇w1 − ∂y p1 + Pr Ra θ1,

−v1 · ∇θ0 − v0 · ∇θ1 + w1,

(A7)

which can also be written in the following form:

Ĵ u =

⎧⎪⎨
⎪⎩

∂xv1 + ∂yw1,

−v1∂xv0 − w1∂yv0 − v0∂xv1 − w0∂yv1 − ∂x p1,

−v1∂xw0 − w1∂yw0 − v0∂xw1 − w0∂yw1 − ∂y p1 + Pr Ra θ1,

−v1∂xθ0 − w1∂yθ0 − v0∂xθ1 − w0∂yθ1 + w1.

(A8)

Therefore, the explicit form of Ĵ ∗(x − �, y,�)u∗(x − �, y,�) is

Ĵ ∗u∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂xv
∗
1 + ∂yw

∗
1,

∂x[v∗
1v0] + ∂y[v∗

1w0] − v∗
1∂xv0 − w∗

1∂xw0 − ∂x p∗
1 − θ∗

1 ∂xθ0,

∂x[w∗
1v0] + ∂y[w∗

1w0] − v∗
1∂yv0 − w∗

1∂yw0 − ∂y p∗
1 − θ∗

1 ∂yθ0 + θ∗
1 ,

∂x[θ∗
1 v0] + ∂y[θ∗

1 w0] + Pr Ra w∗
1,

(A9)

which can also be expressed as

Ĵ ∗u∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · v∗
1,

∇ · [v∗
1v0] − v∗

1 · ∂xv0 − ∂x p∗
1 − θ∗

1 ∂xθ0,

∇ · [w∗
1v0] − v∗

1 · ∂yv0 − ∂y p∗
1 − θ∗

1 ∂yθ0 + θ∗
1 ,

∇ · [θ∗
1 v0] + Pr Ra w∗

1 .

(A10)

The boundary conditions on y for u(x − �, y,�) are

v1(x − �, y,�)|y=±1 = 0, (A11)

w1(x − �, y,�)|y=±1 = 0, (A12)

θ1(x − �, y,�)|y=±1 = 0. (A13)

Similarly, the adjoint boundary conditions on y for u∗(x − �, y,�) are

v∗
1 (x − �, y,�)|y=±1 = 0, (A14)

w∗
1 (x − �, y,�)|y=±1 = 0, (A15)

θ∗
1 (x − �, y,�)|y=±1 = 0. (A16)

In fact, under these adjoint boundary conditions, the bilinear concomitant on y becomes zero as follows:

S[u∗(x − �, y,�), u(x − �, y,�)]

= + 1

2π

∫ 2π

0
d�

∫ 2L

0
dx [p∗

1w1]y=+1
y=−1 − 1

2π

∫ 2π

0
d�

∫ 2L

0
dx [w∗

1 p1]y=+1
y=−1 − 1

2π

∫ 2π

0
d�

∫ 2L

0
dx [v∗

1w0v1]y=+1
y=−1

− 1

2π

∫ 2π

0
d�

∫ 2L

0
dx [w∗

1w0w1]y=+1
y=−1 − 1

2π

∫ 2π

0
d�

∫ 2L

0
dx [θ∗

1 w0θ1]y=+1
y=−1 + Pr

2π

∫ 2π

0
d�

∫ 2L

0
dx

[
v∗

1
∂v1

∂y

]y=+1

y=−1

+ Pr

2π

∫ 2π

0
d�

∫ 2L

0
dx

[
w∗

1
∂w1

∂y

]y=+1

y=−1

+ 1

2π

∫ 2π

0
d�

∫ 2L

0
dx

[
θ∗

1
∂θ1

∂y

]y=+1

y=−1

− Pr

2π

∫ 2π

0
d�

∫ 2L

0
dx

[
∂v∗

1

∂y
v1

]y=+1

y=−1

− Pr

2π

∫ 2π

0
d�

∫ 2L

0
dx

[
∂w∗

1

∂y
w1

]y=+1

y=−1

− 1

2π

∫ 2π

0
d�

∫ 2L

0
dx

[
∂θ∗

1

∂y
θ1

]y=+1

y=−1

= 0. (A17)
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The bilinear concomitant on both x and � becomes zero, owing to the periodicity with respect to both x and �. Finally, from
Eqs. (A5) and (A10), Eq. (44) can be explicitly described as

0 = ∇ · v∗, (A18)

∂

∂s
v∗(x − �, y,−ωs) = ∇ · [v∗v0] − v∗ · ∂xv0 − ∂x p∗ − θ∗∂xθ0 − c∂xv

∗ + Pr ∇2v∗, (A19)

∂

∂s
w∗(x − �, y,−ωs) = ∇ · [w∗v0] − v∗ · ∂yv0 − ∂y p∗ − θ∗∂yθ0 + θ∗ − c∂xw

∗ + Pr ∇2w∗, (A20)

∂

∂s
θ∗(x − �, y,−ωs) = ∇ · [θ∗v0] + Pr Ra w∗ − c∂xθ

∗ + ∇2θ∗, (A21)

where we denoted U∗
p as u∗ [defined by Eq. (A2)] and dropped the subscript 1 for simplicity. From a viewpoint of numerical

analysis, a set of Eqs. (A18), (A19), (A20), and (A21) are similar to a set of Eqs. (1), (2), (3), and (4). In particular, the
incompressible condition is given by Eq. (A18). The numerical method for the adjoint system given by Eqs. (A18), (A19),
(A20), and (A21) is described in Appendix C.

APPENDIX B: NUMERICAL METHODS
FOR FLUID EQUATIONS

In this Appendix, we describe the numerical scheme for the
two-dimensional incompressible Navier-Stokes flow system
with the periodic boundary condition on x and the Dirichlet
zero boundary condition on y under the Boussinesq approxi-
mation. Equations (2), (3), and (4) can also be represented as

∂tv = Nv − ∂x p + Pr ∇2v, (B1)

∂tw = Nw − ∂y p + Pr Ra θ + Pr ∇2w, (B2)

∂tθ = Nθ + ∇2θ, (B3)

where

Nv = −v∂xv − w∂yv, (B4)

Nw = −v∂xw − w∂yw, (B5)

Nθ = −v∂xθ − w∂yθ + w. (B6)

As in Eqs. (8), (9), and (10), the boundary condition on y is
given by

v |y=±1 = w |y=±1 = θ |y=±1 = 0. (B7)

Using the incompressible condition given by Eq. (1), we can
obtain the Poisson equation for the pressure p as

∇2 p = ∂xNv + ∂y(Nw + Pr Ra θ ). (B8)

Here, the boundary condition on y for the pressure p is given
by

∂y p |y=±1 = −Pr ∂x∂yv |y=±1. (B9)

As in Refs. [70–72], we apply an improved projection
scheme as follows. First, the time integration of Eq. (B3) is
obtained by the following equation:

3θ (n + 1) − 4θ (n) + θ (n − 1)

2�t

= 2Nθ (n) − Nθ (n − 1) + ∇2θ (n + 1), (B10)

where the boundary condition on y is given by

θ (n + 1)
∣∣
y=±1= 0. (B11)

Second, the predictor for the pressure is obtained by the
following equation:

∇2 p(�) = + ∂x[2Nv (n) − Nv (n − 1)] + ∂y[2Nw(n)

− Nw(n − 1) + Pr Ra θ (n + 1)], (B12)

where the boundary condition on y is given by

∂y p(�)|y=±1 = −Pr [2∂x∂yv(n) − ∂x∂yv(n − 1)]|y=±1.

(B13)

Third, the predictor for the fluid velocity is obtained by the
following equations:

3v(�) − 4v(n) + v(n − 1)

2�t

= 2Nv (n) − Nv (n − 1) − ∂x p(�) + Pr ∇2v(�), (B14)

3w(�) − 4w(n) + w(n − 1)

2�t

= 2Nw(n) − Nw(n − 1) − ∂y p(�) + Pr Ra θ (n + 1)

+ Pr ∇2w(�), (B15)

where the boundary condition on y is given by

v(�)|y=±1 = w(�)|y=±1 = 0. (B16)

Fourth, the scalar function for the correction step is obtained
by the following equation:

∇2φ(�) = ∂xv(�) + ∂yw(�), (B17)

where the boundary condition on y is given by

∂yφ(�)|y=±1 = 0. (B18)

Finally, the fluid velocity and pressure are corrected by the
following equations:

v(n + 1) = v(�) − ∂

∂x
φ(�), (B19)

w(n + 1) = w(�) − ∂

∂y
φ(�), (B20)

p(n + 1) = p(�) + 3

2�t
φ(�). (B21)

As a spatial approximation, we apply the Fourier spectral
method for x and Chebyshev spectral method for y.
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APPENDIX C: NUMERICAL METHODS
FOR ADJOINT EQUATIONS

In this Appendix, we describe the numerical scheme for
the adjoint system with the periodic boundary condition on x
and the Dirichlet zero boundary condition on y. The scheme
is almost parallel to the method described in Appendix B for
the fluid system. When the traveling velocity is zero (c = 0),
Eqs. (A19), (A20), and (A21) can also be represented as

∂sv
∗ = N∗

v − ∂x p∗ − θ∗∂xθ0 + Pr ∇2v∗, (C1)

∂sw
∗ = N∗

w − ∂y p∗ − θ∗∂yθ0 + θ∗ + Pr ∇2w∗, (C2)

∂sθ
∗ = N∗

θ + ∇2θ∗, (C3)

where

N∗
v = ∂x[v∗v0] + ∂y[v∗w0] − v∗∂xv0 − w∗∂xw0, (C4)

N∗
w = ∂x[w∗v0] + ∂y[w∗w0] − v∗∂yv0 − w∗∂yw0, (C5)

N∗
θ = ∂x[θ∗v0] + ∂y[θ∗w0] + Pr Ra w∗. (C6)

As in Eqs. (A11), (A12), and (A13), the adjoint boundary
condition on y is

v∗|y=±1 = w∗|y=±1 = θ∗|y=±1 = 0. (C7)

Using the incompressible condition given by Eq. (A18), we
can obtain the Poisson equation for the adjoint pressure p∗ as

∇2 p∗ = ∂x(N∗
v − θ∗∂xθ0) + ∂y(N∗

w − θ∗∂yθ0 + θ∗). (C8)

Here, the boundary condition on y for the adjoint pressure p∗
is given by

∂y p∗|y=±1 = −Pr ∂x∂yv
∗|y=±1. (C9)

As in Appendix B, we apply an improved projection
scheme as follows. First, the time integration of Eq. (C3) is
obtained by the following equation:

3θ∗(n + 1) − 4θ∗(n) + θ∗(n − 1)

2�s

= 2N∗
θ (n) − N∗

θ (n − 1) + ∇2θ∗(n + 1), (C10)

where the boundary condition on y is given by

θ∗(n + 1)|y=±1 = 0. (C11)

Second, the predictor for the adjoint pressure is obtained by
the following equation:

∇2 p∗(�) =+∂x[2N∗
v (n) − N∗

v (n − 1) − θ∗(n +1)∂xθ0(n +1)]

+ ∂y[2N∗
w(n) − N∗

w(n − 1)

− θ∗(n + 1)∂yθ0(n + 1) + θ∗(n + 1)], (C12)

where the boundary condition on y is given by

∂y p∗(�)|y=±1 = −Pr [2∂x∂yv
∗(n) − ∂x∂yv

∗(n − 1)]|y=±1.

(C13)

Third, the predictor for the adjoint fluid velocity is obtained
by the following equations:

3v∗(�) − 4v∗(n) + v∗(n − 1)

2�s= 2N∗
v (n) − N∗

v (n − 1) − ∂x p∗(�)

− θ∗(n + 1)∂xθ0(n + 1) + Pr ∇2v∗(�), (C14)

3w∗(�) − 4w∗(n) + w∗(n − 1)

2�s

= 2N∗
w(n) − N∗

w(n −1) − ∂y p∗(�) − θ∗(n +1)∂yθ0(n +1)

+ θ∗(n + 1) + Pr ∇2w∗(�), (C15)

where the boundary condition on y is given by

v∗(�)|y=±1 = w∗(�)|y=±1 = 0. (C16)

Fourth, the scalar function for the correction step is obtained
by the following equation:

∇2φ∗(�) = ∂xv
∗(�) + ∂yw

∗(�), (C17)

where the boundary condition on y is given by

∂yφ
∗(�)|y=±1 = 0. (C18)

Finally, the adjoint fluid velocity and adjoint pressure are
corrected by the following equations:

v∗(n + 1) = v∗(�) − ∂

∂x
φ∗(�), (C19)

w∗(n + 1) = w∗(�) − ∂

∂y
φ∗(�), (C20)

p∗(n + 1) = p∗(�) + 3

2�s
φ∗(�). (C21)

As a spatial approximation, we apply the Fourier spectral
method for x and Chebyshev spectral method for y.
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