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Microscopic description of exciton-polaritons in microcavities
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We investigate the microscopic description of exciton-polaritons that involves electrons, holes and photons
within a two-dimensional microcavity. We show that in order to recover the simplified exciton-photon model
that is typically used to describe polaritons, one must correctly define the exciton-photon detuning and exciton-
photon (Rabi) coupling in terms of the bare microscopic parameters. For the case of unscreened Coulomb
interactions, we find that the exciton-photon detuning is strongly shifted from its bare value in a manner akin to
renormalization in quantum electrodynamics. Within the renormalized theory, we exactly solve the problem of
a single exciton-polariton for the first time and obtain the full spectral response of the microcavity. In particular,
we find that the electron-hole wave function of the polariton can be significantly modified by the very strong
Rabi couplings achieved in current experiments. Our microscopic approach furthermore allows us to obtain
the effective interaction between identical polaritons for any light-matter coupling. Crucially, we show that the
standard treatment of polariton-polariton interactions in the very strong coupling regime is incorrect, since it
neglects the light-induced modification of the exciton size and thus greatly overestimates the effect of Pauli
exclusion on the Rabi coupling, i.e., the saturation of exciton oscillator strength. Our findings thus provide the
foundations for understanding and characterizing exciton-polariton systems across the whole range of polariton
densities.
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I. INTRODUCTION

A strong light-matter coupling is routinely achieved in
experiment by embedding a semiconductor in an optical mi-
crocavity [1]. When the coupling strength exceeds the energy
scale associated with losses in the system, one can create
hybrid light-matter quasiparticles called polaritons, which are
superpositions of excitons and cavity photons [2–4]. Such
exciton-polaritons have been successfully described using a
simple model of two coupled oscillators, where the exciton is
treated as a rigid, pointlike boson. This simple picture under-
pins the multitude of mean-field theories used to model the
coherent many-body states of polaritons observed in exper-
iment, such as Bose-Einstein condensation and superfluidity
[5–10]. However, with advances in device fabrication leading
to cleaner samples, higher quality cavities and stronger light-
matter coupling, experiments are now entering a regime where
the composite nature of the exciton plays an important role.

Most notably, the structure of the exciton bound state
determines the strength of the polariton-polariton interactions,
which are currently a topic of major interest since they impact
the many-body physics of polaritons, as well as the possibility
of engineering correlations between photons [11,12]. In the
absence of light, the low-momentum scattering of excitons
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can be theoretically estimated by considering exchange pro-
cesses involving electrons and holes [13,14]. However, for
the case of polariton-polariton interactions, the exchange pro-
cesses are complicated by the coupling to photons, and there
are currently conflicting theoretical results in the literature
[14–17]. Moreover, none of these previous works properly
include light-induced modifications of the exciton wave func-
tion, which can be significant at strong light-matter coupling
[18] and which are crucial for determining the polariton-
polariton interaction strength, as we show here.

There is also the prospect of achieving strong light-matter
coupling in a greater range of systems, such as atomically thin
materials [19,20]. In particular, polaritons have recently been
realized in transition metal dichalcogenides [21,22], where it
is possible to electrostatically gate the system and create cor-
related light-matter states involving an electron gas [23,24].
Moreover, by increasing the photon intensity, one can access
the high-excitation regime of the microcavity [25], where the
exciton Bohr radius becomes comparable to or exceeds the
mean separation between polaritons [26–30]. Both these sce-
narios further underline the need for a microscopic description
that goes beyond the simple exciton-photon model.

In this paper, we exactly solve the problem of a single
exciton-polariton within a low-energy microscopic model of
electrons, holes and photons in a two-dimensional (2D) mi-
crocavity. In contrast to previous variational approaches to
the problem [18,31,32], we capture all the exciton bound
states and the unbound electron-hole continuum, which are
important for describing the regime of very strong light-
matter coupling. Furthermore, we find that the cavity photon
frequency is renormalized from its bare value by an amount
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that is set by the ultraviolet (UV) cutoff, since the photon
couples to electron-hole pairs at arbitrarily high energies in
this model. Physically, this is because the microscopic model
includes all electron-hole transitions, as well as the excitonic
resonances, that determine the dielectric function of the mi-
crocavity. While such behavior has also been observed in clas-
sical theories of the dielectric function [33], this crucial point
has apparently been overlooked by all previous quantum-
mechanical treatments of the electron-hole-photon model.

Within the renormalized microscopic model, we can for-
mally recover the simple exciton-photon model in the limit
where the exciton binding energy is large compared with the
light-matter (Rabi) coupling. However, for larger Rabi cou-
pling, we find that the exciton wave function is significantly
modified, consistent with recent experimental measurements
of the exciton radius in the upper and lower polariton states
[34]. Moreover, we find that the upper polariton becomes
strongly hybridized with the electron-hole continuum and thus
cannot be described within a simple two-level model in this
regime. Our microscopic approach, on the other hand, allows
us to capture the full spectral response of the microcavity for
a range of different Rabi coupling strengths.

Finally, we use our exact results for the polariton wave
function to obtain an estimate of polariton-polariton interac-
tions that goes beyond previous calculations [14–16,35,36].
In particular, we show that exchange interactions for a finite
density of polaritons have a much smaller effect on the Rabi
coupling than previously thought, due to the light-induced
reduction of the exciton size in the very strong coupling
regime.

II. MODEL

To describe a semiconductor quantum well (or atomically
thin material) embedded in a planar optical cavity, we con-
sider an effective two-dimensional model that includes light,
matter, and the light-matter coupling:

Ĥ = Ĥph + Ĥmat + Ĥph-mat. (1)

The photonic part of the Hamiltonian is

Ĥph =
∑

k

(ω + ωck )c†
kck. (2)

Here, c†
k and ck create and annihilate a cavity photon with in-

plane momentum k, while ωck = k2/2mc is the 2D photon dis-
persion with mc the effective photon mass. For convenience,
we write the cavity photon frequency at zero momentum, ω,
separately. Note that throughout this paper we work in units
where h̄ and the system area A are both 1.

We consider the scenario where photons can excite
electron-hole pairs across the band gap in the semiconductor,
and these are in turn described by the effective low-energy
Hamiltonian

Ĥmat =
∑

k

[(ωek + Eg/2)e†
kek + (ωhk + Eg/2)h†

khk]

+ 1

2

∑
kk′q

V (q)[e†
k+qe†

k′−qek′ek + h†
k+qh†

k′−qhk′hk

− 2e†
k+qh†

k′−qhk′ek], (3)

where, for simplicity, we neglect spin degrees of freedom. e†
k

and h†
k are the creation operators for electrons and holes at

momentum k, respectively, and the corresponding dispersions
are ωe,hk = k2/2me,h in terms of the effective masses me and
mh. We explicitly include the electron-hole band gap Eg in the
single-particle energies.

The interactions in a semiconductor quantum well are de-
scribed by the (momentum-space) Coulomb potential V (q) =

π
mr a0q , which we write in terms of the Bohr radius a0 and

the electron-hole reduced mass mr = (1/me + 1/mh)−1. In the
absence of light-matter coupling, the Hamiltonian (3) leads to
the existence of a hydrogenic series of electron-hole bound
states, i.e., excitons, with energies

εn = − 1

2mra2
0

1

(2n − 1)2
, n = 1, 2, . . . , (4)

which are independent of the pair angular momentum. Note
that here and in the following we measure energies from the
electron-hole continuum, or band gap. Of particular interest
are the circularly symmetric s exciton states since these are
the only ones that couple to light in our model. As a function
of the electron-hole separation r, these exciton states have the
wave functions [37]

�ns(r) =
√

2/a0√
π (2n − 1)3

e− r/a0
2n−1 Ln−1

(
2r/a0

2n − 1

)
, (5)

where Ln are the Laguerre polynomials. Due to its importance
in the following discussion, we will denote the binding energy
of the 1s exciton as measured from the continuum by EB =
1/(2mra2

0), while we also note that its momentum-space wave
function is

�̃1sk =
√

8πa0(
1 + k2a2

0

)3/2 . (6)

Finally, the term Ĥph-mat describes the strong coupling of
light to matter,

Ĥph-mat = g
∑
kq

[
e†

q
2 +kh†

q
2 −kcq + c†

qh q
2 −ke q

2 +k

]
. (7)

Here we have applied the rotating wave approximation, which
should be valid when the light-matter coupling g � a0Eg. The
form of Eq. (7) ensures that photons only couple to electron-
hole states in s orbitals, since the coupling strength g is
momentum independent, an approximation which is similarly
valid when Eg greatly exceeds all other energy scales in the
problem.

III. RENORMALIZATION OF THE CAVITY
PHOTON FREQUENCY

We now show how the light-matter coupling in the mi-
croscopic model leads to an arbitrarily large shift of the bare
cavity photon frequency ω, thus necessitating a renormaliza-
tion procedure akin to that used in quantum electrodynamics
(see Fig. 1). Since the argument is independent of the photon
momentum, we focus on photons at normal incidence, i.e., at
zero momentum in the plane, and we relegate the details of
the finite-momentum case to Appendix A.
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FIG. 1. Feynman diagrams involved in the renormalization of
the cavity photon frequency. (a) Dyson equation for the photon
propagator (double wavy line) in terms of the bare photon propagator
(single wavy line) and the photon self-energy (shaded ellipse). The
black circles indicate the light-matter coupling g. (b) Separation of
the self-energy into the bare electron-hole polarization bubble (left)
and a term containing any positive number of repeated Coulomb
interactions (right). The lines represent bare electrons and holes, and
the square represents the electron-hole T matrix. (c) The equation
satisfied by the T matrix, where the dotted wavy line represents the
Coulomb interaction.

To illustrate the need for renormalization in the simplest
manner possible, we start with a single photon in the absence
of light-matter coupling, corresponding to the state c†

0|0〉 with
cavity frequency ω, where |0〉 represents the vacuum state for
light and matter. We then use second-order perturbation theory
to determine the shift in the cavity photon frequency for small
coupling g,

�ω � g2
∞∑

n=1

|�ns(0)|2
ω − εn − Eg

+ g2
∑

k

1

ω − ω̄k − Eg
, (8)

where ω̄k ≡ ωek + ωhk = k2/2mr . The first term on the right-
hand side of (8) is a convergent sum involving the exciton
bound states in the s-wave channel, while the second term
results from unbound electron-hole pairs, i.e., e†

kh†
−k|0〉 for a

given relative momentum k, where we have neglected scatter-
ing induced by the Coulomb interaction since our arguments
in the following hinge on the high-energy behavior where this
is negligible. We can immediately see that the momentum
sum diverges, unless we impose a UV momentum cutoff �,
in which case we have �ω ∼ −g2mr ln �. Note that g is a
well-defined coupling constant since the corrections to the
exciton energies do not depend on �. Indeed, for the ground-
state exciton, the lowest-order energy shift due to light-matter
coupling is

�ε1 = g2|�1s(0)|2
Eg + ε1 − ω

, (9)

which resembles what one would expect from the simple
exciton-photon model [1,38].

Physically, the cutoff � is determined by a high-energy
scale of the system such as the crystal lattice spacing, which
is beyond the range of validity of our low-energy microscopic
Hamiltonian. Therefore we require a renormalized cavity pho-
ton frequency that is independent of the high-energy physics
associated with �. Indeed, this is reminiscent of the UV
divergence occurring in the vacuum polarization of quantum

electrodynamics (Fig. 1), which leads to a screening of the
electromagnetic field [39]. We emphasize that the emergence
of a UV divergence should not be interpreted as a failure of
perturbation theory [40], but persists in the full microscopic
theory as we now demonstrate.

To proceed, we consider the most general wave function
for a single polariton at zero momentum

|�〉 =
∑

k

ϕke†
kh†

−k|0〉 + γ c†
0|0〉. (10)

Here, and in the following, we assume that the state is nor-
malized, i.e., 〈�|�〉 = ∑

k |ϕk|2 + |γ |2 = 1. We then project
the Schrödinger equation, (E + Eg − Ĥ )|�〉 = 0, onto photon
and electron-hole states, which yields the coupled equations

(E − ω̄k )ϕk = −
∑

k′
V (k − k′)ϕk′ + gγ , (11a)

(E − ω + Eg)γ = g
∑

k

ϕk, (11b)

where we have again defined the energy E with respect to the
band gap energy Eg.

Defining βk ≡ ∑
k′ V (k − k′)ϕk′/(−E + ω̄k ) and rear-

ranging Eq. (11a) gives the electron-hole wave function

ϕk = βk + gγ

E − ω̄k
. (12)

In the absence of light-matter coupling, the lowest-energy ex-
citonic solution corresponds to the 1s exciton state, i.e., ϕk =
βk = �̃1sk. However, once g �= 0, we see that the electron-
hole wave function is modified by the photon, even in the limit
of small g. Light-induced changes to the exciton radius have
previously been predicted within approximate variational ap-
proaches [18,31,32] and have already been observed in exper-
iment [34]. Our exact treatment shows that even the functional
form of the exciton wave function changes, since the second
term in Eq. (12) yields ϕ(r) ∼ gγ mr ln(r)/π in real space as
r → 0. By contrast, the function β(r) is regular at the origin
(see Appendix B), and hence the definition Eq. (12) serves to
isolate the divergent short-range behavior of the electron-hole
wave function.

The short-distance behavior of the real-space exciton wave
function is intimately connected to the renormalization of the
bare cavity photon frequency. To see this, we rewrite Eq. (11)
in terms of βk:

(E − ω̄k )βk = −
∑

k′
V (k − k′)βk′ + gγ

∑
k′

V (k − k′)
−E + ω̄k′

,

(13a)(
E − ω + Eg + g2

∑
k

1

−E + ω̄k

)
γ = g

∑
k

βk. (13b)

Here, one can show that all the sums are convergent except
for the sum on the left-hand side of Eq. (13b), which displays
the same logarithmic dependence on the UV cutoff � as in
Eq. (8). Thus we have isolated the high-energy dependence,
which can now be formally removed by relating the bare
parameter ω to the physical cavity photon frequency observed
in experiment.
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We emphasize that the precise renormalization procedure
depends on the specific low-energy model under considera-
tion. In particular, if we approximate the electron-hole interac-
tions as heavily screened and short-ranged, then one can show
that the lowest-order shift in the exciton energy in Eq. (9) also
contains a UV divergence. Hence, in this case one finds that
the light-matter coupling g must vanish logarithmically with
�, while the cavity frequency retains its bare value.

A. Relation to experimental observables

Experimental spectra are typically fitted using phenomeno-
logical two-level exciton-photon models in order to extract
the polariton parameters. Therefore we must recover such a
two-level model from Eq. (13) in order to relate the bare
parameters in our microscopic description to the observables
in experiment. This is easiest to do in the regime g � a0EB,
which is what exciton-photon models already implicitly as-
sume [38]. In this limit, we can assume that the convergent
part of the exciton wave function is unchanged such that
βk � β�̃1sk, where β is a complex number.

Applying the operator
∑

k �̃1sk{·} to Eq. (13a) and using
the Schrödinger equation for �̃1sk, we obtain

(E + EB)β � gγ
∑
k,k′

V (k − k′)�̃1sk

EB + ω̄k′
= gγ�1s(0), (14)

where we have taken E � −EB in the intermediate step since
the energies of interest are close to the exciton energy in this
limit. Similarly, we can approximate Eq. (13b) as(

E − ω + Eg + g2
∑

k

1

EB + ω̄k

)
γ � gβ�1s(0). (15)

If we now identify the Rabi coupling as

� ≡ g�1s(0) = g

a0

√
2

π
, (16)

and the (finite) physical photon-exciton detuning as

δ ≡ ω − Eg − g2
∑

k

1

EB + ω̄k
+ EB, (17)

we arrive at the following simple two-level approximation of
Eq. (13):

E

(
β

γ

)
=

(−EB �

� δ − EB

)(
β

γ

)
. (18)

This yields the standard solutions for the lower (LP) and upper
(UP) polaritons, with corresponding energies:

ELP
UP

= −EB + 1

2
(δ ∓

√
δ2 + 4�2), (19)

and photon Hopfield coefficients

γLP
UP

= ∓
√

1

2

(
1 ∓ δ√

δ2 + 4�2

)
. (20)

Note that the (positive) exciton Hopfield coefficient is simply
β =

√
1 − |γ |2, and |γ |2 is the photon fraction.

With the identifications (16) and (17), the set of equations
(13) (or equivalently (11)) now represents a fully renormal-
ized problem where the momentum cutoff can be taken to
infinity without affecting the low-energy properties. While
the exciton-photon Rabi coupling (16) has been defined pre-
viously [14], the detuning (17) differs from previous work
[17,26–28,30], which only considered the bare cavity photon
frequency ω.

B. Diagrammatic approach to renormalization

To provide further insight into the origin of the photon
renormalization, we now present an alternative derivation in
terms of Feynman diagrams, as illustrated in Fig. 1. The
key point is that the energy spectrum produced by Eq. (13)
[or Eq. (11)] may also be determined from the poles of
the (retarded) photon propagator once this is appropriately
dressed by light-matter interactions.

We first note that the photon propagator GC satisfies the
Dyson equation [41] in Fig. 1(a):

GC(E ) = G(0)
C (E ) + G(0)

C (E )�(E )GC(E )

= 1[
G(0)

C (E )
]−1 − �(E )

, (21)

where

G(0)
C (E ) = 1

E − ω + Eg
(22)

is the photon propagator in the absence of light-matter cou-
pling (we remind the reader that we measure energy from
Eg), and � is the self-energy. Throughout this section, we
will assume that the energy contains a positive imaginary
infinitesimal that shifts the poles of the photon propagator
slightly into the lower half-plane. For simplicity, we again
consider the photon at normal incidence—our arguments are
straightforward to generalize to finite momentum.

As shown in Figs. 1(b) and 1(c), the photon self-energy
� arises from all possible scattering processes involving the
excitation of an electron-hole pair. This can be written as the
sum of two terms

�(E ) = �(1)(E ) + �(2)(E ), (23)

with

�(1)(E ) = g2
∑

k

1

E − ω̄k
, (24a)

�(2)(E ) = g2
∑
k,k′

T (k, k′; E )

(E − ω̄k )(E − ω̄k′ )
. (24b)

Here, we see that �(1) is cutoff dependent, while �(2) is
well behaved and depends on the electron-hole T matrix
T (k, k′; E ) at incoming and outgoing relative momenta k and
k′, respectively. Note that the T matrix only depends on the
Coulomb interaction and can be completely determined in the
absence of light-matter coupling.

We are now in a position to find the spectrum of the dressed
photon propagator. From its definition, Eq. (21), we see that
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FIG. 2. Energies (top) and photon fractions (bottom) of the lower and upper polaritons obtained within our microscopic model in Eq. (11)
(blue solid lines) and within the two-level model (18) (purple dashed lines). We show the results as a function of detuning, and from left to right
we consider increasing strength of the Rabi coupling: [(a) and (d)] �/EB = 0.1, [(b) and (e)] 0.5, and [(c) and (f)] 1. In (a)–(c), the horizontal
dashed lines are the 1s and 2s exciton states with energies ε1 = −EB and ε2 = −EB/9, respectively, while the shaded regions correspond to
the electron-hole continuum.

the poles satisfy

E − ω + Eg +
∑

k

g2

−E + ω̄k
=

∑
k,k′

g2T (k, k′; E )

(E − ω̄k )(E − ω̄k′ )
.

(25)

This expression is very reminiscent of Eq. (13b), and indeed
we demonstrate in Appendix B that Eq. (13) directly leads to
Eq. (25). While the right-hand side of Eq. (25) is convergent
(see Appendix B), the sum on the left-hand side again depends
logarithmically on the cutoff �. This necessitates the redefini-
tion of the cavity photon frequency to cancel this high-energy
dependence, in the same manner as in Eq. (17).

While all properties of the electron-hole-photon system can
equally well be extracted from the diagrammatic approach,
we find it more transparent in the following to work instead
with wave functions. For completeness, we mention that the
integral representation of the electron-hole Green’s function
was derived in Ref. [42], and we use this in Appendix B to
obtain an integral representation of the T matrix.

IV. EXACT RESULTS FOR A SINGLE
EXCITON-POLARITON

We now turn to the polariton eigenstates and energies
within our low-energy microscopic Hamiltonian (1). We ob-
tain exact results by numerically solving the linear set of
equations (11) using the substitutions (16) and (17) to relate
the bare microscopic parameters to the physical observables
in the two-level model (18). Even though the unscreened
Coulomb interaction features a pole at q = 0, we emphasize
that this is integrable, and thus Eq. (11) can be solved using
standard techniques for Fredholm integral equations [43].

Figure 2 shows how our numerical results compare with the
energies and photon fractions of the upper and lower polariton
states predicted by the two-level model (18). In the regime
� � EB, we find good agreement between the two models,
where the LP and UP states respectively correspond to the
first and second lowest energy eigenstates of Eq. (11). Note
that there will be deviations when the UP state approaches
the electron-hole continuum at large photon-exciton detuning,
since the two-level model cannot capture the fact that the UP
evolves into the 2s exciton state in this limit—see the energy
in the limit of large detuning in Fig. 2(a), and the associated
strong suppression of the photonic component in Fig. 2(d).

The regime of very strong light-matter coupling, where
� ∼ EB, can now be achieved in a range of materials [45,46].
In this case, the two-level model fails to describe the UP state
even close to resonance, δ = 0, since the photon becomes
strongly coupled to higher energy exciton states and the
electron-hole continuum. This manifests itself as a suppres-
sion of the photon fraction in the second lowest eigenstate of
Eq. (11), as displayed in Figs. 2(e) and 2(f). Such behavior
cannot be captured by simply including the 2s exciton state,
like in the case of weaker Rabi coupling. Indeed, we find
that it cannot even be fully described with a model that
includes all the exciton bound states, thus highlighting the
importance of the electron-hole continuum. However, note
that for the parameters shown in Figs. 2(a)–2(c), the UP state
obtained within the microscopic model always lies below the
continuum, and it thus still corresponds to a discrete line in
the energy spectrum (if we neglect photon loss and sample
disorder).

To further elucidate the behavior of the polariton states,
we calculate the spectral response that one can observe in
experiment. Specifically, we focus on the scenario where the
detuning is tuned to resonance (i.e., δ = 0) and the polariton
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FIG. 3. Transmission spectrum T (Q, E ) of a single photon at detuning δ = 0 and for Rabi couplings (a) �/EB = 0.1, (b) 0.5, and (c) 1.
The polariton dispersions predicted from the two-level model in Eq. (A5) are shown as white dashed lines, while the bare photon and 1s
and 2s exciton dispersions are shown as dashed black lines. The masses are taken to be the realistic values [44]: me = 0.063 m0, mh =
0.5 m0, and mc = 10−4 m0, with m0 the free electron mass. To enhance visibility over the large energy range displayed in the figures, we are
taking the photon lifetime broadening to be � = 0.1 EB, which exceeds typical values in high-quality-factor microcavities. Each spectrum has
been normalized to the maximum transmission.

momentum Q is varied. Thus we solve the equations for the fi-
nite center-of-mass case in Appendix A and then numerically
obtain the photon propagator at momentum Q and energy E :

GC(Q, E ) =
∑

n

∣∣γ (Q)
n

∣∣2

E − E (Q)
n + i�

. (26)

Here � accounts for the finite lifetime effects in the micro-
cavity, while |γn|2 and En correspond to the photon fraction
and energy, respectively, of the nth eigenstate in the finite-
momentum problem, Eq. (A2). The different spectral re-
sponses can then be directly extracted from GC(Q, E ) [47,48].
The spectral function has also been previously calculated in
Ref. [49], but within an unrenormalized theory.

In Fig. 3, we display the photon transmission spectrum
T (Q, E ) ∝ |GC(Q, E )|2—note that the precise proportional-
ity factor depends on the details of the microcavity [47,48].
When � � EB, we see that we recover the usual polariton dis-
persions predicted by the two-level model, even for energies
E > 0 where there is no bound exciton. However, for larger
Rabi couplings, the UP line at positive energies becomes
progressively broadened by interactions with the continuum
of unbound electron-hole states, while for negative energies it
becomes strongly modified by the 2s exciton state, as shown in
Figs. 3(b) and 3(c). In particular, we observe that the spectral
weight (or oscillator strength) of the UP state is significantly
reduced, as has been observed in experiment. This reduction
in UP oscillator strength is due to the transfer of the photonic
component to other light-matter states involving both the
electron-hole continuum as well as the higher energy exciton
bound states. Indeed, in the very strong coupling regime, one
can in principle probe Rydberg exciton-polaritons involving
the exciton states of larger n [50]. Note that the behavior in
Fig. 3 implicitly depends on the electron-hole reduced mass
as well as the exciton mass, which is beyond the two-level
model.

In contrast to the upper polariton, the spectral properties of
the lower polariton are remarkably close to those predicted by
the two-level model in the regime � ∼ EB, as shown in Figs. 2
and 3. This is not unreasonable since the LP state is well
separated in energy from all the excited electon-hole states.
On the other hand, Eq. (12) implies that the electron-hole
wave function of the polariton becomes strongly modified by

the coupling to light. To confirm this, we plot in Figs. 4(a)–
4(d) the (normalized) real-space electron-hole wave function
at zero center of mass momentum, corresponding to ϕ̃(r) =

1√
1−|γ |2

∑
k eik·rϕk. For both LP and UP states, we see that

ϕ̃(r) only resembles the ground-state exciton wave func-
tion when � � EB and the photon fraction is small, |γ | �
1. However, we always have ϕ̃(r) → gγ mr

π
√

1−|γ |2 ln(r) when

r → 0, as expected from Eq. (12). Moreover, the coupling to
light can significantly shrink (expand) the size of the bound
electron-hole pair in the lower (upper) polariton, as shown in
Figs. 4(e) and 4(f).

Light-induced modifications to the exciton size have also
been investigated using a variational approach [18], where
the electron-hole wave function is assumed to have the same
form as the 1s exciton state, but with a different Bohr radius
a0/λ. In general, such a wave function is a superposition of
an infinite number of s-orbital exciton and continuum states,
and is thus closer to our approach than the simple two-level
model. Minimizing the energy with respect to the variational
parameter λ yields the usual two-level Hamiltonian (18) but
with a shifted photon-exciton detuning δ̃ = δ − �2/EB [31].
Therefore once we identify δ̃ as the physical detuning, the
variational approach recovers the standard polariton states,
even though the exciton radius is changed, such that

λ = 1 − γ√
1 − |γ |2

�

EB
, (27)

where γ is given by Eq. (20) with δ replaced by the new
detuning δ̃. Thus we see that the light-induced changes to
the exciton wave function shift the cavity photon frequency
in a manner that resembles the renormalization appearing in
the exact problem, although the shift is independent of the
UV momentum cutoff since the variational wave function is
chosen to be regular at the origin. This formal similarity be-
tween the exact and variational approaches provides a possible
explanation for why the exact LP state is so well approximated
by the two-level model in Figs. 2 and 3 despite having a
strongly modified electron-hole wave function.

In Figs. 4(e) and 4(f), we see that the variational approach
(27) qualitatively captures how the exciton radius changes
with Rabi coupling and detuning. However, it gives λ = 0,
i.e., a diverging radius, for the upper polariton when the UP
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�a� �b�

�c� �d�

�e�

�f�

FIG. 4. [(a)–(d)] Normalized electron-hole wave function as a function of separation and [(e) and (f)] the mean electron-hole separation
as a function of detuning. The upper (lower) panels correspond to the upper (lower) polariton, and we take δ/EB = −0.5 in (a) and (c) and
δ/EB = 0.5 in (b) and (d). We show the exact results obtained from our microscopic theory (blue lines) for the Rabi coupling strengths of
�/EB = 0.1 (dotted line), 0.5 (dashed line), and 1 (solid line). Note that the numerically calculated wave functions in (a)–(d) are only shown
for r > 0.005 a0. We also show the 1s exciton wave function and average separation (thin black line). In (e) and (f), the purple lines correspond
to the result (27) from the variational approach [18,31], where we take the detuning to be δ̃ (see main text).

energy in Eq. (19) crosses zero, and it thus fails to describe the
UP as it approaches the electron-hole continuum. Moreover,
even in the case of the LP, the variational approach noticeably
overestimates the change in the exciton size in the very strong
coupling regime.

Finally we note that, unlike Ref. [26], we do not obtain
strongly bound electron-hole pairs with a radius that is far
smaller than the Bohr radius a0 for experimentally relevant
parameters. Consequently, we conclude that the electron-hole
pairs in the presence of photons should not be considered as
Frenkel excitons. We attribute this major qualitative difference
to the unrenormalized nature of the theory considered in
Ref. [26].

V. POLARITON-POLARITON INTERACTION

We now demonstrate how our microscopic model of
exciton-polaritons allows us to go beyond previous calcula-
tions [14–16,35,36] of the interaction strength gPP for spin-
polarized lower polaritons at zero momentum. An accu-
rate knowledge of this interaction strength is fundamental
to understanding the many-body polariton problem, both in
the mean-field limit [3,4] and beyond. However, its precise
value has been fraught with uncertainty, as experiments have
reported values differing by several orders of magnitude
[51–55]. Moreover, there are conflicting theoretical results
regarding the effect of the light-matter coupling [14–17].

The key advantage of our approach is that we know the
full polariton wave function including the modification of
the relative electron-hole motion, as illustrated in Fig. 4.
This allows us to obtain nontrivial light-induced correc-
tions to the polariton-polariton interaction strength. To pro-
ceed, we introduce the exact zero-momentum lower polariton

operator,

P† =
∑

k

ϕLPke†
kh†

−k + γLPa†, (28)

where the subscripts on ϕLPk and γLP indicate that these
form the (normalized) solution of Eq. (11) at E = ELP, where
ELP is the exact ground-state energy for one polariton. As
in previous work [14–16,35,36], we restrict ourselves to the
Born approximation of polariton-polariton interactions. In this
case, the total energy of the two-polariton system is

εtot = 〈PP|Ĥ |PP〉
〈PP|PP〉 = 2Eg + 2ELP + gPP

A
, (29)

where |PP〉 ≡ P†P†|0〉 and we have reinstated the system
area A. The last term corresponds to the interaction energy
gPPN (N − 1)/2A for N = 2 identical bosons. Rearranging
then gives

gPP

A
= 1

2
〈PP|Ĥ − 2Eg − 2ELP|PP〉. (30)

The form of Eq. (30) accounts for the fact that the polariton
operator only approximately satisfies bosonic commutation
relations due to its composite nature [14,35]. Specifically, we
note that 〈PP|PP〉 = 2 + O(a2

0/A) and then only keep terms
up to O(a2

0/A).
Evaluating Eq. (30) and using Eq. (11) to eliminate γLP (for

details see Appendix C), we arrive at

gPP = 2
∑

k

(ω̄k−ELP)ϕ4
LPk−2

∑
k,k′

V (k−k′)ϕ2
LPkϕ

2
LPk′ .

(31)

This result is rather appealing, since it has the exact same
functional form as in the exciton limit [14] (see also
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�a� �b� �c�

FIG. 5. Polariton-polariton interaction strength gPP for several values of the light-matter coupling: (a) �/EB = 0.1; (b) �/EB = 0.5; and
(c) �/EB = 1. We compare our numerical results obtained from Eq. (31) (blue solid lines) with the simple exciton approximation g(0)

PP = β4gXX

(purple dashed lines) and the commonly accepted interaction strength that includes the exciton oscillator strength saturation correction (C10):
gsat

PP = g(0)
PP + 32π

7 �a2
0β

3|γ | (gray dash-dotted line).

Appendix C), which is simply obtained by taking ϕLPk →
�̃1sk and ELP → −EB. Indeed, in this limit we recover the
accepted value for the exciton-exciton interaction strength:
gPP → gXX � 3.03/mr = 6.06EBa2

0 [14].
The leading order effect of light-matter coupling is the

hybridization of excitons and photons, resulting in g(0)
PP =

β4 gXX, where β is the Hopfield exciton coefficient in Eq. (18).
Beyond this, one expects corrections involving powers of
�/EB (or equivalently �a2

0) in the very strong coupling
regime. Previous theoretical work implicitly focused on the
lowest order correction, referred to as the “oscillator strength
saturation” [52], which corresponds to a positive addition to
g(0)

PP that is proportional to �a2
0. However, there are conflict-

ing predictions for the proportionality factor [14–16], and
all these predictions are derived under the assumption that
the relative electron-hole wave function remains unchanged
in the presence of light-matter coupling. By contrast, our
approach provides a complete determination of gPP within the
Born approximation, and hence all the previously obtained
corrections are captured in Eq. (31), along with additional
terms that contribute at the same order and higher than �a2

0
(see Appendix C).

In Fig. 5, we show our calculated polariton-polariton
interaction strength as a function of detuning for different
values of the light-matter coupling. We find that the simple
approximation, β4gXX, works extremely well when � � EB,
as expected. Moreover, we see that gPP shifts upwards com-
pared to β4gXX with increasing Rabi coupling, and the relative
shift in the interaction strength is largest at negative detun-
ing, where the polariton is photon dominated. However, the
difference between gPP and g(0)

PP is significantly smaller than
that predicted by previous work [14–16,35,36]. Physically,
this is because the light-matter coupling also decreases the
size of the exciton in the LP, thus reducing the effect of
exchange processes compared to the case where the exciton
is taken to be rigid and unaffected by the light field. Therefore
calculations that neglect light-induced changes to the electron-
hole wave function will drastically overestimate the size of
the correction to g(0)

PP (see Appendix C). Note that we never
see a reduction of gPP compared with g(0)

PP as was predicted
in Ref. [17]—this is most likely because that paper used an
unrenormalized theory.

In obtaining the polariton-polariton interaction strength,
we have made several approximations which are standard in

the polariton literature (see, e.g., Ref. [14]). Firstly, we have
assumed that the system can be described by a 2D model,
similarly to previous work on the electron-hole-photon model.
Such an assumption may not be accurate in the case of GaAs
quantum wells since the exciton size is comparable to the
width of the quantum well, as discussed in Ref. [55]. However,
it is an excellent approximation in the case of atomically thin
materials [56]. Secondly, we employ the Born approximation,
which does not capture the full energy dependence of exciton-
exciton scattering. For instance, the low-energy scattering be-
tween neutral bosons in 2D should depend logarithmically on
energy—see, e.g., Refs. [57,58]—rather than being constant.
Furthermore, the exciton-exciton interaction should depend
nontrivially on the electron-hole mass ratio [59]. To improve
upon the Born approximation, one must solve a complicated
four-body problem which has so far only been achieved in
the context of ultracold atoms, where the interactions are
effectively contact [60]. Thus this goes far beyond the scope of
the current work. However, we expect that our key result, that
the light-induced change of the exciton significantly reduces
the effect of exchange, will hold beyond our approximations.

VI. CONCLUSIONS AND OUTLOOK

To summarize, we have presented a microscopic theory of
exciton-polaritons in a semiconductor planar microcavity that
explicitly involves electrons, holes, and photons. Crucially,
we have shown that the light-matter coupling strongly renor-
malizes the cavity photon frequency in this model, a feature
that has apparently been missed by all previous theoretical
treatments. The UV divergence of the photon self-energy in
our model is found to be akin to the vacuum polarization in
quantum electrodynamics that acts to screen the electromag-
netic field. We have demonstrated how the redefinition of the
exciton-photon detuning from its bare value leads to cutoff
independent results, and how the microscopic model param-
eters can be related to the experimentally observed exciton-
photon model parameters in the regime where �� EB. Our
approach furthermore provides concrete predictions for the
regime of very strong light-matter coupling � ∼ EB, where
the assumptions of the simple two-level model cease to be
justified.

As we increase the Rabi coupling, we find that the upper
polariton is strongly affected by its proximity to excited
excitonic states and the unbound electron-hole continuum. In
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particular, the weight of the upper polariton in the photon
spectral response is visibly reduced as the photon becomes
hybridized with higher energy electron-hole states. By con-
trast, we find that the energy and photon fraction of the
lower polariton are surprisingly well approximated by the
two-level model in the very strong coupling regime. However,
the electron-hole wave functions of both upper and lower
polaritons are significantly modified by the coupling to light,
consistent with recent measurements [34]. Our predictions
for the photon spectral response and the electron-hole wave
function can be tested in experiment.

Our work provides the foundation for future studies of
few- and many-body physics within the microscopic model,
since an understanding of the two-body electron-hole problem
in the presence of light-matter coupling is essential to such
treatments. As a first demonstration, we have used the exact
electron-hole wave function to properly determine nontrivial
light-induced corrections to the polariton-polariton interaction
strength. Most notably, we have shown that the effect of
particle exchange on the Rabi coupling is much smaller than
previously thought [14–16,35,36] due to the light-induced
reduction of the exciton size in the lower polariton. This
result has important implications for ongoing measurements
of the polariton-polariton interaction strength, since many
experiments feature Rabi couplings that lie within the very
strong coupling regime, such as standard GaAs systems with
multiple quantum wells [55].

Finally, we emphasize that our approach can be easily
adapted to describe a range of other scenarios with strong
light-matter coupling such as Rydberg exciton-polaritons in
bulk materials [50,61,62] and excitonic resonances in an
electron gas [23].
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APPENDIX A: POLARITONS AT FINITE MOMENTUM

In this Appendix, we derive the equations describing
exciton-polaritons at finite momentum. The main difference
from the scenario described in Sec. III is that we now need
to take the photon dispersion into account. However this does
not change the renormalization procedure.

Similar to Eq. (10), we can write down the most general
wave function with a finite center-of-mass momentum Q:

|� (Q)〉 =
(∑

k

ϕ
(Q)
k e†

Qe+kh†
Qh−k + γ (Q)c†

Q

)
|0〉, (A1)

where ϕ
(Q)
k is the electron-hole relative wave function and

γ (Q) represents the photon amplitude. Here, we find it con-
venient to define Qe,h ≡ me,h

me+mh
Q with Qe + Qh = Q. By

projecting the Schrödinger equation (E + Eg − Ĥ )|� (Q)〉 = 0
onto photon and electron-hole states, we arrive at the coupled
equations:

[E − ωXQ − ω̄k]ϕ(Q)
k = −

∑
k′

V (k − k′)ϕ(Q)
k′ + gγ (Q),

(A2a)

[E − ωcQ − ω + Eg]γ (Q) = g
∑

k

ϕ
(Q)
k , (A2b)

where ωXQ ≡ Q2

2M is the exciton dispersion with the mass M ≡
me + mh. Eq. (A2) is the finite-momentum analog of Eq. (11)
in Sec. III.

To proceed, as in the Sec. III we separate out the divergent
part from the relative wave function ϕ

(Q)
k :

ϕ
(Q)
k = β

(Q)
k + gγ (Q)

E − ωXQ − ω̄k
. (A3)

Inserting this expression into Eq. (A2) then yields two coupled
equations for β

(Q)
k and γ (Q):

[E − ωXQ − ω̄k]β (Q)
k

= −
∑

k′
V (k − k′)β (Q)

k′ + gγ (Q)
∑

k′

V (k − k′)
−E + ωXQ + ω̄k′

,

(A4a)[
E − ωcQ − ω + Eg + g2

∑
k

1

−E + ωXQ + ω̄k

]
γ (Q)

= g
∑

k

β
(Q)
k . (A4b)

Again, all sums converge except for the sum on the left-hand
side of Eq. (A4b). Thus we must again introduce the physical
cavity photon frequency.

As in Sec. III A we now consider the limit g � a0EB where
we can relate our model parameters to the usual two-level
model used to describe exciton-polaritons. In this limit, the
energies of interest satisfy E � −EB + ωXQ, and we thus
perform this replacement in the second sum on the right-
hand side of Eq. (A4a) and in the sum on the left-hand
side of Eq. (A4b), analogously to how we used E � −EB

in Sec. III A. Then the Q dependence becomes trivial and
hence the renormalization procedure is exactly the same as in
Sec. III A. Thus, defining β

(Q)
k � β (Q)�̃1sk and following the

steps of Sec. III A, the coupled set of equations (A4) become

E

(
β (Q)

γ (Q)

)
=

(
ωXQ − EB �

� δ + ωcQ − EB

)(
β (Q)

γ (Q)

)
. (A5)

This results in the usual polariton dispersions given by the
two-level model [3,4]:

ELP
UPQ

= − EB + 1

2
(ωXQ + δ + ωcQ)

∓ 1

2

√
(ωXQ − δ − ωcQ)2 + 4�2. (A6)

The photon transmission as a function of center-of-mass
momentum shown in Fig. 3 is obtained by solving the coupled
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set of equations (A2) numerically using the renormalized
parameters.

APPENDIX B: PHOTON SPECTRUM AND THE 2D
ELECTRON-HOLE T MATRIX

In this Appendix, we provide further details on the di-
agrammatic approach to the renormalization of the cavity
photon frequency presented in Sec. III B. We also discuss the
integral representation of the electron-hole T matrix derived
in Ref. [42].

Our starting point is the photon self-energy shown in
Fig. 1(b) which we now write as

�(E ) = g2
∑
k,k′

G(k, k′; E ), (B1)

where G(k, k′; E ) is the two-body electron-hole Green’s func-
tion in the absence of light-matter coupling, with k and k′ the
incoming and outgoing relative momenta, respectively. This
in turn satisfies the Lippmann-Schwinger equation [41]

G(k, k′; E ) = δk,k′

E − ω̄k
−

∑
p

V (k − p)G(p, k′; E )

E − ω̄p
(B2)

(we again implicitly include a small positive imaginary part in
the energy E ). The solution of such an equation is commonly
written in terms of a T matrix

G(k, k′; E ) = δk,k′

E − ω̄k
+ T (k, k′; E )

(E − ω̄k )(E − ω̄k′ )
, (B3)

where T (k, k′; E ) satisfies

T (k, k′; E )=−V (k−k′)−
∑

p

V (k−p)T (p, k′; E )

E −ω̄p
, (B4)

as illustrated in Fig. 1(c). Combining Eqs. (B1) and (B3) we
see that we reproduce the expression for the self-energy in
Eq. (24).

We now show that the spectrum of the dressed photon
propagator, Eq. (21), equals that obtained from the variational
approach via the set of equations (13). To see this, compare
Eqs. (13b) and (25). These equations have exactly the same
functional form, provided we identify

gγ
∑

k′

T (k, k′; E )

E − ω̄k′
≡ (E − ω̄k )βk. (B5)

Applying the operator gγ
∑

k′
1

E−ωk′ {·} to the equation sat-
isfied by T , Eq. (B4), using the symmetry of T (k, k′; E )
with respect to k ↔ k′,1 and using the replacement (B5), we
indeed find that we exactly reproduce the equation for βk,
Eq. (13a). Hence the left- and right-hand sides of Eq. (B5)
satisfy the exact same integral equation, and consequently the
two approaches produce the same spectrum.

We also note that Eq. (B5) implies that β(0) = ∑
k βk

is finite as the momentum cutoff � → ∞; this can be seen
by simple momentum power counting of all terms produced

1The symmetry of T (k, k′; E ) is straightforward to see by iterating
Eq. (B4) once.

by iterating Eq. (B4) in Eq. (B5). Thus the function β(r) is
regular at the origin.

We now describe the integral representation of the 2D
Coulomb Green’s function derived in Ref. [42], and the result-
ing expression for the electron-hole T matrix. The key to this
representation is the mapping of the momentum k = (kx, ky)
(and likewise k′) in the equation satisfied by the Green’s
function, Eq. (B2), onto a three-dimensional (3D) unit sphere:
Setting E ≡ −k2

0/2mr , we define the 3D unit vector

ξ ≡ 1

λ(k)

⎛
⎜⎝

2k0kx

2k0ky

k2
0 − k2

⎞
⎟⎠ (B6)

with λ(k) ≡ k2
0 + k2. Taking now the continuum limit, we

denote the elementary solid angle on the unit sphere as dξ.
Then we identify

dξ =
(

2k0

λ(k)

)2

dk, (B7a)

δ(ξ − ξ′) =
(

λ(k)

2k0

)2

δ(k − k′), (B7b)

|ξ − ξ′|2 = 4k2
0

λ(k)λ(k′)
|k − k′|2. (B7c)

Under this mapping, the Green’s function can be expressed by
variables on the unit sphere as

G(k, k′; E ) = −8mrk2
0

1

λ(k)3/2
�(ξ, ξ′)

1

λ(k′)3/2
. (B8)

Solving (the continuum limit of) Eq. (B2) for �(ξ, ξ′) yields
[42,63]

�(ξ, ξ′) = δ(ξ − ξ′) + ν

2π

1

|ξ − ξ′|

+ ν2

2π

∫ 1

0
du

u−(ν+1/2)

[(1 − u)2 + u|ξ − ξ′|2]1/2
, (B9)

where ν ≡ − 1
2a0

1
k0

(note that a0 = k−1
0 for the 1s exciton

ground state). Eq. (B8) and Eq. (B9) combined yield the
two-body electron-hole Green’s function G(k, k′; E ).

Finally, from the relationship between the electron-hole
Green’s function and the T matrix, Eq. (B3), we find the in-
tegral representation of the two-body electron-hole scattering
T matrix in a manner similar to how this was recently done in
three dimensions [64]:

T (k, k′; E ) = − k0νz

4πmr |k − k′|
∫ 1

0

u−(ν+1/2)(1 − u2)

[u + z(1 − u)2]3/2
du,

(B10)

where z ≡ λ(k)λ(k′ )
4k2

0 |k−k′|2 .

APPENDIX C: POLARITON-POLARITON INTERACTIONS

In this section, we discuss how to obtain the elastic in-
teraction constant between lower polaritons, Eq. (31), from
Eq. (30): gPP/A = 1

2 〈PP|Ĥ − 2Eg − 2ELP|PP〉. Using the ex-
plicit form of the polariton operator, Eq. (28), and performing
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all contractions between operators, we obtain

1

2
〈PP|Ĥ − 2Eg|PP〉

= 2(ω − Eg)γ 4
LP + 4γ 3

LPg
∑

k

ϕLPk + 2γ 2
LP

∑
k

ϕLPk

×
[
ϕLPk(ω − Eg + ω̄k ) −

∑
k′

ϕLPk′V (k − k′)

]

− 4γLPg
∑

k

ϕ2
LPk

[
ϕLPk −

∑
k′

ϕLPk′

]

− 2
∑

k1k2k3

ϕ2
LPk1

ϕLPk2ϕLPk3V (k2 − k3)

+ 4
∑
k1k2

ϕ3
LPk1

ϕLPk2V (k1 − k2)

− 2
∑
k1k2

ϕ2
LPk1

ϕ2
LPk2

V (k1 − k2)

+ 2
∑
k1k2

ϕ2
LPk1

ϕ2
LPk2

ω̄k1 − 2
∑

k

ϕ4
LPkω̄k. (C1)

Likewise, we find

1

2
〈PP|PP〉 = 1 −

∑
k

ϕ4
LPk. (C2)

At this point, a remark on units is in order. The interaction
energy shift that we have calculated to extract gPP is formally
within an area A, which we have set to 1 in this work.
Reinstating briefly this factor, the two terms of Eq. (C2) are 1
and O(a2

0/A), respectively. However, the leading contribution
(which does not scale as a scattering term) will cancel the
corresponding contribution from Eq. (C1), such that in the end
gPP ∼ EBa2

0, as required.
Now, to arrive at Eq. (31) in the main text, we apply the

normalization of the wave function,

γ 2
LP +

∑
k

ϕ2
LPk = 1, (C3)

as well as the equations satisfied by ϕLPk and γLP,

(ELP − ω̄k )ϕLPk = −
∑

k′
V (k − k′)ϕLPk′ + gγLP, (C4a)

(ELP − ω + Eg)γLP = g
∑

k

ϕLPk. (C4b)

This latter equation is used repeatedly to systematically re-
place terms containing γLP with equivalent terms of a smaller
power.

In the following two sections, we discuss the limiting case
of exciton-exciton scattering, and the previously considered
perturbative corrections to this in the presence of strong light-
matter coupling.

1. Exciton-exciton scattering

For completeness, we now discuss the evaluation of the
interaction constant gXX between two 1s excitons. This has

been done previously in the literature, see e.g., Refs. [14,36].
As shown in Ref. [14], gXX takes the form

gXX = 2
∑
k,k′

V (k−k′)�̃3
1sk�̃1sk′ −2

∑
k,k′

V (k−k′)�̃2
1sk�̃

2
1sk′ ,

(C5)

A simple application of the Schrödinger equation satisfied by
�̃1sk shows that this can be written in the more symmetric
form

gXX =2
∑

k

(ω̄k+EB)�̃4
1sk−2

∑
k,k′

V (k−k′)�̃2
1sk�̃

2
1sk′ , (C6)

which is identical to Eq. (31) when one takes ϕLPk → �̃1sk
and ELP → −EB. Using the 1s exciton wave function, Eq. (6),
and the method of residues, the first term is straightforward to
evaluate, with the result 8π

2mr
.

The second term in Eq. (C6) can be evaluated with great
accuracy using the following trick to remove the integrable
singularity originating from the Coulomb interaction. Start
by shifting k − k′ → p and k + k′ → 2q. Then, the integral
becomes

2
∑
p,q

V (p)ϕ2
LP,

p
2 +qϕ

2
LP,

p
2 −q. (C7)

This effectively removes the simple pole of the Coulomb
interaction. We can now analytically perform the integral
over first the angle between p and q and then over one of
the momenta. The remaining integral is very well behaved
numerically, and we find

2
∑
k,k′

V (k−k′)�̃2
1sk�̃

2
1sk′ � 19.0761

2mr
. (C8)

Thus, in total, we have

gXX � 6.0566

2mr
= 6.0566EBa2

0. (C9)

This is, of course, consistent with the results of Refs. [14,36].

2. Perturbative corrections to the polariton-
polariton interaction

Here we compare our microscopic results with perturbative
corrections to g(0)

PP = β4gXX previously considered in the liter-
ature. The first of these is due to exciton oscillator saturation
as investigated by Tassone and Yamamoto in Ref. [14] (see
also Refs. [15,36,52]). Secondly, we can consider the pho-
ton assisted exchange processes due to the strong off-shell
scattering of excitons when coupled to light. We stress that
both of these corrections assume that the relative electron-hole
wave function in the lower polariton is unchanged from the 1s
exciton state, unlike what we find in our microscopic model.

The exciton oscillator strength saturation [14] has been
estimated to lead to the correction [52]

�gsat
PP = 32π

7
�a2

0β
3|γ |. (C10)

This is expected to be important in the very strong coupling
regime when � ∼ EB [14]. We can see how such a term arises
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naturally within our microscopic calculation, although we
disagree with the prefactor. Using the Schrödinger equation
satisfied by the lower polariton, Eq. (C4a), to replace ELPϕLPk
in Eq. (31), and taking ϕLPk → β�̃1sk, we find the correction
to g(0)

PP to be

2g|γ |β3
∑

k

�̃3
1sk = 16π

7
�a2

0β
3|γ |. (C11)

We note that 1
2 〈PP|Ĥ |PP〉 alone contains the term

32π
7 �a2

0β
3|γ |. However, subtracting the normalization as in

Eq. (30) reduces this contribution to 16π
7 �a2

0β
3|γ |. This may

explain the discrepancy in prefactors.
On the other hand, we can also consider the correction

one would obtain if we take into account the change in the
collision energy due to the photon detuning, while keeping
the wave function unchanged. Under this approximation, we

would have

�g�E
PP = −(ELP + EB)β4

∑
k

�̃4
1sk

� 1

2
(
√

δ2 + 4�2 − δ)
16πa2

0β
4

5
, (C12)

where in the last step we used the two-level expression for
the lower polariton energy, Eq. (19). Equation (C12) has a
form similar to the photon assisted exchange scattering matrix
element derived in Ref. [16] (see also Ref. [65]).

As we have shown in Fig. 5, when � � EB the simple
exciton approximation gPP � g(0)

PP ≡ β4gXX works very well.
In the limit of very strong light-matter coupling where we
find appreciable corrections to this result, the two perturbative
corrections in Eqs. (C10) and (C12) greatly overestimate
these. For instance, at zero detuning and �/EB = 0.5 we find
gPP − g(0)

PP � 0.25EBa2
0, whereas Eq. (C10) predicts a shift of

1.8EBa2
0 and (C12) a shift of 1.26EBa2

0.
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