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Stirring the quantum vacuum: Angular Casimir momentum of a Landau charge
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We consider the angular momentum of a charge q rotating in a homogeneous magnetic field and study the
role of the electromagnetic quantum vacuum. Its orbital angular momentum is caused by the recoil of energetic
vacuum photons that grows as n2, i.e., faster than the kinetic angular momentum −2nh̄ of a Landau level.
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I. INTRODUCTION

The radiation of the electromagnetic (EM) quantum vac-
uum is perfectly isotropic and possesses an energy density
h̄ωdω3/π3c3

0 in the frequency interval dω. This statement is
Lorentz invariant [1]. The mystery of its UV divergence is
still one of the major challenges in physics, but in general
poses no problems in calculating the Casimir force between
dielectric or metallic objects [2]. Due to its perfect isotropy,
the energy current and momentum density of the quantum
vacuum vanish.

This is no longer true when the vacuum interacts with
matter. In a pioneering work, Feigel predicted the momentum
of the quantum vacuum in bianisotropic materials [3]. In
such materials, the index of refraction achieves a contribution
proportional to g(ω)k · S, with k the wave vector and S
some vector with the symmetry of momentum. Although the
Poynting vector of the quantum vacuum still vanishes for such
media [4], a momentum density emerges that suffers from
a divergence at high energies. Any small time variation of
this momentum would give rise to a Casimir-type force, and
is thus measurable. Nevertheless, this force is fundamentally
different from the usual Casimir and Casimir-Polder forces
[2], which are both free from high-energy divergences and
are essentially caused by low-energy vacuum photons. In fact,
the Casimir momentum discussed in Refs. [3,4] is much more
akin to the Lamb shift in atomic energy levels, determined
by relativistic photons of the quantum vacuum [1], and is
thus better referred to as Lamb momentum. As for the Lamb
shift, the divergence of EM momentum is removed by mass
renormalization [5], which eliminates the result obtained in
Ref. [3]. What remains is a Lamb momentum of the order of
α2 times the classical Abraham momentum [6,7]. Quantum
vacuum momentum was also demonstrated for a chiral quan-
tum particle in a magnetic field [8,9].
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II. ROTATING CHARGE COUPLED
TO QUANTUM VACUUM

Electromagnetic angular momentum is of great recent in-
terest [10] and in macroscopic media even controversial [11],
since matter and radiation are hard to disentangle. A vast
amount of literature exists on Casimir torques [12–15]. On
the nanoscale, these torques are caused by vacuum photons
with energies up to 1 keV. In this paper we will show that
the angular momentum of the quantum vacuum also emerges
on a microscopic scale, though at much higher energies, like
in the Lamb shift up to 1 MeV, the rest mass energy of
the electron. The simplest microscopic model for which this
problem can be solved is the well-known cyclotron problem
of a nonrelativistic charge q without spin rotating in a uniform
magnetic field B0, in quantum mechanics better known as the
Landau problem. We will show that, despite the nonrelativistic
treatment, the angular momentum of the quantum vacuum
is finite after mass renormalization, without the need for a
cutoff in energy. While its proportionality to qB0 follows from
invariance under C, P, and T symmetry, and any additional
dependence on the fine-structure constant is a standard QED
outcome, the relation of angular momentum to the rotational
energy of the charge is not a priori clear. In the symmetric
Coulomb gauge and in Gaussian units, the vector potential
A0(r, t ) = B0(t ) × r/2 conveniently preserves symmetry un-
der rotations along the magnetic field. With the quantum
vacuum, whose vector potential is also expressed in the
Coulomb gauge ∇ · A = 0, the nonrelativistic Hamiltonian
reads

H = 1

2μ

(
p − q

c0
A0(r, t ) − q

c0
A(r)

)2

+
∑
k�

h̄ωka†
k�ak�.

(1)

Here p is the canonical momentum satisfying [ri, p j] = ih̄δi j .
It is customary to choose the z axis along the direction of
qB0, which is charge invariant like the angular momentum,
and to introduce the cyclotron frequency ωc = |q|B0/μc0.
We have left out the quantum vacuum energy

∑
k� h̄ωk/2

that represents here vacuum photons with constant infinite
energy and zero angular momentum. It is convenient to exploit
rotational symmetry as well for the quantum vacuum and
express the vector potential of the quantum vacuum in terms
of the spherical vector harmonics ��(k̂) defined on the unit
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sphere in reciprocal space [16],

A(r) =
√

2π h̄c0

∑
k�

1

k3/2
[ak� exp(−ik · r)��(k̂)

+ a†
k� exp(ik · r)�̄�(k̂)]. (2)

The continuum limit has been taken,
∑

k ≡ ∫
d3k/(2π )3,

and [ak�, a†
k′�′] = δkk′δ�,�′ . The vector index � = {J, M, p}

summarizes the three discrete quantum numbers of total EM
angular momentum J , its z component M, and two trans-
verse polarizations p, the longitudinal vector harmonic being
excluded by the Coulomb gauge. Without the quantum vac-
uum, the kinetic momentum of the charge is pK = μdr/dt =
μ[H0, r]/ih̄ = p − qA0(r, t )/c0. In the Coulomb gauge, the
canonical angular momentum lz = (r × p)z commutes with
H0 and has eigenvalues (|m| − n)h̄. This quantity is how-
ever gauge variant and any observable end result should be
independent of m. The Hamiltonian H0 has the eigenstates
|n, m, kz〉 of a two-dimensional harmonic oscillator whose
energy levels En = (n + 1

2 )h̄ωc + h̄2k2
z /2μ are indeed inde-

pendent of m due to gauge invariance. Note that the Coulomb
gauge is highly adapted to the present problem of cyclotron
motion of a charge, but much less to the quantum Hall effect
[17].

In the Coulomb gauge, total canonical angular momentum
Lz is conserved, equal to the sum of the canonical angular
momentum lz of the charge and the angular momentum of the
transverse EM field Jz. The angular kinetic momentum oper-
ator of the charge, which is gauge-invariant, is not conserved
and can be written as

lK
z = Lz − Jz − q

c0
(r × A)z − lL. (3)

The Lenz term lL = μωcρ
2/2 is responsible for the electro-

motive force in classical electrodynamics, recently discussed
quantum mechanically [18], and is a key element in the EM
momentum controversy [19]. Without the quantum vacuum,
the kinetic angular momentum of a Landau state is given by
〈n, m|lK

z |n, m〉 = −(2n + 1)h̄ = −2En(rot)/ωc, which again
is independent of m. When the quantum vacuum is included,
〈lK

z 〉 will decay radiatively, but slow enough for 〈lK
z 〉 to be well

defined and modified.
We will use time-dependent perturbation theory to cal-

culate the different contributions of the quantum vacuum to
lK
z for an excited Landau state, all proportional to qB0(t )

for slow adiabatic changes. We identify the interaction W =
−(q/μc0)pK · A(r) between rotating charge and quantum
vacuum and imagine switching it on slowly like W (t ) =
W exp(εt/h̄) at t0 → −∞, when the total wave function is
assumed to be in the pure state |N〉 = |n, m, kz = 0〉 ⊗ |{0}〉
[20]. In this processus Lz is conserved and equal to its initial
value (|m| − n)h̄. The index N ′ refers to all possible product
states {n, m, kz} ⊗ {nk�} of charge plus transverse photons.
Explicit reference will not be made to the highly degenerated
levels m or to the momentum kz of the charge along the
magnetic field. The degeneration of the m levels is protected
by gauge invariance, and the impact of photon recoil on the
longitudinal displacement is negligible. Since WNN = 0, the

wave function at t � t0 is perturbed as

|	N (t )〉 = exp

(
− i

h̄

∫ t

t0

dt ′[EN + 
EN (t ′)]
)

|N〉

+
′∑

N ′ |N ′〉 WN ′N (t )

EN − EN ′ + iε
+ · · · ,

with 
EN (t ) = ∑′
N ′ WNN ′ (t )WN ′N (t )/(EN − EN ′ + iε) the

second-order perturbation of the energy level EN , the sum∑′
N ′ avoiding the initial level N .1 For an excited state,∫ t

t0
dt ′
EN (t ′) = ∫ t

t0
dt ′(EL

n + h̄An/2i) − 1
2 ih̄Nn, with Nn a

time-independent normalization of the wave function. The
Lamb shift and spontaneous emission rate are, respectively,

EL = h̄ωc
2α

3π
x ln

2

x
, An = nωc

4α

3
x, (4)

with x = h̄ωc/μc2
0 and α = q2/h̄c0 the fine-structure con-

stant; EL is equal for all Landau levels, whereas radiative
decay is proportional to rotational energy.

III. ANGULAR MOMENTUM
OF THE QUANTUM VACUUM

In reciprocal space, the transverse EM momentum Jz in
Eq. (3) is expressed as (Jz )(k)i j = −ih̄δi j (k × ∇k )z − ih̄εzi j ,
i.e., as a sum of orbital angular momentum and spin [16].
Neither one of them behaves as a genuine angular momentum
[21], but this separation is physically useful. In Hilbert space
Jz reads

Jz =
∑

k

α
†
i (k)Ji j (k)α j (k), (5)

with the photon annihilation operator αi(k) =
k−1 ∑

� ak���,i(k̂) and its associated creation operator
α

†
i (k). The quantum expectation of Jz is obtained by inserting

the linearly perturbed eigenfunction (4) on both sides of the
matrix element 〈	N (t )|Jz|	N (t )〉. This creates either a virtual
or a real photon with energy h̄ωk and angular momentum �′′
out of the quantum vacuum at the cost of canonical angular
momentum of the charge. Working out the photon operators
leaves us with

〈Jz〉 = 2π h̄q2

μ2c0
e2εt

∑
k

1

k2

∑
k′�′

∑
k′′�′′

δkk′δk′′k

(k′)3/2(k′′)3/2

×〈n|pK · ��′ (k̂′)eik′r 1

En − H ′
0 − h̄ωk − iε

× �̄�′i(k̂)Ji j (k)��′′ j (k̂)

× 1

En − H ′
0 − h̄ωk + iε

pK · �̄�′′ (k̂′′)e−ik′′r|n〉.

In principle, �′ = �′′ since the spherical harmonics are or-
thogonal eigenfunctions of Ji j (k). The mathematics is easier
by using their completeness

∑
� �̄�(k̂)��(k̂′) = δk̂k̂′
(k̂),

with 
(k̂) transverse to k̂ imposed by the Coulomb gauge.

1We ignored the perturbation |δ	N 〉 = ∑′
N ′N ′′ |N ′〉WN ′N ′′WN ′′N/

(ENN ′ + 2iε)(ENN ′′ + iε). For one-photon processes, the matrix el-
ement 〈n, {0}|lK

z |δ	n{0}〉 vanishes.
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The exponential exp(ik · r) can be moved by using the oper-
ator identity exp(ik · r) f (p) = f (p − h̄k) exp(ik · r), which
induces a photon recoil in H0(p). With δkk′ = δk̂k̂′δkk′/k2,

〈Jz〉 = 2π h̄e2εt/h̄q2

μ2c0

∑
kk′′

〈n|pK
m

1

En − H ′
0(p − h̄k) − h̄ωk − iε

×1

k
eik′ ·r
mi(k̂)Ji j (k)
 jl (k̂′′)e−ik′′ ·rδkk′′

× 1

En − H ′
0(p − h̄k′′) − h̄ωk + iε

pK
l |n〉.

From this expression the EM spin of the quantum vacuum can
be identified as

〈Sz〉 = 1

3

2π h̄e2εt/h̄q2

μ2c0

h̄

i
εzi j

×
∑

k

1

k
〈n|pK

i

1

|En − H ′
0 − E (k) + iε|2 pK

j |n〉. (6)

We have performed the angular integral over k to eliminate

(k̂), neglected the photon recoil pK · h̄k/μ irrelevant for
spin, and defined the energy E (k) = h̄ωk + h̄2k2/2μ. The
orbital angular momentum is associated with a differential
operator acting on δkk′′ , and an integration by parts is imposed
to perform the integral over k′′. Since this operator acts only
on angles, we find, for the orbital angular momentum,

〈Lz〉 = 2π h̄e2εt/h̄q2

μ2c0

∑
k

〈n|pK
m

h̄

i
εzst

× k̂t∇s

(

mi(k̂)

1

En − H ′
0(p − h̄k) − h̄ωk − iε

eik·r
)

×
il (k̂)e−ik·r 1

En − H ′
0(p − h̄k) − h̄ωk + iε

pK
l |n〉.

(7)

As kz = 0, the kinetic operator pK is located in the xy plane. It
is customary to write pK

x + (−)ipK
y = (2μh̄ωc)1/2c(†) in terms

of the raising and lowering operators of the Landau levels,
in terms of which H0 = h̄ωc(c†c + 1

2 ). To evaluate the spin
in Eq. (6) we use εzi j pK

i f (H0)pK
j = −iμh̄ωc[c† f (En−1)c −

c f (En+1)c†]. The first term implies the release of a real photon
with energy h̄ωc. As ε ↓ 0, this part of 〈Sz〉 is written as
(h̄/2)

∫ t
t0

dt ′ exp(2εt ′/h̄)δ(h̄ωc − h̄ωk ), so

d

dt
〈Sz〉 = −1

2
Anh̄, (8)

with An defined in Eq. (4). The second term involves virtual
photons and is finite as ε ↓ 0,

〈Sz〉 = (n + 1)
q2 h̄3ωc

3μc0

∫ ∞

0

kdk

[h̄ωc + E (k)]2

= α
h̄

3π
(n + 1)x ln

2

x
. (9)

In expression (7) for 〈Lz〉 the derivative ∇k acts on the
three factors inside large parentheses. Its action on the fac-
tor in the middle, caused by the photon recoil, is a fac-
tor x smaller than the rest. The action on the first factor
gives εzst k̂t∇s(
mi )
il = −k−1εzlt k̂mk̂t and produces an an-

gular momentum 〈L(1)
z 〉 = 〈Sz〉. Finally, the action of ∇k on

exp(ik · r) leads to the expression

〈
L(2)

z

〉 = 2π h̄2e2εt/h̄q2

μ2c0

×
∑

k

〈n|pK
m
ml (k̂)

1

Hn − iε
(r × k̂)z

1

Hn + iε
pK

l |n〉,

where Hn ≡ En − H0 − E (k) + h̄pK · k/μ. This time, the
photon recoil cannot be ignored and we must expand either
one of the denominators which produces an integral dkd̂k
with integrand of the type

εzst
ml (k̂)kuk̂t pK
m

1

Hn − iε
pK

u

1

Hn − iε
rs

1

Hn + iε
pK

l .

Physically, this corresponds to the creation of a virtual pho-
tonic mode with finite orbital angular momentum. In terms
of the infinitely degenerated center (X,Y ) of the cyclotron
orbit, we associate x = X − pK

y /μωc and y = Y + pK
x /μωc.

The operators (X,Y ) drop out in the vacuum expectation
value since they do not occur in pairs. Upon expressing
(pK

x , pK
y ) in the operators c and c†, the integrand contains four

transition operators. As was the case for 〈Sz〉, some contribute
to spontaneous emission but are seen to be a factor x smaller
than An. We thus focus on terms where the limit ε ↓ 0 exists.
For instance, the sequence

〈n|cH−1
n c†H−1

n cH−1
n c†|n〉 = (n + 1)(n + 2)

E (k)3

leads to

〈
L(2)

z

〉 ∼ (n + 1)(n + 2)
2π h̄2q2

μ2c0

h̄

μ
μh̄2ωc

∑
k

k

E (k)3

≈ h̄

8π
α(n + 1)(n + 2)x.

Upon collecting all possibilities, performing the angular inte-
gral, and adding the complex conjugate, we obtain

〈Jz〉 = 〈Sz〉 − 4h̄

15π
α(n + 1)(n + 4)x (10)

and d/dt〈Jz〉 = −h̄An/2.
The penultimate term in Eq. (3), the longitudinal EM

angular momentum 
L‖, is itself linear in the vacuum field. Its
leading quantum expectation value is obtained using the linear
perturbation of the eigenfunctions and the completeness of the
spherical vector harmonics

〈	N |
L‖|	N 〉 = − q2

μc0

4π h̄

3

∑
k

1

k
εzi j〈n|ri

1

Hn + iε
pK

j |n〉

plus its complex conjugate. Here the k integral diverges
in the UV as dk/k. We recognize for large k the form
(δμ/μ)〈n|lK

z |n〉, with δμ the well-known Bethe-Kramers
mass renormalization [1]. Upon adding it to the kinetic mass
as lK = (μ + δμ)r × dr/dt and subtracting it from the above
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equation we obtain

〈	N |
L‖|	N 〉 = − q2

μc0

4π h̄

3

∑
k

1

k

′∑
n′

ih̄

μ

× εi jz
〈n|pK

i |n′〉

En′n + E (k) − iε

〈n′|pK
j |n〉

E (k)
+ c.c.,

where we have used the identity 
En′n〈n|r|n′〉 =
(ih̄/μ)〈n|pK |n′〉. The operators pK

x and pK
y can be expressed

in terms of c† and c, which results in

〈
L‖〉 = h̄
4α

3π
x ln

2

x
, (11)

which, like the Lamb shift in energy, is independent of n.
The last contribution of the quantum vacuum to the angular

momentum is associated with the Lenz term lT in Eq. (3). The
quantum vacuum comes in via Nn and the second term in
Eq. (4). With lT = h̄(c†c + 1 + b†b − ib†c†/2 + icb/2) in
terms of the raising (b†) and lowering (b) operator of the
degenerated m levels [17], the m dependence is seen to cancel
in the sum of both terms. The second term equals h̄(n + 1)
times

4π h̄q2

3μ2c0

1

ih̄

∫ t

t0

dt ′e2εt ′/h̄
∑

k

〈n|pK
j

1

Hn + iε
pK

j |n〉 + c.c.

= −An

∫ t

t0

dt ′e2εt ′/h̄ − 2α

3π
(n + 1)x ln

2

x

and the first is h̄ times

4π h̄q2

3μ2c0
e2εt/h̄

∑
k

1

k
〈n|pK

j

1

Hn + iε
(c†c + 1)

1

Hn − iε
pK

j |n〉

= nAn

∫ t

t0

dt ′e2εt ′/h̄ + 2α

3π
(n + 1)(n + 2)x ln

2

x
.

In particular, n2 terms also cancel in the sum and

〈δlT 〉 = 2〈Sz〉, d

dt
〈δlT 〉 = −h̄An. (12)

By adding up the four contributions 〈Sz〉, 〈Jz〉, 〈J‖〉, and 〈δlT 〉
we find, for the total angular momentum of the quantum
vacuum,

〈
JQV

z

〉 = h̄
4α

3π
(n + 2)x ln

2

x
− h̄

4α

15π
(n + 1)(n + 4)x (13)

and d〈JQV
z 〉/dt = −2h̄An. We conclude that the quantum

vacuum achieves an angular momentum directed along the

qB0 axis and is, in units of h̄, proportional to α × x = α ×
h̄ωc/μc2

0 ≈ 10−12 per Tesla, which is time dependent if B0

is. Not unsurprisingly, for a rapidly rotating charge (large n),
the orbital angular momentum of the quantum vacuum, ex-
pressed by the second term, dominates over the spin com-
ponent. In all momentum integrals the photon momentum
h̄k takes values up to μc0 with nonetheless a significant
weight of nonrelativistic momenta. A relativistic description
of the rotating electron is thus relevant but should affect
only numerical coefficients in Eq. (13). Even in a relativistic
picture, Eq. (3) for the kinetic angular momentum is valid and
〈lK

z 〉 remains quantized to −(2n + 1)h̄.2 In the ground state,
the existence of Lamb angular momentum makes the kinetic
angular momentum slightly more negative than −h̄; in states
with large n it will be slightly less negative than −(2n + 1)h̄,
the correction growing like n2. Note that the gauge-invariant
magnetic moment Mz = (q/2μ)lK of the rotating charge is
subject to the same correction. Due to the quantum vacuum,
the kinetic angular momentum −(2n + 1)h̄ of the charge in
Landau level n decays to the Landau level n − 1 with rate An,
so we expect that d〈lK〉/dt = +2h̄An. Hence, 〈lK

z + JQV
z 〉 =

Lz is conserved in the decay. This spontaneous emission could
be seen as the most elementary form of rotational quan-
tum friction [22]. The nonrelativistic analysis imposes that
En  μc2

0, implying, for an electron in a field of 10 T, that
n  109. Pushing our theory to this extreme synchrotron
regime, the relative contribution of Lamb orbital angular
momentum would be of order 10−4.

IV. CONCLUSION

The main objective of this work was to establish the
existence of angular momentum of the EM quantum vacuum,
induced by the presence of a rotating charge in a magnetic
field. It is instructive to look at the separate contributions
of spin, orbital angular momentum, and angular momentum
directly associated with the gauge fields. All are oriented
along the magnetic field and proportional to the product of
the fine-structure constant and the small ratio of rotational
energy to rest energy. Spin and orbital angular momentum
decay in the same way, their coupling being large, yet the
orbital angular momentum of the quantum vacuum, induced
by photon recoil, dominates angular momentum for highly
energetic Landau levels. Similar to the Lamb shift in energy,
this angular Lamb momentum is governed by virtual photons
with energies up to the rest mass of the charge and, despite the
UV renormalizability of the theory, would merit a relativistic
treatment. A future challenge would be to study EM angular
momentum in the fully relativistic synchrotron problem or to
investigate it for Rydberg orbits.

2The eigenfunctions are the same for the relativistic Hamiltonian
without spin, and thus the Lenz moment 〈lT 〉 remains unaltered,
which in turn determines lK

z [16].
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