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Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets
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We find closed-form solution of the Euler equation for a chiral magnet in terms of a skyrmion or a meron
depending on the relative strengths of magnetic anisotropy and magnetic field. We show that the relevant
length scales for these solutions primarily depend on the strengths of Dzyaloshinskii-Moriya interaction through
its ratios, respectively, with magnetic field and magnetic anisotropy. We thus unambiguously determine the
parameter dependencies on the radius of the topological structures particularly of the skyrmions, showing
an excellent agreement with experiments and first-principles studies. An anisotropic Dzyaloshinskii-Moriya
interaction suitable for thin films made with Cnv symmetric materials is found to stabilize antiskyrmion and
antimeron, which are prototypical for D2d symmetric systems, depending on the degree of anisotropy. Based
on these solutions, we obtain a phase diagram by comparing the energies of various collinear and noncollinear
competing phases.
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I. INTRODUCTION

The chiral Dzyaloshinskii-Moriya interaction (DMI) [1,2]
for broken inversion symmetric systems is one of the most
important mechanisms including frustrated exchange inter-
actions and long-ranged dipolar interaction for producing
one-dimensional modulation in magnetization known as spin
spiral [3–9] in ferromagnetic systems. An application of mag-
netic field in such a system stabilizes [7,10] skyrmions (Sks)
having topologically protected quasiparticlelike spin structure
[11–16] in a ferromagnetic background. Néel- and Bloch-
type Sks are generally realized, respectively, in Cnv and Dn

symmetric [3,10] bulk and thin-film materials for wide range
of magnetic fields and temperatures [11–21].

Recent observations [22,23] of antiskyrmions (ASks) in
Heusler alloys with D2d crystal symmetry have raised an issue
about the microscopic environment, which will stabilize a
Sk or an ASk. While a Sk has either Néel or Bloch type
of orientation of magnetization vector governed by the re-
spective transverse and longitudinal DMI, an ASk displays
a combination of both. It is thus tempting to think that an
antiskyrmion may be produced in a crystal whose symmetry
gives rise to both types of DMI. Numerical simulations, on
the contrary [24–26], indicate that the ASks do stabilize only
in the presence of dipolar interaction. A micromagnetic study
[27] suggests that Sks and ASks can, however, coexist and this
coexistence is predicted by electronic structure calculation at
interfaces due to anisotropic DMI. These ASks even take part
in current-induced motion [28].
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Hoffmann et al. [27] have recently observed ASks in C2v

symmetric systems grown on semiconductor or heavy-metal
substrates, while Cnv symmetric systems are known to sta-
bilize Sks only [3,7]. This motivates us to study a system
of thin-film chiral magnet that may be fabricated with Cnv

symmetric crystals with an anisotropic DMI in a continuum
model in search of ASk solution. Camosi et al. [29] have
recently reported that the epitaxially grown thin Co films
on W(110) brings anisotropy in DMI along two orthogonal
growth directions of a C2v symmetric bulk system. Although
this reported anisotropy does not correspond to two opposite
signs along two orthogonal directions, a micromagnetic sim-
ulation seems to suggest anisotropy in thin films not only in
magnitude but also in sign [28]. We introduce a model DMI
with such an anisotropy.

Moreover, recent observation of another topological spin
structure, viz, meron [30,31] have further raised the theoreti-
cal issue on the parameter regimes on which all these different
kinds of topological structures emerge. Further, definite pa-
rameter dependencies on the radius [32–35] and appropriate
length scale [7] of a Sk are not yet settled. Our focus is thus
solving basic Euler equation for angular variables represent-
ing magnetization with isotropic DMI for Sks and merons
and then study the consequences of its anisotropy followed
by the determination of phase diagram by comparing energies
of different possible solutions for thermodynamically stable
magnetic structures.

In this paper, we solve the Euler equation in a contin-
uum model [3,7] with ferromagnetic exchange coupling, J ,
DMI strength, D, strength of magnetic anisotropy, A, and net
Zeeman energy due to magnetic field, H . For moderate to
high HJ/D2 and γ = 2A/H < 1, we find that the relevant
length scale of the corresponding skyrmion solution is rs =
D/H , contrasting the belief [36] of the relevant length scale
rd = J/D. This enables us to determine the magnetic field
and anisotropy dependencies of the radius of a skyrmion and
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find that it is in excellent agreement with experiments [32,37]
and first-principles studies [33]. The meron solution at zero
magnetic field is obtained for A > 0 (easy-plane anisotropy)
by minimizing energy and the relevant length scale is found
to be D/A. We show the formation of meron lattice and
argue how a symmetric Sk is evolved from a meron via
an asymmetric skyrmion, explaining a recent experiment as
well as simulation results [31]. Further, our model with an
anisotropic DMI is shown to stabilize ASks and antimerons in
Cnv symmetric systems, as evident in recent realization [27] of
ASks in C2v symmetric systems. We finally determine phase
diagram for γ < 1 by comparing energies of the skyrmion so-
lution with other collinear and noncollinear competing phases.

II. GENERAL DESCRIPTION OF SKYRMION
AND ANTISKYRMION

We begin with considering a two-dimensional chiral mag-
net having energy E = ∫

d2r(EEX + E±
DM + EAH) with respect

to an overall ferromagnet orienting along perpendicular to the
plane of the system, described by exchange energy density
EEX = J

2 (∇m̂)2, DMI energy density E±
DM = −D(L(x)

xz ± L(y)
yz ).

Here L(k)
i j = m̂i∂xk m̂ j − m̂ j∂xk m̂i, m̂ is unit magnetization vec-

tor, ± signs, respectively, refer to the systems with Cnv and
D2d symmetries when the Dzyaloshinskii-Moriya vector is
transverse [38] to the lattice bond. (While the former supports
Sks the later is suitable for stabilizing ASks.) The energy
density for magnetic anisotropy and applied magnetic field
along ẑ direction given by EAH = −A (1 − m̂2

z ) + H (1 − m̂z ),
where A > 0 (<0) refers to easy-plane (easy-axis) anisotropy.
In spherical polar representation,

m̂(r) = [cos �(r) sin �(r), sin �(r) sin �(r), cos �(r)]

with r = (r cos φ, r sin φ) in polar coordinate system.
A topological structure defined by its topological quantum

number Nsk = 1
4π

∫
d2r m̂ · (∂xm̂ × ∂ym̂) ≡ ±N0, where posi-

tive sign refers to a Sk or meron and negative sign refers to
an ASk or antimeron. The solutions [7] of a Sk/meron and an
ASk/antimeron correspond to �(r) = �(r) and, respectively,
�(r) = ±φ + η. Here η determines a constant extra planar
rotation of magnetic moment at all points; η = 0 (π/2) for
Neél- (Bloch)-type topological structures. Here N0 represents
the winding number [36]: its positive (negative) sign de-
termines inward (outward) spin orientation with respect the
origin, corresponding to negative (positive) sign of D, and its
magnitude is 1 for Sks and ASks, and 1/2 for merons and
antimerons. The boundary condition, m̂ = (0, 0,+1) for r →
∞, i.e., �(r → ∞) = 0 and m̂ = (0, 0,−1) at r = 0, i.e.,
�(r = 0) = π is for both Sk and ASk. Meron and antimeron
correspond to the boundary condition �(r = ∞) = π/2 and
�(r = 0) = π (0) for inward (outward) helicity.

No matter, be it Cnv , D2d , or Dn systems, the Euler equation
for �(r) is identical (see Appendix A). By introducing a
length scale rs = D/H and rescaling r → rsρ, we obtain (see
Appendix A) the Euler equation

d2�

dρ2
+ 1

ρ

d�

dρ
− sin � cos �

ρ2

= H0

H

(
− 2

ρ
sin2 � + sin � − γ sin � cos �

)
, (1)

FIG. 1. Skyrmion or antiskyrmion solution: Numerical solution
of the Euler equation (1), i.e., �(r) vs. r/rs for different values of γ

in (a)–(e) for same set of H0/H , viz, 0.36, 0.49, 0.64. and 0.81. Solid
lines represent the best fit solution with the form given by Eq. (2).
Inset in (c) is a representative of (a)–(e) for showing the crossing
of the curves for different values of H0/H . Also see Appendix A
for wider range of parameters. The differences in profiles of � for
different H/H0 are minimal beyond this interception point, which is
identified as the radius, Rs, of a skyrmion. The dependence of Rs on
γ along with its approximate fitted form is shown in (f).

where H0 = D2/J and γ = 2A/H . The numerical solutions
of the Eq. (1) with the boundary conditions �(0) = π and
�(∞) = 0 for different values of H0/H and γ are shown in
Fig. 1. The length scale rs, which is independent of exchange
energy J defines the relevant length scale as for a fixed value
of γ , the deviation of the curves of �(r) for different values of
H0/H are almost negligible; the complete solution of Eq. (1)
is thus best approximated by

�(r) = 4 arctan[exp (−β(γ )r/rs)] (2)

with β(γ ) ≈ 0.91–0.55γ .
We note that all the curves for a fixed γ cross [see inset of

Fig. 1(c)] at a particular r and we identify that to be the radius,
Rs, of a Sk. We find its dependency on γ as Rs = rsw(γ )
with w(γ ) ≈ 0.26 + 2.09

1−0.36γ
. Therefore, the magnetic field

dependence of the radius of a Sk may be parametrized as

Rs = C1

H
+ C2

H − C3
, (3)

where the coefficients C1 and C2 are proportional to |D| and
C3 is proportional to A. We note that for a fixed H , radius of a
Sk increases with positive A, in agreement with an experiment
[37]. However, an increase of easy-axis anisotropy will reduce
the size of an Sk. Figure 2 shows that the skyrmion radius
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FIG. 2. Variation of radius of a Sk with applied magnetic field:
Experimental data (solid circles) from Ref. [32], first-principles
calculations from Ref. [33] for hcp lattice (open circle) and fcc lattice
(open inverted triangles), denoted, respectively, as I, II, and III. Solid
lines are the fitted curves of these data with the functional form in
Eq. (3). Inset: Coefficients obtained by fitting are tabulated where we
have put primes to distinguish from nonprimes in Eq. (3) in view of
dimensions.

obtained in an experiment [32] and first-principles studies [33]
obey the relation (3) very well and the sign of the correspond-
ing fitted C3 are consistent with the sign of the reported A.
For the systems with positive A, lower bound of the magnetic
field needed for producing a Sk is Hlb = 2A and thereafter the
radius monotonically decreases with increasing H .

III. PHASE DIAGRAM

Figure 3(a) shows phase diagram in A–H space with γ<1.
The phase boundary between skyrmion and the polarized
ferromagnet is determined by comparing energy of a Sk,

Esk = 2π

∫ ∞

0
dr r

[
J

2

((
d�

dr

)2

+ sin2 �

r2

)
− A sin2 �

+ D

(
d�

dr
+ sin � cos �

r

)
+ H (1 − cos �)

]
(4)

with the energy of the ferromagnet. Similarly by determining
energy of a spin-spiral following Ref. [3] in comparison to the
ferromagnet, we obtain the phase boundary between the spin
spiral and ferromagnet. We draw phase boundary between
spin-spiral and skyrmion phases by considering maximum
possible phase space for spin-spiral structure. The phase di-
agram for γ < 1 here is consistent with previously reported
phase diagrams obtained by variational and other simulations
[39,40]. In agreement with an experiment [41], both spin
spiral and skyrmions are accessible at zero anisotropy.

IV. MERON SOLUTION

For a sufficiently high easy-plane anisotropy (A > 0) and
H = 0, all the spins will align in the plane (planar ferro-
magnet). This indicates a boundary condition �(∞) = π/2,
which together with another boundary condition �(0) = 0

FIG. 3. (a) Phase diagram in A/A0–H/H0 space, where A0 =
H0 = D2/J . Three distinct phases: spin-spiral (SS), isolated
skyrmion (Sk), and polarized ferromagnet (FM) whose magnetiza-
tion direction is along the applied H . The right boundary corresponds
to γ = 1. (b) Two possible degenerate structures of merons (up
or down spin at the center) for H = 0. From top, two- and one-
dimensional spin-structures of merons. Any finite H stabilizes meron
with down-spin at the center only. (c) From top, depiction of a
symmetric meron (H = 0), an asymmetric meron (H > 0, γ > 1),
and an asymmetric skyrmion. Spin-down at r = 0 for all these
structures. Here the schematics (b), (c) of merons and skyrmion are
considered for D < 0.

or π will provide a solution of meron when A is moderate.
Taking cue of the skyrmion solution, we assume the solutions
of meron (see Appendix B) to be

�(r) = ±π

2
+ 2 arctan[exp(−ζ r/ra)], (5)

where ra = D/A is the characteristic length scale, positive
(negative) sign corresponds to spin down (up) at the center
of the meron, and the parameter ζ to be determined by
minimizing its energy

Emeron = 2π

∫ ∞

0
r dr

[
J

2

((
d�

dr

)2

+ sin2 �

r2

)

+A cos2 � + D

(
d�

dr
+ sin � cos �

r

)]
. (6)

We find (see Appendix B) ζ = 2 ln(2)/(1 + 2G) ≈ 0.49,
where G is Catalan’s constant. These solutions of �(r) are
degenerate and hence they occur simultaneously and appear
as neighbors to match the background of planar ferromagnet
and form a meron lattice, as shown in Fig. 3(b). However,
with the increase of H , only one kind of meron (spin down
at its core) survives as the other will have higher energy,
because the background of spin alignment will have nonzero
out of plane (up) component. For further increase of H , this
meron gradually converts into a skyrmion as it helps to orient
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more spin with finite up component. This is reminiscent of
the recently observed merons by Yu et al. [31]. We estimate
the upper bound of A for forming a meron as Aub ≈ 2.3A0 by
comparing the energy of a meron and the planar ferromagnet.

In the presence of H with A � 0 such that γ > 1, a
tilted ferromagnet will be formed with finite amount of spin
projection along the direction of H making a tilting angle
arccos(1/γ ) with the plane. With such a tilted ferromagnet in
the background, locally formed merons with down spin at its
core will be asymmetric as shown schematically in Fig. 3(c)
when A < Aub. If we look along a particular direction, a
meron’s spin alignment at one boundary will be along the
tilting angle arccos(1/γ ) and at the other boundary it will
differ by an angle π . This makes the meron asymmetric. We
note that actual Aub may be lower than estimated here because
of the predicted possibility of forming cone-like structure
in the intermediate regime. The cone structure [39,40] and
the tilted ferromagnet are indistinguishable in our analysis
because both these structures correspond to same �. With
further increase of H , some more spins will tend to align
more than arccos(1/γ ) forming an asymmetric skyrmion
[Fig. 3(c)], corroborated with the recent numerical simulation
result [42]. Upon further increase of H , right (left) side of the
Sk becomes shorter (longer) and evolve into a symmetric Sk
at γ = 1 as we enter into the Sk phase of the phase diagram
[Fig. 3(a)].

V. ANTISKYRMION AND ANTIMERON

In search of ASk and antimeron in thin films made of Cnv

symmetric systems [43], we introduce an anisotropic DMI
given by

E+
DM = −D(1 + λ cos 2φ)

(
L(x)

xz + L(y)
yz

)
. (7)

Here λ denotes the degree of anisotropy with λ = 0 repre-
senting the symmetric DMI present in the bulk Cnv symmetric
crystals. The energy of an ASk is then found to be

Eask = 2π

∫ ∞

0
dr r

[
J

2

((
d�

dr

)2

+ sin2 �

r2

)
− A sin2 �

+ λ

2
D

(
d�

dr
− sin � cos �

r

)
+ H (1 − cos �)

]
(8)

with �(r) given in Eq. (2). Inset of Fig. 4(a) shows the
variation of Eask with λ for A = 0 and we find that Eask < Esk

above a critical value λc ≈ 1.4 and hence the anisotropy in
DMI stabilizes an ASk. A phase diagram has been presented
in Fig. 4(a). Ferromagnet to ASk transition is also possible for
λ > λc, and the corresponding critical value increases with
H . However, ASks are not possible for lower H/H0 where
spin-spiral phase remains unaltered for any λ. Figure 4(b)
shows minimum values of λ above which the full phase space
of Sks and partial phase of ferromagnets shown in Fig. 3(a)
can stabilize ASks. The outer boundary in the ferromagnetic
region is obtained with the criterion that the ratio of the
diameter of an ASk and the spin-spiral wavelength is not less
than 0.4.

FIG. 4. (a) Phase diagram in H/H0–λ plane when A = 0. Four
distinct phases are obtained by comparing their energies. While the
energies of a skyrmion and an antiskyrmion have been calculated
using the expressions (4) and (8), respectively, the energy of the spin-
spiral phase has been obtained following the procedure reported in
Ref. [3]. The inset shows comparison of the energies of a Sk and
an ASk with respect to the energy of the ferromagnetic ground state
in the background as a function of anisotropy parameter λ of DMI.
The crossing point of two lines determines the boundary between
skyrmionic and antiskyrmionic phases. (b) The color map indicates
minimum value of λ above which an ASk is stabilized over a Sk or a
ferromagnet in the parameter space shown in Fig. 3(a).

The energy of an antimeron in presence of anisotropic
DMI,

Eanti−meron = 2π

∫ ∞

0
r dr

[
J

2

((
d�

dr

)2

+ sin2 �

r2

)

+ A cos2 � + λ

2
D

(
d�

dr
− sin � cos �

r

)]
(9)

becomes less than Emeron for 6.8 � λ. Producing antimerons
by anisotropic DMI is less probable than producing ASk
because the former requires much higher degree of anisotropy,
which is almost in the verge of the limit of a D2d system.

VI. CONCLUSION

We here have shown that the anisotropic DMI in thin
films with Cnv symmetric materials can host antiskyrmions
for wide range of phase space of A and H , in comparison to
hosting skyrmions. However, we do not find any regime of
the coexistence of Sks and ASks, in contrast to the numerical
simulation [27]. Although dipolar interaction is also a suitable
mechanism [24–26] for stabilizing ASks, the anisotropic DMI
is solely responsible, to the best of our knowledge, for small-
size ASks in Cnv symmetric systems. The dipolar interaction
here may play a role in reducing [44] the effect of magnetic
anisotropy. The physics of Sk/ASk and meron/antimeron
discussed here will reverse for systems with D2d symmetries.
Although the structure of an antiskyrmion is a combination of
the structures of Néel- and Bloch-type Sks, which are pro-
totypical, respectively, of DMI with Dzyaloshinskii-Moriya
vector orthogonal to the neighboring bond and along the bond,
their combinations do not produce ASks. However, a pure
Dn symmetric system will stabilize Bloch-type merons and
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Sks, and the corresponding antimerons and ASks may also be
produced through anisotropic DMI.
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APPENDIX A: EULER EQUATION AND ITS
SKYRMION SOLUTION

Energy for a two-dimensional chiral magnet is given by

E =
∫

d2r
[

J

2
(∇m̂)2 + EDM + H (1 − m̂z ) − A

(
1 − m̂2

z

)]
,

(A1)

where energy density for DMI, EDM = −D(L(x)
xz + L(y)

yz ) for
Cnv symmetric, −D(L(x)

yz + L(y)
zx ) for Dn symmetric and

−D(L(x)
xz − L(y)

yz ) for D2d symmetric systems and we distin-
guish them by introducing a parameter α with respective
values 1, 2, and −3. Unit magnetization can be parametrized
through spherical variables (�,�) as

m̂(r) = [cos �(r) sin �(r), sin �(r) sin �(r), cos �(r)]

with r = (r cos φ, r sin φ) in polar coordinate. Therefore, the
expression of energy reduces to

E =
∫ ∞

0
r dr

∫ 2π

0
dφ

[
J

2

(
�2

r + sin2 �

r2
�2

φ

)

+ H (1 − cos �) − A sin2 �

+D

(
�r ± sin(2�)

2r
�φ

)
sin

(
α

π

2
− φ ± �

)]
,

(A2)

where �r = d�(r)
dr and �φ = d�(φ)

dφ
and assuming �(r) =

�(r) and �(r) = �(φ). In the last term (A2), positive sign
refers to α = 1 and 2 and negative sign refers to α = −3.
Considering �(φ) = ζφ + η with ζ = 1 for α = 1, 2 and
ζ = −1 for α = −3, and η = 0 for α = 1, −3 and π/2 for
α = 2, we find Euler equation of �(r) being independent of
α as

J

(
�rr + �r

r
− sin � cos �

r2

)
+ 2D

r
sin2 �

= H sin � − A sin(2�), (A3)

where �rr = d2�
dr2 . The corresponding energy is given by

Esk = 2π

∫ ∞

0
r dr

[
J

2

(
�2

r + sin2 �

r2

)
− A sin2 �

+ H (1 − cos �) + D

(
�r + sin(2�)

2r

)]
. (A4)

Short-distance singularity in exchange energy may be avoided
with the boundary condition �(r = 0) = 0 or π . We look
for the skyrmion solution of Eq. (A3) by introducing an-
other boundary condition �(r = ∞) = 0 (assuming the back-
ground as a polarized ferromagnet) along with �(0) = π .

FIG. 5. Skyrmion solution: Numerical solution of the Euler
equation (A8), i.e., �(r) vs. r/rd for different values of γ in (a)–(e)
for same set of H0/H , viz, 0.36, 0.49, 0.64, and 0.81.

In the absence of anisotropy (A = 0), an approximate
and asymptotically (r → 0, ∞) exact analytical solution of
Eq. (1) may be obtained as the exact solution of the sim-
ple sine-Gordon-like equation J d2�

dr2 = H sin �, i.e., �(r) =
4 arctan [exp (−r/r0)] with characteristic length scale r0 =√

J/H . Therefore, an approximate (exact for r → 0 and ∞)
solution for A �= 0 may be obtained by considering a reduced
form of Eq. (1) as J d2�

dr2 = H sin � − A sin(2�) whose solu-
tion satisfies an integral equation∫

d�

sin(�/2)
√

1 − γ cos2(�/2)
= −2(r/r0 ) (A5)

with γ = 2A/H (γ < 1), expressible into an algebraic equa-
tion √

1 + 2γ cos(�/2)

1 − γ cos(�/2) + √
1 − γ

√
1 − γ cos2(�/2)

× tan(�/4) = exp(−
√

1 − γ r/r0). (A6)

We find the solution of Eq. (A6) as

�(r) = 4 arctan[exp (−g(γ ) r/r0)] (A7)

with g(γ ) 	 1 − γ

7 − γ 2

30 . However, as the smooth change
in the orientation of spin depends on D, it is natural that
we consider another length scale rd = J/D, which is the
appropriate length scale for spin spirals. By introducing rd

and transforming r → rdρ, we find the reduced form of
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FIG. 6. Skyrmion solution: Numerical solution of the Euler
equation (A9), i.e., �(r) vs. r/rs for different values of γ and H0/H
in (a)–(e), covering most of the skyrmion phase shown in Fig. 3(a).

Eq. (A3) as

d2�

dρ2
+ 1

ρ

d�

dρ
− sin � cos �

ρ2
+ 2

ρ
sin2 �

= H

H0
[sin � − γ sin(�) cos(�)], (A8)

where H0 = A0 = D2/J . Numerical solution of Eq. (A8)
shown in Fig. 5 for different values of the parameters H/H0

and γ = 2A/H . We note that while the long-distance so-
lution is independent on these parameters, the short- and
intermediate-distance behavior is strongly parameter depen-
dent, suggesting rd is not the natural length scale of the
system.

We next introduce a length scale rs = D/H and rescaling
r → rsρ, we obtain

d2�

dρ2
+ 1

ρ

d�

dρ
− sin � cos �

ρ2

= H0

H

(
− 2

ρ
sin2 � + sin � − γ sin � cos �

)
(A9)

whose numerical solution (Fig. 1 of the paper and Fig. 6 in
this Appendix) is almost H0/H independent for a reasonable
range. We thus find natural length scale of the system as
rs. Together with the solution of �(r), (i) � = φ for α =
1, (ii) � = φ + π/2 for α = 2, and (iii) � = −φ for α =
−3, respectively, construct magnetic structures of Neél-type
skyrmion, Bloch-type skyrmion, and Neél-type antiskyrmion.

FIG. 7. Numerical solution of the Euler equation (A9), i.e., �(r)
vs. r/rs for different values of H/H0 and A/A0. The nature of the
solutions changes with the parameters: These are (a) skyrmions,
(b) chiral bubbles, (c) metastable skyrmions (also chiral bubbles).

However, the nature of the solution of Eq. (A9) changes
with A/A0 for low field regime. For a moderate to large H/H0,
any amount of negative (easy-axis) anisotropy provide normal
skyrmion solution [Figs. 7(a)] as shown in Figs. 1 and 6. When
magnetic filed is low and |A|/A0 � π/2

√
2 (Dzyaloshinskii

criterion [45] for noncollinear state at zero H), the nature
of the solution is chiral-bubble-like [46], where very slow
change of � occurs near r = 0, as shown in Fig. 7(b). The
nature of the solution changes for |A|/A0 � π/2

√
2 at low

H/H0 from chiral bubble to metastable skyrmion, as shown in
Fig. 7(c), for which � sharply falls near r = 0. The behavior
of metastable skyrmions are, however, fundamentally differ-
ent from the normal skyrmions presented in the main text.
While the normal skyrmions are appropriately scaled with rs,

FIG. 8. Numerical solution of the Euler equations (A9) and (A8),
i.e., �(r) vs. r/rs and r/rd in (a) and (b), respectively, for different
values of H/H0 and A/A0. Clearly, these metastable skyrmion solu-
tions are better suited with the length scale rd .
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the metastable skyrmions are better suited with the length
scale rd (see Fig. 8). Further in contrast to the metastable
skyrmions, the radius of a normal skyrmion increases rapidly
with the decrease of H . The metastable skyrmions are ener-
getically unfavorable to polarized ferromagnet.

APPENDIX B: EULER EQUATION AND ITS
MERON SOLUTION

The Euler equation (A3) will reduce to

J

(
�rr + �r

r
− sin � cos �

r2

)
+ 2D

r
sin2 �+A sin(2�) = 0

(B1)
in the absence of magnetic field. For a sufficiently high easy-
plane anisotropy (A > 0), all the spins will align in the plane
(planar ferromagnet). This indicates a boundary condition
�(∞) = π/2, which together with another boundary condi-
tion �(0) = 0 or π will provide a solution for meron. By
introducing a length scale ra = D/A and rescaling r → raρ,
Eq. (B1) will reduce to

d2�

dρ2
+ 1

ρ

d�

dρ
− sin � cos �

ρ2
=−A0

A

(
2

ρ
sin2 � + sin(2�)

)
.

(B2)

Taking our cue from the skyrmion solution, we assume the
solutions of meron is in the form

�(r) = ±π

2
+ 2 arctan[exp(−ζ r/ra)], (B3)

where positive (negative) sign corresponds to spin down (up)
at the center of the meron, and the parameter ζ to be deter-
mined by minimizing the corresponding energy. The energy
of a meron is given by

Emeron = 2π

∫ ∞

0
r dr

[
J

2

(
�2

r + sin2 �

r2

)
+ A cos2 �

+D

(
�r + sin(2�)

2r

)]
, (B4)

which may be simplified to

Emeron = J

2
[ln(2) + I1] + D2

A

[
ln(2)

ζ 2
− I2

ζ

]
, (B5)

where I1 = ∫ ∞
0 (1/r) tanh2(r)dr, I2 = ∫ ∞

0 ( tanh r
cosh r +

r
cosh r )dr = 1 + 2G, and Catalan’s constant G =∑∞

k=0
(−1)k

(2k+1)2 ≈ 0.91.
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