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Persistence of power-law correlations in nonequilibrium steady states
of gapped quantum spin chains
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The existence of quasi-long-range order is demonstrated in nonequilibrium steady states in isotropic XY spin
chains including two types of additional terms that each generate a gap in the energy spectrum. The system is
driven out of equilibrium by initializing a domain-wall magnetization profile through application of an external
magnetic field and switching off the magnetic field at the same time the energy gap is activated. An energy gap
is produced by either applying a staggered magnetic field in the z direction or introducing a modulation to the
XY coupling. The magnetization, spin current, and spin-spin correlation functions are computed analytically in
the thermodynamic limit at long times after the quench. For both types of systems, we find the persistence of
power-law correlations despite the ground-state correlation functions exhibiting exponential decay.
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I. INTRODUCTION

Many-body dynamics in closed quantum systems has ex-
ploded in popularity as an area of intense research over the
last decade [1–5]. The surge in popularity of low-dimensional
quantum dynamics as a theoretical area of study has largely
been spurred by remarkable advances in the experimental
simulation of low-dimensional systems with tightly controlled
and highly tunable interactions. With simulations of toy-
model-like systems readily available in the form of carefully
designed setups which manipulate ultracold atoms in optical
traps [6–12], it is possible to explore questions of thermal-
ization and relaxation experimentally using models which are
simple enough to allow for a thorough analytic treatment.

Perhaps the most well-known class of such theoretically
simple systems is that of quantum spin chains, which consist
of a one-dimensional lattice of spin degrees of freedom.
Bethe first solved [13] the Heisenberg spin chain employing
a method which would become known as the “Bethe ansatz,”
which has since been developed into a framework suitable for
investigating the exact dynamics of integrable systems away
from equilibrium [14]. The simpler XY model was introduced
and shown to map to a system of free fermions by Lieb,
Shultz, and Mattis [15]. Due to the simplicity of the basic
XY model, it has become a popular system for investigating
nonequilibrium physics analytically. The XY spin chain with
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an external magnetic field leads to a surprisingly rich phase
diagram, and its correlation functions were explored quite
thoroughly in the work of Barouch, McCoy, and collaborators
[16–19].

It is noteworthy that Ref. [16] devotes a section to comput-
ing the dynamics of observables following an abrupt change in
the external magnetic field—an early example of a “quantum
quench” protocol [5]. In recent years, the quantum quench has
become an extremely popular device for generating nonequi-
librium dynamics which can be simulated experimentally
through experiments with ultracold atoms with rapidly tunable
external fields [20,21]. Experimentally, tuning the parameters
of the initial system allows one to probe the dynamics after
the quench for a wide variety of carefully chosen initial states.

From the theorist’s point of view, a quantum quench is
essentially a formal procedure for investigating time evolution
with an arbitrary initial state. After a sudden change in system
parameters, the ground state of the initial eigenstate is no
longer the ground state of the Hamiltonian which generates
time evolution. Very often, the initial state is no longer any
eigenstate of the final Hamiltonian. While generic, noninte-
grable systems coupled to an external environment would be
expected to thermalize, the situation is more subtle for isolated
many-body systems. The eigenstate thermalization hypothesis
provides a general mechanism by which expectation values of
observables in isolated, nonintegrable systems can approach
thermal values despite the absence of coupling to an external
environment [22–24].

For integrable systems, which contain a conserved quantity
for every degree of freedom, the dynamics is tightly con-
strained. Consequently, an integrable system generally cannot
relax fully to thermal equilibrium in the traditional sense
and instead relaxes to a generalized Gibbs ensemble (GGE)
[25–27]. The crossover between integrable and nonintegrable
systems results in a smooth transition [28]. For systems in
which integrability is only weakly broken, the system often
relaxes to a long-lived GGE before eventually thermalizing
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at very long times [29,30]. Even for systems which can
be mapped to noninteracting quasiparticles, observables can
exhibit nontrivial dynamics as a consequence of dephasing
of the system’s eigenmodes [31]. Moreover, operators which
are nonlocal with respect to the quasiparticles can lead to ef-
fectively thermal behavior [32] despite the trivially integrable
nature of the noninteracting system.

The majority of studies of quench dynamics focus on
spatially homogeneous systems. However, spatial inhomo-
geneities in the initial state provide particularly simple
means of generating nonequilibrium dynamics. Experimen-
tally, domain-wall magnetization configurations can be cre-
ated by application of a spatially varying magnetic field
[33,34]. In the isotropic XY spin chain, a linearly varying
magnetic field can be used to create a domain-wall magnetiza-
tion profile. By suddenly switching off the magnetic field, the
domain wall is observed to spread ballistically [35]. However,
evidence of the system being far from equilibrium is found in
the athermal relaxation of the transverse spin-spin correlation
function, which acquires oscillations at the scale of the lattice
[36]. The isotropic XY model may be recast in terms of
hard-core bosons, in which these oscillations correspond to
quasicondensates of the bosonic modes [25,37]. In the spin
language, the oscillations are directly related to a spin current
[38,39] which emerges as magnetization is being transported
across the domain wall as the profile spreads. It has been
shown recently that the time evolution of the domain-wall
initial state is well described as an eigenstate of an emergent,
effective Hamiltonian [40,41].

Domain-wall dynamics have also been investigated in
the anisotropic XY model [42–47]. Like the isotropic XY
model, the anisotropic model maps to free fermions so that
the dynamics may be computed exactly. Aside from exact-
diagonalization methods [48], domain walls in the interact-
ing XXZ model have been treated numerically using time-
dependent density matrix renormalization group methods
[49,50] and theoretically using a bosonization approach [36].
More recently, generalized hydrodynamics [51,52] has been
employed to obtain analytic results which agree well with
numerical calculations.

With some notable exceptions [53,54], detailed investi-
gations of quench dynamics in which translation invariance
is broken by the Hamiltonian generating time evolution are
scarce in the literature. Breaking translation invariance in spin
chain models is most easily accomplished by adding a position
dependence to external magnetic fields or nearest-neighbor
couplings. In the present work, we address both types of
terms.

All models considered are extensions of the isotropic XY
model as described by the Hamiltonian [15]

Ĥxy = −J
∑

j

[
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

]
. (1)

In this paper we break translation invariance by performing
each of the following two modifications to Eq. (1). First, we
add a term corresponding to a “staggered” magnetic field
which oscillates at the scale of the lattice,

Ĥs = Ĥxy + m
∑

j

(−1) j Ŝz
j, (2)

where m > 0 is a constant. The second type of modifica-
tion is to modulate the nearest-neighbor XY coupling J →
Jj = J[1 − (−1) jδ] for 0 < δ < 1. Such modulation leads to
dimerization in which an energy gap appears in the spectrum
[55]. The addition of a staggered magnetic field also leads to
the appearance of an energy gap, and this type of perturba-
tion has been used previously [53] as a particularly simple
mechanism to generate a gap in the energy spectrum of free
fermions confined to a lattice. Additionally, a self-consistent
version of the staggered field perturbation has recently been
used to investigate the dynamics of a Bose-Hubbard model
with a particular form of global-range interactions in the ther-
modynamic limit, where the system maps to a free-fermion
model with a self-consistency condition [56,57].

The work presented in this article focuses on the long-time
behavior of one-body observables and correlation functions in
the nonequilibrium steady state that forms in the center of the
system as the domain-wall broadens, or “melts.” Previous ef-
forts have demonstrated that the central subsystem relaxes to a
GGE-like steady state when time evolution is generated by the
isotropic [50] and anisotropic [46] XY models. In these cases,
an effective momentum distribution describing the long-time
limit of the central subsystem is obtained by expanding the
initial momentum correlation matrix 〈c†

p+ q
2
cp− q

2
〉 for small q

[50,58]. As these models map to free fermions, all observables
can be computed from this effective momentum distribution.
In this paper we extend the analysis to dynamics generated by
the two gapped models discussed above. Due to the broken
translation invariance, the effective momentum distribution is
replaced by an effective Wigner function which inherits an
explicit position dependence.

Despite the presence of an energy gap in the spectrum
of the Hamiltonian which generates time evolution, we ulti-
mately find the persistence of power-law correlations in the
spin-spin correlation functions. The existence of power-law
correlation functions in a gapped model far from equilib-
rium has been demonstrated previously in continuum systems
[59,60] and more recently in lattice systems [57]. One note-
worthy feature of our results is that the power-law correlations
depend crucially on the domain-wall initial state. As we will
discuss, a homogeneous quench from the ground state of the
XY model results in at least one correlation function decaying
exponentially with distance, similarly to its behavior in the
ground state of the gapped model.

The paper is organized as follows. Section II contains a
summary of the ground-state properties of the models con-
sidered to establish a baseline to which the nonequilibrium
results may be compared. The main results for the long-time
limit of observables in both types of gapped systems are de-
rived in Sec. III. Also included in this section is a brief inves-
tigation of quenches in which the initial state does not possess
a domain-wall magnetization profile and a comparison of our
results to domain-wall dynamics in the gapped anisotropic XY
model. Lastly, Sec. IV contains a brief discussion and outlook
on future work.

II. GROUND-STATE OBSERVABLES

This section is devoted to a brief exploration of the ground-
state properties of the models considered in the remainder
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of the paper. In the process of obtaining the low-energy
physics, the basic nomenclature used throughout the paper is
introduced. This section also contains the definitions of the
particular observables which will be computed away from
equilibrium in Sec. III.

A. Staggered field

The isotropic XY model with a staggered (alternating)
magnetic field is described by the following Hamiltonian,

Ĥs = −J
∑

j

[
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

]+ m
∑

j

(−1) j Ŝz
j . (3)

We employ units in which h̄ = 1 and the lattice spacing
a → 1. Previous work has investigated both static [61,62] and
dynamical [63–65] properties of the isotropic XY model in the
presence of a staggered magnetic field. The Jordan-Wigner
transformation [15,66] may be employed to write the spin
operators in terms of spinless fermions,

Ŝ+
j = c†

j exp

[
iπ

j−1∑
n=1

c†
ncn

]
, (4)

Ŝ−
j = exp

[
−iπ

j−1∑
n=1

c†
ncn

]
c j, (5)

Ŝz
j = c†

j c j − 1

2
, (6)

where Ŝ±
j ≡ Ŝx

j ± iŜy
j . Up to an irrelevant constant, the trans-

formation in Eqs. (4)–(6) can be used to recast Eq. (3) as

Ĥs = −J

2

∑
j

[c†
j c j+1 + c†

j+1c j] + m
∑

j

(−1) jc†
j c j . (7)

One may diagonalize Ĥs in terms of quasiparticles γk using
the following Bogoliubov transformation [53,59],(

ck

ck+π

)
=
(

cos θk
2 sin θk

2

− sin θk
2 cos θk

2

)(
γk

γk+π

)
, (8)

valid for |k| < π
2 . Here the Fourier transform of the c j is given

explicitly by

ck = 1√
L

∑
j

e−ik jc j, (9)

where L = Na is the size of the system and N is the number
of lattice sites. We work in the thermodynamic limit where we
take N → ∞ in all results. Using Eq. (8) in Eq. (7) results in
a diagonal Hamiltonian of the form

Ĥs = −
∑
|k|< π

2

εk[γ †
k γk − γ

†
k+π

γk+π ] (10)

for the specific choice

tan θk = m

J cos k
, (11)

so that εk =
√

(J cos k)2 + m2. The staggered magnetic field,
which acts as a spatially varying chemical potential in the

fermion language, thus doubles the size of the unit cell, result-
ing in the first Brillouin zone being cut in half. Accordingly,
the free-fermion dispersion splits into upper and lower bands
with a gap opening at the Fermi points, k = ±π

2 of magnitude
�ε = 2m. The ground state |�0〉 consists of a fully filled
band containing all quasiparticles in the lower branch of the
dispersion, for which εk < 0,

|�0〉 =
∏

|k|< π
2

γ
†
k |0〉. (12)

Employing Wick’s theorem, observables such as magnetiza-
tion and correlation functions can be constructed from the
basic correlations 〈c†

j c j+n〉 = 〈�0|c†
j c j+n|�0〉. Transforming

to momentum space,

c j = 1√
N

∑
|k|< π

2

eik j[ck + (−1) jck+π ], (13)

and using Eq. (8), we can write

〈c†
j c j+n〉 = 1

2N

∑
|k|< π

2

eikn{[1 + (−1)n] + [1 − (−1)n] cos θk

− (−1) j[1 + (−1)n] sin θk}, (14)

which makes use of the ground-state expectation values
〈�0|γ †

k γk|�0〉 = 1, 〈�0|γ †
k+π

γk+π |�0〉 = 0, for |k| < π
2 . We

work in the thermodynamic limit N → ∞ where we may
convert the sum over k to an integral and combine terms so
that the range may be extended to the entire first Brillouin
zone of the gapless initial Hamiltonian, k ∈ (−π, π ). Noting
the equivalent mapping (π, 3π

2 ) → (−π,−π
2 ), we ultimately

obtain

〈c†
j c j+n〉 = 1

2

∫ π

−π

dk

2π
eikn[1 + cos θk − (−1) j sin θk].

(15)

Observables are most compactly written in terms of Majorana
fermions Aj = c†

j + c j and Bj = c†
j − c j for which the basic

contractions reduce to

〈AjAj+n〉 = δn=0, (16)

〈BjAj+n〉 =
∫ π

−π

dk

2π
eikn cos k − (−1) j m̃√

cos2 k + m̃2
, (17)

where m̃ ≡ m/J . The magnetization 〈Ŝz
j〉 =

1
2 〈�0|BjAj |�0〉 = 〈�0|c†

j c j |�0〉 − 1
2 is staggered, following

the profile of the magnetic field

〈
Ŝz

j

〉 = − m̃(−1) j

π
√

1 + m̃2
K
(

1

1 + m̃2

)
, (18)

where K(k2) is the complete elliptic integral of the first kind
defined by

K(k2) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

. (19)

The spin-spin correlation functions may also be computed
to examine quasi-long-range order in the ground state. In
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equilibrium, one has

Czz
0 (n) = 〈

Ŝz
j Ŝ

z
j+n

〉
= 1

4 〈�0|BjAjB j+nA j+n|�0〉, (20)

Cxx
0 (n) = 〈

Ŝx
j Ŝ

x
j+n

〉
= 1

4 〈�0|BjAj+1Bj+1 · · · Bj+n−1Aj+n|�0〉. (21)

In the literature, Czz
0 (n) is often referred to as the “longitudi-

nal” spin-spin correlation function, while Cxx
0 (n) is termed the

“transverse” spin-spin correlation function. Due to rotational
symmetry about the z axis, the transverse spin-spin correlation
functions are equivalent,〈

Ŝx
j Ŝ

x
j+n

〉 = 〈
Ŝy

j Ŝ
y
j+n

〉
, (22)

and in the remainder of the paper we will only explicitly refer
to Cxx(n). Wick’s theorem applied to Eq. (20) gives

Czz
0 (n) = 〈

Ŝz
j

〉〈
Ŝz

j+n

〉+ 1
4

(
δn=0 − g( j)

n g( j+n)
−n

)
, (23)

where g( j)
n = 1

2 〈�0|BjAj+n|�0〉. An asymptotic expansion of
Eq. (17) in powers of 1

n yields vanishing coefficients, con-
sistent with exponential decay. The integral in Eq. (17) can
be evaluated in terms of special functions as performed in
Ref. [67] for a similar case, yielding

C̃zz
0 (n) 	 D0(m̃)e−α(m̃)n, (24)

where α(m̃) = cosh−1(1 + 2m̃2) and the amplitude D0(m̃)
does not depend on n. We have defined C̃zz(n) for n > 0 as
the “connected” correlation function in which the product of
magnetizations is subtracted, Czz(n) = 〈Ŝz

j〉〈Ŝz
j+n〉 + C̃zz(n).

The transverse spin correlation function given by Eq. (21)
involves a string of fermion operators and can be written as a
Pfaffian which reduces to a determinant in equilibrium [17],

Cxx
0 (n) = 1

4

∣∣∣∣∣∣∣∣∣∣∣

g( j)
1 g( j)

0 · · · g( j)
−n+2

g( j+1)
2 g( j+1)

1 · · · g( j+1)
−n+1

...
...

. . .
...

g( j+n−1)
n g( j+n−1)

n−1 · · · g( j+n−1)
1

∣∣∣∣∣∣∣∣∣∣∣
. (25)

In general, Eq. (25) may be computed numerically. Often, it is
possible to apply the Szegő limit theorem and related Fisher-
Hartwig conjecture to extract the asymptotic exponential or
power-law decay analytically for large n [68–70]. Such a
procedure only applies when G(n) is a Toeplitz matrix, having
entries Gi j (n) = g j−i (1 � i, j � N ), which is not the case
here due to the term in Eq. (17) proportional to (−1) j . Such
a procedure does work for the XY model [71]. However,
often one may still use the framework of the Fisher-Hartwig
conjecture to understand how basic features of the correlations
arise. Writing

g( j)
n =

∫ π

−π

dk

2π
e−ikng̃( j)(k), (26)

the asymptotic determinant of G with entries G( j)
il = g( j)

l−i and
size n can be extracted from the properties of g̃( j)(k) when
the Toeplitz condition is satisfied. In that case, g̃(k) can often
be factored into a product of some smooth part f0(k) and a

finite number of zeros and jump discontinuities occurring at
points kl ,

g̃(k) = f0(k)
∏

l

tβl (k − kl )(2 − 2 cos kl )
αl . (27)

The jump discontinuities are parametrized by
numbers βl through the function tβl (k − kl ) ≡
exp {iβl [k − kl − πsgn(k − kl )]}. Given the form in Eq. (27),
the Fisher-Hartwig conjecture states that the asymptotic form
of the determinant of G(n) is given by

detG(n) ∼ Me f 0nn
∑

l (α
2
l −β2

l ) (as n → ∞), (28)

where M is a constant independent of n and

f 0 =
∫ π

−π

dk

2π
ln f0(k). (29)

A procedure exists for calculating M, but it is quite involved
whenever f 0 �= 0 [71]. The additional position dependence
g̃(k) → g̃( j)(k) in the present case, where

g̃( j)(k) = cos k − (−1) j m̃√
cos2 k + m̃2

(30)

prevents one from applying the Fisher-Hartwig conjecture
directly. However, formally factoring Eq. (17) into a smooth
nonzero function and a product of zeros and jump discontinu-
ities gives

g̃( j)(k) = 1

2
√

cos2 k + m̃2

√
2
[
1 − cos

(
k − k( j)

0

)]
×
√

2
[
1 − cos(k + k( j)

0 )
]
t 1

2

(
k − k( j)

0

)
t 1

2

(
k + k( j)

0

)
,

(31)

where cos k( j)
0 ≡ (−1) j m̃, and we take m̃ < 1. Naively at-

tempting to apply the Fisher-Hartwig conjecture, one finds
Eq. (31) consists of two zeros, each with α = 1

2 and two
jump discontinuities, each with β = 1

2 . Applying Eq. (28)
predicts a vanishing power-law factor. The smooth envelope
f0(k) results in a nonzero, exponential decay constant,

f 0 =
∫ 2π

0

dk

2π
ln

[
1

2
√

cos2 k + m̃2

]
= − sinh−1 m̃, (32)

so that one might expect

Cxx
0 (n) ∼ A0(m̃)e−n sinh−1 m̃

= A0(m̃)(m̃ +
√

m̃2 + 1)−n (as n → ∞), (33)

where A0(m̃) does not depend on n. Remarkably, this simple
exponential decay is in agreement with a direct evaluation of
Eq. (25) obtained by integrating Eq. (26) numerically using
Eq. (30). A comparison of the numerical evaluation of Cxx

0 (n)
to Eq. (33) is shown in Fig. 1. It is noteworthy that Eq. (33) is
obtained as a speculative prediction based on the structure of
the generating function in Eq. (30). It should be emphasized
that the Fisher-Hartwig conjecture is not applicable to non-
Toeplitz matrices, so it is somewhat of a fortunate accident
that the correct correlation length � = 1/ sinh−1 m̃ is obtained
by its use here. Similar casual applications of the Fisher-
Hartwig conjecture outside its domain of validity will not lead
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FIG. 1. Correlation function Cxx
0 (n) computed in the ground state

of Eq. (7) for various values of m̃. For m̃ = 0 (gapless XY model), the
correlations decay as a power law Cxx

0 (n) ∝ n− 1
2 , while for m̃ �= 0 the

decay is generically exponential with distance n. Dashed lines depict
exponential decay described by the asymptotic form in Eq. (33).

to correct predictions in the next sections. We also note that
the correct amplitudes A0(m̃) do not result from this type of
analysis. The values of A0(m̃) used in Fig. 1 are found by
fitting Eq. (33) to the numerical evaluation of Cxx

0 (n), while
the decay constant is fully fixed by Eq. (33).

The exponential decay observed in Cxx
0 (n) and C̃zz

0 (n) is an
expected feature of a correlation function in the ground state
of a system with a nonzero energy gap. As m̃ → 0, the energy
gap vanishes and both correlation functions reduce to power
laws. Note that there is no qualitative change in behavior as m̃
is increased above unity, where m̃ = 1 corresponds to m = J .
Larger values of m̃ lead to difficulties in accurate numerical
calculations, as the correlations decay so sharply with n. For
this reason, we restrict our attention to m̃ < 1 in the remainder
of the paper, as no qualitative differences in behavior have
been observed for m̃ > 1. Away from equilibrium, we will
find the structure of the generating function in Eq. (30) to
change in such a way that asymptotic power-law decay can
also be roughly observed to emerge in the scenario considered
in Sec. III.

B. Dimerized hopping

An alternative way of generating an energy gap leading
to qualitatively similar consequences for physical observables
is to consider the dimerized, isotropic XY chain [55,67,72]
in which the nearest-neighbor XY coupling J oscillates in
strength, J → Jj = J[1 − (−1) jδ], so that

Ĥd = −J
∑

j

{[
1 − (−1) jδ

](
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

)}
, (34)

= −J

2

∑
j

{
[1 − (−1) jδ]

(
c†

j c j+1 + c†
j+1c j

)}
. (35)

Here 0 � δ < 1, and the limit δ → 1 results in the system
decoupling into isolated pairs of spins. Only values of δ less
than unity will be considered in the remainder of this paper.
Equation (35) follows from the Jordan-Wigner transformation

in Eqs. (4)–(6). The Hamiltonian in Eq. (35) is diagonalized
by the same basic procedure used in the previous section.
Defining (

ck

ck+π

)
=
(

cos φk

2 i sin φk

2

i sin φk

2 cos φk

2

)(
ξk

ξk+π

)
, (36)

we find a diagonal Hamiltonian

Ĥd = −
∑
|k|< π

2

λk[ξ †
k ξk − ξ

†
k+π

ξk+π ], (37)

with λk = J
√

cos2 k + δ2 sin2 k. Diagonalization corresponds
to a choice of Bogoliubov angle given by

tan φk = δ tan k, (38)

for which |k| < π
2 . As in the previous section, the ground state

|χ0〉 contains all negative-energy quasiparticle modes,

|χ0〉 =
∏

|k|< π
2

ξ
†
k |0〉. (39)

Repeating the same basic steps as in the previous section, one
finds the basic Majorana contractions are given by

〈AjAj+n〉 = −〈BjBj+n〉 = δn=0, (40)

〈BjAj+n〉 =
∫ π

−π

dk

2π
eikn cos k + i(−1) jδ sin k√

cos2 k + δ2 sin2 k
. (41)

With no external magnetic field, one obtains a vanishing
magnetization in the ground state,〈

Ŝz
j

〉 = 1
2 〈χ0|BjAj |χ0〉 = 0. (42)

The longitudinal correlation function has been evaluated pre-
viously [67] with

Czz
0 (n) ∼ D′

0(δ)e−β(δ)n, (43)

as n → ∞ where β(δ) ≡ ln 1+δ
1−δ

and D′
0(δ) does not depend

on n.
Interestingly, attempting to extract the correlation length

� for the transverse correlation function by appealing to the
Fisher-Hartwig conjecture outside its domain of validity as
before leads to the incorrect conclusion that � → 1/ ln(1 + δ).
While this does agree with the numerical evaluation of Cxx

0 (n)
for small δ and n → ∞, it fails as δ → 1. On general grounds,
one expects � → 0 as δ → 1 since this limit corresponds to
pairs of spins which become decoupled from the rest of the
system. As the Fisher-Hartwig conjecture simply does not
apply to non-Toeplitz matrices, that it does work in the case of
a staggered magnetic field is more surprising than that it does
not give the correct correlation length in the present setting.

However, taking exponential decay with exactly half the
correlation length of Czz

0 (n) does give an asymptotic form for
the transverse correlation function which agrees quite well
with a numerical evaluation of Cxx

0 (n),

Cxx
0 (n) ∼ A′

0(δ)

(
1 + δ

1 − δ

)− n
2

, (44)

as n → ∞. The expression in Eq. (44) is shown alongside a
numerical evaluation of Cxx

0 (n) along the same lines as that
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FIG. 2. Correlation function Cxx
0 (n) computed in the ground state

of Eq. (35) for various values of δ. For δ �= 0 the decay is generically
exponential with distance n. Dashed lines depict the exponential
decay described by the asymptotic form in Eq. (44).

discussed in the previous section for several values of δ in
Fig. 2. The correlation function decays exponentially with n
for all values of δ �= 0, and Eq. (44) correctly captures the
strength of the exponential decay. Again, the amplitudes A′

0
are obtained by fitting Eq. (44) to the numerical evaluation
of Cxx

0 (n). Additionally, the effects of dimerization are seen
in the “staircase” structure of Cxx

0 (n) which becomes more
prominent as δ → 1.

III. DYNAMICS FROM DOMAIN-WALL INITIAL STATE

The main focus of this work concerns how the equilibrium
correlation functions presented in the previous section are
modified when the systems are far from equilibrium. To drive
the system into a nonequilibrium steady state, we assume an
initial state |�0〉 corresponding to a domain-wall magnetiza-
tion profile,

|�0〉 = |· · · ↑↑↑↓↓↓ · · · 〉, (45)

〈
Ŝz

j

〉
=
{+ 1

2 ( j � 0),

− 1
2 ( j > 0).

(46)

More general domain walls in which the transition region
has nonzero width or the system is only partially polarized
far from the central regions have also been considered in
the XY model [35,36,46,50]. The former situation has no
effect on the long-time dynamics or formation of the steady
state. The latter scenario in which the system halves are only
partially polarized is a straightforward extension of the main
results in this paper. The basic expressions needed to compute
observables are somewhat lengthy and relegated to Appendix
B. Restricting attention to the state in Eq. (45), we may write
|�0〉 in terms of Jordan-Wigner fermions by using the site
basis and only occupying sites on the left half of the system,

|�0〉 =
∏
j�0

c†
j |0〉. (47)

Our main interest for the remainder of this section is in
computing the long-time limit of observables such as spin
current and correlation functions with the initial state |�0〉
which is not an eigenstate of either Hamiltonian [cf. Eqs. (7),
(35)].

At long times, a nonequilibrium steady state (NESS) forms
in the central region of the system in which the magnetization
relaxes to zero and the spin current saturates to its asymptotic
value. Local observables within this region may be computed
in terms of the basic fermionic correlation function

〈c†
j c j+n〉NESS =

∫
d p

2π
e−ipnG(p), (48)

where G(p) is the effective momentum distribution of a
nonequilibrium steady state which carries information about
the initial domain-wall configuration. This framework has
been applied previously to study relaxation of observables
in the isotropic and anisotropic XY models [46,50]. Given
〈c†

j c j+n〉NESS, the long-time limits of all local observables
may be computed by application of Wick’s theorem. What
distinguishes the focus of this work from these previous
efforts is the broken translation invariance through the stag-
gered magnetic field or modulated hopping amplitude. These
complications result in a position dependence being inherited
by the effective momentum distribution, G(p) → G( j)(p).
The proper interpretation of G( j)(p) is actually the Wigner
distribution [50], though the distinction is largely unimportant
in cases without explicit position dependence.

The overall strategy in this section is to exploit the
quadratic nature of each Hamiltonian to obtain explicit expres-
sions for the time-dependent fermion operators c j (t ) and com-
pute the basic two-point function 〈c†

j (t )c j+n(t )〉. As pointed
out in Ref. [50], the long-time limit will depend on momentum
correlations in the initial state, 〈�0|c†

kck′ |�0〉, with k = p + q
2 ,

k′ = p − q
2 , and q small but nonvanishing. In this limit,

〈�0|c†
p+ q

2
cp− q

2
|�0〉 	 −i

q − i0+ . (49)

The pole and residue structure encoded in Eq. (49) contain
all the information needed to extract the long-time limit of
the Wigner distribution G( j)(p) in the nonequilibrium steady
state. As the models considered are quadratic, Wick’s theorem
reduces all observables to functions of this basic distribution
function. The form given in Eq. (49) is specialized to the fully
polarized semi-infinite subsystems considered here. Appendix
B contains a discussion regarding generalization to domain
walls of arbitrary heights.

A. Staggered magnetic field

To compute the Wigner distribution G( j)(p) in the long-
time limit, we must first obtain expressions for the time-
evolved fermion operators c j (t ) in the Heisenberg picture.
Given the Hamiltonian Eq. (7) and Bogoliubov rotation in
Eq. (8), the time-evolved position-basis operators can be
written as

c j (t ) = 1√
L

∑
|k|< π

2

eik j{[ fkt + (−1) jgkt ]ck

+ [(−1) j f ∗
kt + gkt ]ck+π }, (50)
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where

fkt = cos(εkt ) − i cos θk sin(εkt ), (51)

gkt = i sin θk sin(εkt ), (52)

with εk = J
√

cos2 k + m̃2. The exact expression for the basic
two-point function is

〈c†
j (t )c j+n(t )〉 =

∫ π
2

− π
2

dk

2π

dk′

2π
e−i jk+ik′ ( j+n)

×{[ f ∗
kt + (−1) jg∗

kt ][ fk′t +(−1) j+ngk′t ]〈c†
kck′ 〉

+ [(−1) j fkt + g∗
kt ][(−1) j+n f ∗

k′t + gk′t ]

×〈c†
k+π

ck′+π 〉}. (53)

All expectation values are with respect to the initial state |�0〉.
Cross terms proportional to 〈c†

kck′+π 〉 and 〈c†
k+π

ck′ 〉 have been
dropped, as these contractions give negligible contributions
[see Eq. (49)]. Changing variables of integration from (k, k′)
to (p, q) via k = p + q

2 and k′ = p − q
2 , using Eq. (49) lets us

perform the integration over q in the long-time limit t → ∞
as a contour integral, yielding the NESS result

〈c†
j c j+n〉NESS = lim

t→∞〈c†
j (t )c j+n(t )〉 (54)

=
∫ π

−π

d p

2π
e−ipnG( j)(p), (55)

where the Wigner function G( j)(p) is given by

G( j)(p) = 1

2
{1 + [cos θp − (−1) j sin θp]σ (p)}, (56)

σ (p) = sgn(p)sgn
(π

2
− p
)

sgn
(π

2
+ p
)
. (57)

Equation (56) underlies all of the remaining results in this
section, and its form is strikingly similar to the equilibrium
result [cf. Eq. (15)]. In taking the formal limit t → ∞, our
results apply at large but finite times for | j|, | j + n| � Jt .
Indeed, G( j)(p) relaxes in the long-time limit to its equilibrium
form but with the additional factor σ (p) which is equal to
±1 and consists of four piecewise-constant segments. This
combination of step functions arises in part from projecting
the integral to the entire range −π < p < π . This series of
sign changes provided by σ (p) has dramatic consequences for
the observables and contains all of the surviving information
about the initial state.

1. Magnetization and spin current

From Eq. (53) one may compute observables at arbitrary
times. Given that Ĥs maps to free fermions in Eq. (10) and
that the initial state in Eq. (47) can be represented by the
ground state of a different quadratic Hamiltonian, it is possible
to obtain the corresponding results for a finite system from
a sequence of direct matrix diagonalizations, as described in
Appendix A. Figure 3 shows the magnetization dynamics for
various choices of m

J with a sharp domain-wall initial state.
The transient dynamics obtained numerically from the method
described in Appendix A are virtually indistinguishable from
the analytic formula given in Eq. (53). Using Eq. (56), the
long-time limit of the magnetization in the NESS is shown to

0
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500
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-500
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(c) (d)

FIG. 3. Time evolution of spin current for different values of
m̃ ≡ m/J with (a) m̃ = 0, (b) m̃ = 1

2 , (c) m̃ = 1, and (d) m̃ = 5. The
“light cone” swept by the nonzero current corresponds to the growing
central region in which the magnetization relaxes (asymptotically) to
zero. As m/J becomes larger, the domain wall spreads more slowly
and the resulting steady-state current becomes smaller.

vanish, 〈
Ŝz

j

〉
NESS = 〈c†

j c j〉NESS − 1
2 (58)

= 0. (59)

In the case of m = 0, this vanishing magnetization represents
relaxation to the ground-state average in the isotropic XY
spin chain. In the gapped model, the ground state possesses
a staggered magnetization given by Eq. (18). Thus, while the
magnetization relaxes to zero, the vanishing magnetization is
quite different from the equilibrium profile, showing that the
system remains in a highly excited state of the Hamiltonian
Ĥs.

The spin current Ĵ z
j , which vanishes in the system’s ground

state, becomes nonzero due to the net flow of magnetization
from the left side to the right side of the system. The precise
form of Ĵ z

j follows from the continuity equation for the
magnetization,

∂t Ŝ
z
j = −(Ĵ z

j+1 − Ĵ z
j

)
. (60)

Applying the Heisenberg equation of motion for time evolu-
tion generated by the Hamiltonian Ĥs in Eq. (7),

∂t Ŝ
z
j = i

[
Ĥs, Ŝz

j

]
, (61)

one can identify

Ĵ z
j = J[Ŝ+

j+1Ŝ−
j − Ŝ+

j Ŝ−
j+1] (62)

= iJ

2
[c†

j+1c j − c†
j c j+1], (63)

which is the same as the expression for spin cur-
rent in the isotropic XY model [46]. For a domain-
wall initial state, Eq. (56) can be used in Eq. (63)
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to obtain 〈
Ĵ z

j

〉
NESS = J

2i

∫ π

−π

d p

2π
(eip − e−ip)G(p), (64)

= J

π
(
√

m̃2 + 1 − m̃). (65)

It should be noted that the algebraic decay in Eq. (65) is
qualitatively similar to that obtained from a quench from an
initial state which is spatially homogeneous but supports a
nonzero spin current [60].

2. Correlations

To obtain the general equal-time spin correlation functions,
it is convenient to work in terms of the Majorana contractions,
which can be written as

〈BjAj+n〉 = 〈c†
j c j+n〉 + 〈c†

j+nc j〉 − δn=0, (66)

〈AjAj+n〉 = −〈BjBj+n〉
= 〈c†

j c j+n〉 − 〈c†
j+nc j〉 + δn=0. (67)

The general time-dependent spin-spin correlation functions
now take the form

Czz(n, t ) = 1
4 〈�0|Bj (t )Aj (t )Bj+n(t )Aj+n(t )|�0〉, (68)

Cxx(n, t ) = 1
4 〈�0|Bj (t )Aj+1(t )Bj+1(t ) · · · Aj+n(t )|�0〉. (69)

Our interest here is in the long-time limit after a homogeneous
nonequilibrium steady state has formed in the central part of
the system where Cαα (n, t ) → Cαα

NESS(n) for α = x, z. Using
Eqs. (55)–(57), we obtain

〈BjAj+n〉NESS = 0, (70)

〈AjAj+n〉NESS =
∫ π

−π

d p

2π
e−ipn

[
cos p − (−1) j m̃√

cos2 p + m̃2

]
σ (p), (71)

with 〈BjBj+n〉NESS = −〈AjAj+n〉NESS and σ (p) given in
Eq. (57). For n > 0, the longitudinal correlation function
becomes

Czz
NESS(n) = 1

4 [〈AjAj+n〉NESS]2. (72)

Upon expanding Eq. (71) for large n, we find

Czz
NESS(n) ∼ − 1

(πn)2
×
⎧⎨
⎩

1
1+m̃2 (n odd),(

1 − (−1)
n
2 m̃√

1+m̃2

)2
(n even),

(73)

with the above expressions holding in the limit n → ∞.
For the domain-wall initial state, we observe the persistence
of power-law correlations in contrast to the exponentially
decaying correlation function in the ground state of the model.
Additionally, there are oscillations at multiple wavelengths
present in Eq. (73), as seen from the alternating functional
forms for even and odd n and the factor of (−1)

n
2 in Eq. (73).

These intricate oscillations and power-law correlations turn
out to be a common feature in the models considered.

Next, we wish to evaluate the transverse correlations. Due
to the vanishing of Eq. (70), the Pfaffian for the transverse

correlation function simplifies to

Cxx
NESS(n) = 1

4 detQ, (74)

where Q is an antisymmetric matrix with entries given by
Qjl = q( j)

l− j for l > j with

q( j)
n = 〈AjAj+n〉NESS (75)

=
∫ π

−π

d p

2π
e−ipn

[
cos p − (−1) j m̃√

cos2 p + m̃2

]

× sgn(p)sgn
(π

2
− p
)

sgn
(π

2
+ p
)
. (76)

Antisymmetry defines the entries along and below the diag-
onal in Eq. (75) while Eq. (76) is valid for all choices of l
and j. If not for the term proportional to (−1) j , Q would
be a Toeplitz matrix for which the Szegő limit theorems and
Fisher-Hartwig conjecture [68–71] could be used to extract
asymptotic behavior of the determinant in Eq. (74) as |l −
j| → ∞. As in equilibrium, it is possible to formally define
a generating function for the non-Toeplitz determinant,

q̃( j)(p) = cos p − (−1) j m̃√
cos2 p + m̃2

σ (p). (77)

Comparing Eq. (77) to Eq. (31), the only structural difference
between q( j)

n and g( j)
n is the presence of σ (p). This factor of

step functions serves to introduce additional jump discontinu-
ities into the generating function. One observes that a possible
representation for σ (p) is

σ (k) = sgn(p)sgn
(π

2
− p
)

sgn
(π

2
+ p
)

(78)

∝ t 1
2
(p)t− 1

2
(p − π )t 1

2

(
p − π

2

)
t− 1

2

(
p + π

2

)
, (79)

where tβ (k − kl ) ≡ exp {iβ[k − kl − πsgn(k − kl )]}. The
generating function q̃( j)(k) should be periodic, and the role
of t− 1

2
(p − π ) is to encode the jump discontinuity from

p = π − 0+ to p = π + 0+ → −π + 0+. Additionally, this
factor cancels a lingering factor of ei π

2 arising from t 1
2
(p).

We stress that the Fisher-Hartwig conjecture strictly does
not apply due to the j dependence present in Eq. (77).
However, the exponential decay constant in equilibrium was
predicted by its naive application and we proceed here using
the Fisher-Hartwig conjecture as a guide to explore how the
nonequilibrium correlations might be expected to differ from
equilibrium. Using Eq. (27), one would expect an additional
contribution to the power-law exponent of 4(− 1

22 ) = −1 in
this nonequilibrium steady state. Recall that the power-law
factor was neither predicted by the Fisher-Hartwig conjecture
nor actually present in equilibrium [cf. Eq. (33)]. As before,
there is also a nonzero exponential decay factor. Comparing
this power-law prediction to numerical evaluation of Eq. (74),
one finds that the exponential decay observed in equilibrium
vanishes entirely, leaving only algebraic decay predicted by
the discontinuities in σ (p),

〈
Ŝx

j Ŝ
x
j+n

〉
NESS ∼

[
A(m) + B(m) cos

(πn

4

)]
cos
(πn

2

)1

n
,

(80)
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FIG. 4. Correlation function Cxx (n) computed in the nonequilib-
rium steady state of Eq. (35) for various values of m̃. Only values for
even n are shown, as the correlations vanish for odd n.

as n → ∞. Note that while the Fisher-Hartwig conjecture
does predict the n−1 power law in Eq. (80), it also erroneously
produces an exponential decay factor which is not observed
in the actual correlation function. For that reason, Eq. (80) is
effectively an ansatz which agrees well with the actual corre-
lation function and contains the power-law decay predicted by
the Fisher-Hartwig conjecture. The oscillating prefactors arise
by comparison to numerical evaluation of Cxx

NESS(n) discussed
below. It is noteworthy that the Fisher-Hartwig conjecture is
often unable to predict such oscillations even when the matrix
in question is a legitimate Toeplitz matrix [46].

Numerical evaluation of the correlation function for even
n is shown in Fig. 4 for several values of m̃. Figure 5
shows the absolute value of Cxx

NESS(n), which makes clear the
separate branches and power-law decay. The result is that the
correlations vanish for all odd n, while those for n divisible
by 4 decay with a different m-dependent amplitude than those

100 101 102
10-4

10-3

10-2

10-1

FIG. 5. Absolute value of correlation function Cxx (n) for even n
computed in the nonequilibrium steady state of Eq. (35) for various
values of m̃.

with n not divisible by 4. Interestingly, this set of two different
amplitudes also appears in a closely related model in which
the effective energy gap is not suddenly switched to its final
value but allowed to increase self-consistently as a staggered
field is turned on [56,57]. In that work, the initial state was
spatially homogeneous so that no persistent current developed
at long times. Consequently, the correlation function Cxx

NESS(n)
showed no oscillations of the order cos(πn/2). However, the
even and odd correlations split into separate branches in a
manner very similar to Eq. (80). Interestingly, the decay was
also algebraic but asymptotically the same as the equilibrium
m = 0 result, with Cxx(n) ∝ n− 1

2 .
The main results in this section are the persistence of

power-law correlations [cf. Eqs. (73), (80)] in a nonequilib-
rium steady state despite the system having exponentially de-
caying correlations in its ground state. In similar spin systems
without the presence of an energy gap, the Fisher-Hartwig
conjecture has been applied to extract exact asymptotics of the
transverse correlations when beginning from the domain-wall
state |�0〉 [46]. The presence of a staggered magnetic field
leads to the effective momentum distribution in the NESS
acquiring a position dependence and assuming the form of
a Wigner distribution. This position dependence spoils the
Toeplitz nature of the matrix whose determinant gives the
transverse correlation function, and the Fisher-Hartwig con-
jecture can no longer be applied directly. However, by observ-
ing how the Wigner distribution G( j)(p) is modified compared
to its equilibrium form, one can predict the emergence of an
additional power-law decay factor in the NESS correlation
function. Interestingly, the exponential decay disappears en-
tirely, leaving an enhanced power-law decay—a fact not easily
seen from the explicit form of the Wigner distribution. We
shall see below that the dimerized chain leads to extremely
similar behavior.

B. Dimerized hopping

The calculations for the dimerized chain are quite similar
to those for the chain with the staggered magnetic field, so we
only sketch the main results and elaborate on the new features
in this model. Using the Bogoliubov rotation in Eq. (36), the
time evolution generated by Eq. (35) leads to time-dependent
position-basis operators

c j (t ) = 1√
L

∑
|k|< π

2

eik j{[ fk (t ) + (−1) jgk (t )]ck

+ [(−1) j f ∗
k (t ) − gk (t )]ck+π }, (81)

where

fkt = cos(λkt ) − i cos φk sin(λkt ), (82)

gkt = sin φk sin(λkt ). (83)

Repeating the steps from the previous section, one finds the
emergence of a well-defined nonequilibrium steady state,

〈c†
j c j+n〉NESS = lim

t→∞〈c†
j (t )c j+n(t )〉 (84)

=
∫ π

−π

d p

2π
e−ipnG( j)

δ (p), (85)
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where

G( j)
δ (p) = 1

2 {1 + [cos φp − i(−1) j sin φp]σ (p)}, (86)

where σ (p) is defined in Eq. (57). Similarly to the previous
model considered, the only difference between the nonequi-
librium result and the equilibrium form is the presence of
σ (p), which introduces several jump discontinuities into the
Wigner distribution.

1. Magnetization and spin current

Using Eq. (86), the NESS magnetization is calculated to
vanish, 〈

Ŝz
j

〉
NESS = 0, (87)

which happens to be the equilibrium value for this model.
One must resort to Eq. (61) to obtain the correct form for

the current operator Ĵ z
j in the presence of nonzero dimeriza-

tion, obtaining

Ĵ z
j = iJ

2
[1 − (−1) jδ][c†

j+1c j − c†
j c j+1]. (88)

The modulating amplitude is compensated by oscillations
within the expectation values of the fermion operators, and
one finds 〈

Ĵ z
j

〉
NESS = J (1 − δ)

π
. (89)

The isotropic XY result is recovered in the limit δ → 0.
Furthermore, the current vanishes as δ → 1, consistent with
complete dimerization in which individual pairs become iso-
lated and cease interacting with the rest of the system.

2. Correlations

As in the previous section, all observables follow from
Eq. (86). The Czz

NESS(n) correlation function is again the most
straightforward to calculate, giving formally the same result
as obtained for the staggered field,

Czz
NESS(n) = 1

4
[〈AjAj+n〉NESS]2. (90)

For n → ∞, the asymptotic result is

Czz
NESS(n) ∼

⎧⎪⎪⎨
⎪⎪⎩

0 (n even),(
2

πn

)2 (
n−1

2 even
)
,(

1
δ

− δ
)2( 1

πn2

)2 (
n−1

2 odd
)
.

(91)

Again we find power-law decay with oscillations of several
wavelengths. Turning attention to Cxx

NESS(n), the same factor
of σ (p) which appeared in the generating function when
the staggered magnetic field was switched on speculatively
suggests an additional power-law decay factor of n−1. Figure 6
shows the result of numerically evaluating the appropriate
determinant for various values of δ, demonstrating that in
the nonequilibrium steady state, the exponential decay in the
ground state is replaced again by purely algebraic decay of the
form n−1. As in the previous case, the odd correlations vanish
and the even correlations split into two branches with different
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10-1

FIG. 6. Absolute value of correlation function Cxx (n) computed
in the nonequilibrium steady state of Eq. (35) for various values of
δ. The correlations are zero for odd n, and these values are omitted
from the plot.

amplitudes for n
2 even and n

2 odd,

Cxx
NESS(n) ∼

[
A′(δ) + B′(δ) cos

(πn

4

)]
cos
(πn

2

)1

n
.

(92)

To summarize the results for the dimerized chain, we find
correlations which are virtually identical to those found in the
XY chain with staggered magnetic field. The distinguishing
characteristic of both models is an energy gap which opens
at k = ±π

2 , resulting in a doubling of the unit cell and cor-
responding reduction in the first Brillouin zone. It appears
that this reduction in size of the Brillouin zone, which is
mathematically the root cause of an enhanced power law, is
intimately related to the stronger correlations appearing in the
NESS compared to the ground state.

C. Quench from ground state of XY model

The results in the previous session warrant some fur-
ther investigation into the models considered to understand
how generic the power-law correlations are after a quench
into gapped phases. Here we explore quenches beginning
from the spatially homogeneous ground state of the isotropic
XY model without a magnetization domain wall. Again,
we find similar behavior when either a staggered magnetic
field or dimerization term is switched on, but interestingly
the power-law correlations do not emerge. Except where
explicitly indicated, similar results are obtained for both
the staggered magnetic field and dimerized model. Conse-
quently, results are presented only for the staggered mag-
netic field. Let us consider the ground state of the XY
model, which is obtained from Eq. (7) by setting m = 0.
In this case, the model is diagonalized by simple Fourier
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transform,

Ĥ0 = −J

2

∑
j

[c†
j c j+1 + c†

j+1c j] (93)

= −
∑

k

J cos kc†
kck, (94)

so that the ground state |ϕ0〉 is composed of all negative-
energy states,

|ϕ0〉 =
∏

|k|< π
2

c†
k |0〉. (95)

Beginning with the system in the state |ϕ0〉, time evolution
takes place under Ĥs given by Eq. (7). Starting from Eq. (53)
and using

〈ϕ0|c†
kck′ |ϕ0〉 = δkk′�

(π

2
− |k|

)
, (96)

〈ϕ0|c†
k+π

ck′+π |ϕ0〉 = 0, (97)

we find

〈c†
j (t )c j+n(t )〉 =

∫ π
2

− π
2

dk

2π
eikn{| fkt |2

+(−1)n|gkt |2+(−1) j[ fkt g
∗
kt +(−1)n f ∗

kt gkt ]}.
(98)

The long-time limit can be taken directly, and the terms can be
arranged into a single integral over k from k = −π to k = π .
Alternatively, one may begin from Eq. (B11) and take the limit
k+

F = k−
F = π

2 . In either case, we find

lim
t→∞〈c†

j (t )c j+n(t )〉 = 〈c†
j c j+n〉NESS (99)

=
∫ π

−π

d p

2π
e−ipnG( j)

hom.(p), (100)

where

G( j)
hom.(p) = 1

2
+ 1

2
[cos θp − (−1) j sin θp]| cos θp| (101)

= 1

2
+ 1

2

cos k − (−1) j m̃√
cos2 k + m̃2

| cos k|. (102)

The magnetization at long times follows from 〈Ŝz
j〉 = 1

2 〈BjAj〉
and can be computed exactly,

〈
Ŝz

j

〉
NESS = − (−1) j m̃

π
√

1 + m̃2
ln

[√
1 + m̃2 + 1

m̃

]
, (103)

which exhibits a staggered pattern with an amplitude that is
not monotonic in m̃, as shown in Fig. 7. The peak amplitude
occurs for m̃ = m̃∗, where m̃∗ ≈ 0.6627 satisfies

ln

[√
1 + m̃2 + 1

m̃

]
=
√

1 + m̃2. (104)

Similar such nonmonotonic behavior of observables has
been found after gapless-to-gapped quenches in a variety of
models [73], with a careful investigation of the evolution
of correlation functions suggesting that this robust behavior
arises from “freezing” of the light cone in these systems.
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FIG. 7. Magnitude of staggered magnetization as function of m̃
in nonequilibrium steady state when initial state is the (spatially
homogeneous) ground state of the isotropic XY model.

In the absence of a particle density imbalance provided by
the domain-wall initial state, the current vanishes. However,
the correlation functions are more interesting. By expanding
Eq. (102) in powers of 1

n , one finds the asymptotic behavior of
the correlation function for large n → ∞ given by

C̃zz
NESS(n) ∼

{
1

π2m̃2n4 (n even),
4

π2m̃4n6 (n odd),
(105)

where C̃zz(n) is the “connected” correlation function in
which the product of magnetizations is subtracted, Czz(n) =
〈Ŝz

j〉〈Ŝz
j+n〉 + C̃zz(n). Thus, the longitudinal correlation func-

tion decays as a power law. Interestingly, this n−6 power
law has been obtained previously in the continuum limit of
this setup [59]. In that work, the corresponding “mass term”
sine-Gordon model at the solvable Luther-Emery point was
suddenly activated, resulting in similar power-law decay of
the corresponding two-point correlation functions.

Despite the power-law decay in the longitudinal correla-
tions, the transverse correlations still show exponential decay.
Using Bj = c†

j − c j and Aj = c†
j + c j , one finds

lim
t→∞〈Aj (t )Aj+n(t )〉 = δn=0, (106)

lim
t→∞〈Bj (t )Aj+n(t )〉 =

∫ π

−π

dk

2π
eikn[cos θk

− (−1) j sin θk]| cos θk|, (107)

with θk defined by Eq. (11). One observes that Eqs. (106) and
(107) are formally similar to the equilibrium result in Eqs. (16)
and (17) aside from the additional factor of | cos θk| present in
Eq. (107). As depicted in Fig. 8, the decay of the correlation
function is exponential with some weak oscillations present
in the decay. These oscillations are more easily observed by
computing the ratio of the nonequilibrium correlation function
to its value in the ground state of the gapped model [cf.
Eq. (7)] for a particular value of m̃, as shown in the inset.
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FIG. 8. (a) Correlation function Cxx
NESS(n) computed in the

nonequilibrium steady state after a quench from the ground state of
the XY model for various values of m̃ = m

J . (b) Ratio of correlation
Cxx

NESS(n) in nonequilibrium steady state to its value in the ground
state of Eq. (7) shows subleading corrections to purely exponential
decay of the ground state.

One observes that there are also weak, subleading corrections
to the clean exponential decay which occurs in the ground
state.

The quench from the ground state of the gapless XY model
to the gapped model in Eq. (7) most closely resembles the
setup in Ref. [56] in which a quench from the gapless phase
to the gapped phase of a similar model was investigated.
There it was found that the correlation function decayed
algebraically Cxx

NESS(n) ∼ n− 1
2 . This stark contrast in behavior

of correlations is likely attributable to several differences
between the model presented here and the model investigated
in Ref. [56]. First, we employ a constant “mass term” pro-
portional to m whereas Rieger et al. employ a staggered field
in which the strength satisfies a self-consistency condition.
Thus a quench from the gapless (m = 0) phase to the gapped
phase leads to dynamics of the form m → m(t ) in which
the instantaneous mass gap is determined by self-consistency.
Such dynamics are entirely absent from the model considered
here. Additionally, a constant magnetic field in the z direction
is also employed, leading to another adjustable parameter
which can be used by Rieger et al. to explore a more complex
phase diagram than is needed to describe the model in the
present work. While we work exclusively with h = 0, the
algebraic decay of Cxx

NESS(n) observed in Ref. [56] was found
with h �= 0 before and after the quench. While Fig. 8 does
show some evidence of weak oscillations in the correlations,
Ref. [56] finds that the even and odd correlations decay with
different amplitudes in a manner qualitatively similar to what
we have found for the domain-wall initial state in which the
correlations vanish for odd n and split into separate branches
for n

2 even or odd. In the case of the domain wall, power-law
correlations do persist in the transverse correlation function
but with an exponent which is double its value in the ground
state of the XY model. If the final Hamiltonian is instead
taken to be Eq. (35) corresponding to an energy gap provided
by dimerized hopping instead of a staggered magnetic field,
similar results are recovered. In addition to the exponential
decay in the transverse correlation function, we find power-

law decay in the longitudinal correlation function,

Czz
NESS(n) ∼

{
0 (n even),

− 1
π2δ2n4 (n odd).

(108)

In this section, we have computed the long-time limits of
observables when the initial, domain-wall magnetization pro-
file is replaced by the ground state of the isotropic XY
model. The quench simply consists of suddenly switching
on the term corresponding to an energy gap, and we find
relaxation of Cxx

NESS(n) to exponential decay. However, the
longitudinal correlation function Czz

NESS(n) still retains power-
law decay. There is some evidence in the literature of power-
law decay of longitudinal correlations being more robust
than in transverse correlations in domain-wall initial states in
which the individual “halves” of the system are initially held
at different nonzero temperatures [42,43]. The domain-wall
magnetization profile investigated in this work is formally a
zero-temperature state with the spatial inhomogeneity created
by a spatially varying magnetic field, and both transverse and
longitudinal correlation functions exhibit power-law decay.

The domain-wall magnetization profile is a highly excited
initial state, so it is not surprising that power-law decays
survive in the presence of an energy gap. The presence of
a gap can be expected to only affect the qualitative nature
of correlation decay in the ground state or other low-energy
settings. However, the ground state of the XY model is
also a highly excited state with respect to the Hamiltonian
generating time evolution in both cases considered. Taking
the staggered field model as an example, we may examine
the quasiparticle number nk ≡ 〈γ †

k γk〉 in the initial state using
Eq. (8),

nk = cos2 θk

2
〈c†

kck〉 + sin2 θk

2
〈c†

k+π
ck+π 〉, (109)

nk+π = sin2 θk

2
〈c†

kck〉 + cos2 θk

2
〈c†

k+π
ck+π 〉. (110)

For |k| < π
2 , Eqs. (109) and (110) serve to define the quasi-

particle occupation numbers for all modes. Using 〈c†
kck〉 = 1

and 〈c†
k+π

ck+π 〉 = 0 for the ground state of the XY model, one
finds

nk → 1

4

(
1 + cos k√

cos2 +m̃2

)
, (111)

which is valid for all k ∈ (−π, π ). The distribution described
by Eq. (111) is smooth compared to the zero-temperature
Fermi sea in the ground state, n(0)

k = �( π
2 − |k|). The occu-

pation number is plotted in Fig. 9 for several values of m̃
as a function of k and also as a function of quasiparticle
energy, with εk =

√
(J cos k)2 + m2. One finds that despite the

presence of a gap, high-energy modes in the upper band are
already populated in the initial state except at m̃ = 0 where
the gap vanishes.

The examination of nk presented here refers explicitly to
the homogeneous ground state of the XY model used as
the initial state for dynamics generated by Ĥs in Eq. (3).
As the operator n̂k = γ

†
k γk commutes with Ĥs, these mode

occupations are conserved and play an important role in the
formation of the nonequilibrium steady state. The smoothing
of the occupation function in Fig. 9 resembles qualitatively
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FIG. 9. (a) Occupation number nk as a function of k for homoge-
neous initial state. (b) Occupation number nk as a function of mode
energy εk for homogeneous initial state. Viewing nk as an explicit
function of k shows how nonzero m̃ mimics a finite temperature by
smoothing out the step function in the zero-temperature Fermi sea.
The presence of the energy gap is evident when nk is viewed as a
function of mode energy, εk .

the smoothing that occurs in equilibrium in the presence of
a finite temperature. Repackaging this distribution in terms
of an effective temperature is rather speculative, as equating
Eq. (111) to a Fermi-Dirac distribution with formal “tempera-
ture” T (k) would introduce a separate temperature for each
mode k. Such a distribution is quite different from that of
thermal equilibrium in which a single temperature is sufficient
to capture the entire distribution.

The results in this section emphasize that in addition to the
properties of the Hamiltonian which generates the time evolu-
tion, the details of the initial state are extremely important to
the nature of the nonequilibrium steady state which emerges
at long times. The main result of this section is that the
persistence of power-law decay in the transverse correlation
function appears to be intimately connected to the inhomoge-
neous, fully-polarized magnetization profile in the initial state.
By simply removing the spatial inhomogeneity, the transverse
correlation function relaxes to exponential decay.

D. Comparison to anisotropic XY model

The most notable result of this work is the persistence
of power-law correlations in the long-time limit of the func-
tion Cxx

NESS(n) despite the existence of an energy gap in the
spectrum of the final Hamiltonian. As discussed above, the
presence of an energy gap does not necessarily imply that
correlation functions away from equilibrium should decay
exponentially with distance. However, one does note that
the power-law decay of the transverse correlation function
changed to exponential decay when the domain-wall magne-
tization profile was replaced by the ground state of the XY
model. Here the current-carrying NESS was replaced by a
steady state with no spin current. A natural question is how
generic these power-law correlations are for current-carrying
nonequilibrium steady states in gapped systems.

In this brief section, we note a simple situation in which
exponential decay of correlations appears in spite of the
existence of a spin current. Consider the anisotropic

XY model,

Ĥxy = −J
∑

j

[
(1 + γ )Ŝx

j Ŝ
x
j+1 + (1 − γ )Ŝy

j Ŝ
y
j+1

]+ h
∑

j

Ŝz
j

(112)

= −J

2

∑
j

[c†
j c j+1 + c†

j+1c j + γ c†
j c

†
j+1 + γ c j+1c j]

+ h
∑

j

c†
j c j + constant. (113)

In Ref. [46], time evolution of observables in this model was
considered at a critical point γ = h

J = 1 where the energy
gap vanishes for initial states with a domain-wall magneti-
zation profile. It was shown that at long times, Cxx

NESS(n) ∼
M cos ( πn

2 )n− 1
4 2−n as n → ∞ for some n-independent con-

stant M, despite the Hamiltonian generating time evolution
being critical (i.e., having no energy gap). The correlation
function in the ground state of the anisotropic XY model at
this critical point is Cxx

0 (n) ∼ M0n− 1
4 , so that the nonequilib-

rium correlations decay much more rapidly with increasing
distance than in the ground state. In the present work, we
have the opposite situation in which power-law correlations
are persisting in spite of the presence of an energy gap.

The reason for exponential decay in the XY model at the
critical transverse-Ising point is likely due to the extreme
mixing of quasiparticles and free-fermion operators through
a Bogoliubov angle similar to Eqs. (8) and (36) but which
mixes creation and destruction operators ηk = ukck + vkc†

v

rather than only mixing creation or destruction operators. The
ground state respects this mixing, containing a well-defined
number of η quasiparticles. However, the domain-wall state
will have a well-defined number of c particles but not a fixed
number of η particles.

To explore how this result is modified as we move away
from the critical point, we can use Eq. (117) from Ref. [46],

q̃(k) = sgn(k)
∣∣ cos k − h

J

∣∣√(
cos k − h

J

)2 + γ 2 sin2 k
, (114)

where Cxx
NESS(n) = 1

4 detQ is used to obtain the correlations for
general γ in which the system is gapped. Here Q is a legiti-
mate Toeplitz matrix, so the Fisher-Hartwig conjecture should
capture the n → ∞ asymptotics. The gap in the anisotropic
XY model does not induce a doubling of the unit cell, so
this energy gap is of a different qualitative nature than those
considered in the present work.

Applying the Fisher-Hartwig conjecture in Eq. (28), one
finds that at long times

Cxx
NESS(n) ∼ F (γ ) cos

(πn

2

)
(1 + γ )−n (as n → ∞),

(115)

where D(γ ) is a (γ -dependent) constant. Thus, unlike the
cases considered in the present work, the correlations decay
exponentially but with the same oscillatory prefactor that is
typically associated with the initial state |�0〉. Equation (115)
is a particularly simple example of correlations which decay
exponentially in a current-carrying steady state, suggesting
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that there is no rigorous link between the presence of a current
and power-law correlations in gapped models.

IV. DISCUSSION

In this work, we computed the long-time behavior of
observables in a gapped spin chain after a sudden quench
which turns on the energy gap. Our main result is the existence
of numerous examples of power-law correlations which exist
in a gapped spin chain far from equilibrium. The ground-state
correlations of the gapped spin chain generically decay expo-
nentially with distance. However, as we have demonstrated,
such power-law correlations can persist in the infinite-time
limit when the system begins in a spatially inhomogeneous
state which is not an eigenstate of the final Hamiltonian. The
two mechanisms for generating an energy gap which have
been considered are the application of a staggered magnetic
field of constant amplitude m and the dimerization of the XY
coupling strength J . In both cases, the spin chain Hamiltonian
maps to a system of free fermions so that the dynamics may
be investigated exactly.

At long times after the quench, both spin-spin correlations
decay algebraically rather than exponentially. Interestingly,
the domain-wall configuration appears to be quite instrumen-
tal in generating the quasi-long-range order, as the transverse
correlation function decays exponentially when the ground
state of the XY model is used as the initial state instead of
the domain-wall state. The longitudinal correlation function,
however, retains power-law decay at long times for both types
of initial states. It is also interesting to note that the trans-
verse correlation function exhibits exponential decay when
the quench is performed with the anisotropic (gapped) XY
model as the final Hamiltonian and the initial state possesses
a domain-wall magnetization profile. The energy gap in the
anisotropic XY model arises from a global difference between
couplings in the x and y directions. However, both the stag-
gered magnetic field and dimerized hopping break the trans-
lation invariance of the system with periodic perturbations to
the homogeneous system at the scale of the lattice, doubling
the size of the effective unit cell. It is hypothesized that this
doubling of the unit cell is closely related to the power-law
decay in the transverse correlation function.

All systems considered map to free fermions. A natural
question is how robust the results of this paper are with
respect to interactions or even weak, integrability-breaking
perturbations which are often present in experimental settings.
Finely tuned experiments with cold atoms have been able
to verify similar power-law decay and oscillations within
correlation functions [9] computed in noninteracting models.
Accounting for nonintegrable interactions by exact diagonal-
ization is difficult in practice, where only modest system sizes
can be handled [48]. Compounding this limitation, the energy
gap leads to slower motion of the domain wall as shown in
Fig. 3 so that finite-size effects can influence the results long
before the nonequilibrium steady state is reached.

Many of the exact results regarding the transverse cor-
relation function Cxx(x) both in and away from equilibrium
rely on a careful application of the Fisher-Hartwig conjec-
ture, which allows one to extract the asymptotic behavior
of Toeplitz matrices as n → ∞ provided certain conditions

are met by the generating function. In this work, we have
encountered systems which lead to the evaluation of deter-
minants of matrices which are not of the Toeplitz form, so
the Fisher-Hartwig conjecture does not apply. Interestingly,
we have been able to obtain partial information about the
transverse correlations by identifying a generalized generating
function. However, the results are not consistently accurate.
For example, the predicted exponential decay factor does not
appear to vanish away from equilibrium despite the transverse
correlation function decaying as a power law. It is hoped that
the results in this work can serve as a test bed for possible
generalizations of the Fisher-Hartwig conjecture to matrices
with structure which are not exactly of the Toeplitz form.

One potentially promising direction for investigating
quench dynamics in the presence of interactions is the appli-
cation of field-theoretic methods in the continuum limit. Tech-
niques such as bosonization, while rigorously proven to cap-
ture the low-energy physics of lattice models, are somewhat
uncontrolled approximations away from equilibrium where
operators irrelevant to low-energy behavior might strongly
influence the dynamics [53]. The calculation of nontrivial
correlations in exactly solvable models, as presented in this
work, provides a benchmark which can be used to calibrate
approximate techniques for handling interactions in the con-
tinuum limit.

APPENDIX A: NUMERICAL IMPLEMENTATION OF
QUENCH PROTOCOL FOR QUADRATIC HAMILTONIANS

In this section we briefly outline a numerical method for
investigating quench dynamics when both the initial and final
Hamiltonians are quadratic (i.e., noninteracting) in terms of
fermionic quasiparticles. Let us consider the time-dependent
Hamiltonian

Ĥ (t ) =
{

Ĥ0 (t < 0),
Ĥf (t � 0).

(A1)

At some time t � 0 the system settles into the ground state
|�0〉 of Ĥ0. As quadratic models, we may diagonalize the
initial and final Hamiltonians in terms of fermionic quasipar-
ticles

Ĥ0 =
∑

n

λnγ
†
n γn,

Ĥf =
∑

n

εnη
†
nηn, (A2)

so that the initial state may be written as

|�0〉 =
∏
λn�0

γ †
n |0〉. (A3)

For an observable such as Ôi j = c†
i c j , one generally wishes to

compute Oi j (t ) = 〈�(t )|Ô|�(t )〉. It is helpful to employ the
Heisenberg picture of time evolution so that

Oi j (t ) = 〈�0|Ô(t )|�0〉, (A4)

where Ôi j (t ) = eiĤt Ôi je−iĤt with Ĥ = Ĥf for t � 0. The
strategy is to write Ôi j in terms of some combination of
the γ †

n γm operators with the coefficients absorbing the time
dependence. In terms of the γ operators, the expectation value
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with respect to the initial state can be computed easily as in the
previous section. However, we first have to deal with the time
evolution operators e±iĤt by changing to the η basis, since
these diagonalize Ĥf . We may assume linear transformations
of the form

c j =
∑

m

Zjmηm =
∑

m

Vjmγm,

c†
j =

∑
m

Z∗
jmη†

m =
∑

m

V ∗
jmγ †

m, (A5)

which provides a basis in which Ĥf is represented by a
diagonal matrix D = diag(εn):

Ĥf = (c†
1 · · · c†

N )ZDZ

⎛
⎜⎝

c1
...

cN

⎞
⎟⎠ (A6)

=
∑

n

εnη
†
nηn. (A7)

Using this transformation,

Ôi j (t ) = eiĤf t c†
i c je

−iĤ f t

= eiĤf t

[∑
m

Z∗
imη†

m

]
[Zjnηn]e−iĤ f t . (A8)

Upon acting on η†
m or ηn, the operator Ĥf returns only the

corresponding eigenvalue, so

Ôi j (t ) =
∑
m,n

eiεmt [Z∗
imη†

m][Zjnηn]e−iεnt . (A9)

One can transform to the γ basis to calculate the expectation
value. This is most straightforwardly accomplished by first
transforming back to the c operators and then using Eqs. (A5)
to transform to the η basis:

Ôi j (t ) =
∑
m,n

eiεmt [Z∗
imη†

m][Zjnηn]e−iεnt

=
∑
k,l

U ∗
ik (t )Ujl (t )γ †

k γl . (A10)

Here the matrix Ujl (t ) is defined by the “interior” sums
over the transformation matrices and phase factors. The sum-
mations lay out the explicit form for the following matrix
multiplication:

U (t ) = Z�Z†V, (A11)

where

� =

⎛
⎜⎜⎜⎜⎝

e−iε1t 0 0 · · · 0
0 e−iε2t 0 · · · 0
0 0 e−iε3t · · · 0
...

...
...

. . .
...

0 0 0 · · · e−iεN t

⎞
⎟⎟⎟⎟⎠. (A12)

Since U (t ) is unitary, we have

U †(t ) = V †Z�†Z†, (A13)

and [U †]mn = U ∗
nm. Having computed U (t ), the time-

dependent expectation value is

Oi j (t ) = 〈�0|
∑

k

U ∗
ik (t )γ †

k

∑
l

Ujl (t )γl |�0〉

=
∑
k,l

U ∗
ik (t )Ujl (t )〈�0|γ †

k γl |�0〉

=
∑
λk�0

U ∗
ik (t )Ujk (t ), (A14)

where the sum extends only over values of k for which the
initial Hamiltonian’s eigenvalues are not positive (λk � 0).
Local observables such as magnetization and spin current can
be written as a sum of one or two terms in the form of Eq. (A4)
and may be computed directly. The function Czz(n, t ), given
by Eq. (68), is also a compact expression in terms of the basic
contractions. The general form for Cxx(n, t ) is a Pfaffian [17],
which may be computed directly from a matrix populated by
entries of the form in Eq. (A4) using standard libraries [74].

APPENDIX B: GENERAL DOMAIN WALLS

Suppose we consider an initial state |�m0〉 constructed by
joining two semi-infinite subsystems of uniform magnetiza-
tion ±m0 where 0 � m0 � 1

2 , where m0 → 0 corresponds to
a homogeneous system with zero magnetization and m0 → 1

2
corresponds to the domain walls considered in the rest of this
paper:

lim
m0→ 1

2

|�m0〉 = |�0〉 (B1)

= | · · · ↑↑↑↓↓↓ · · · 〉. (B2)

Explicitly, |�m0〉 = |�L
0 〉 ⊗ |�R

0 〉, where

∣∣�L
0

〉 = k+
F∏

k=−k+
F

L†
k |0〉, ∣∣�R

0

〉 = k−
F∏

k=−k−
F

R†
k |0〉, (B3)

where the L†
k (R†

k) are momentum-basis creation operators like
c†

k which act only on the left (right) side of the system. Here
k±

F = π
2 ± πm0 represent the effective Fermi momenta on the

two homogeneous halves of the system. We can write [50]

〈
�m0 |c†

p+ q
2
cp− q

2
|�m0

〉 	 [ i�(k−
F − |p|)

q + i0+ + −i�(k+
F − |p|)

q − i0+

]
.

(B4)

Supposing such a state evolves under time evolution gen-
erated by the isotropic XY model with a staggered mag-
netic field [Eq. (7)], the time evolution of position-space
operators is given by Eq. (81). One may write the
time-dependent expectation value of the basic contraction

033104-15



JARRETT L. LANCASTER AND JOSEPH P. GODOY PHYSICAL REVIEW RESEARCH 1, 033104 (2019)

as

〈c†
j (t )c j+n(t )〉 =

∫ π
2

− π
2

d p

2π

∫ π
2

− π
2

dq

2π
e−ipn+iq( j+ n

2 )

× {[ f ∗
p+ q

2 t fp− q
2 t + (−1)mg∗

p+ q
2 t fp− q

2 t

+ (−1)n f ∗
p+ q

2 t gp− q
2 t + (−1)m+ng∗

p+ q
2 t gp− q

2 t

]
×〈c†

p+ q
2
cp− q

2
〉 + [(−1)m+n fp+ q

2 t f ∗
p− q

2 t

+ (−1)ng∗
p+ q

2 t f ∗
p− q

2 t + (−1)m fp+ q
2 t gp− q

2 t

+ g∗
p+ q

2 t gp− q
2 t

]〈c†
p+π+ q

2
cp+π− q

2
〉}. (B5)

We sketch the evaluation of a single term of Eq. (B5) in the
long-time limit, where the integral over q is dominated by
contributions with q ∼ 0. In this limit the phase eiq( j+ n

2 ) may
be replaced by unity, and

f ∗
p+ q

2 t fp− q
2 t 	 1

2 (1 + cos2 θp) cos(vpqt ) + i cos θp sin(vpqt ),

(B6)

where terms have been dropped which oscillate rapidly as
t → ∞. Here vp ≡ ∂pλp and λp =

√
(J cos p)2 + m2. Chang-

ing variables to u = vpqt and taking t → ∞, the explicit
representation of the initial-state correlations in Eq. (B4) may
be used to write∫ π

2

− π
2

dq

2π
f ∗

p+ q
2 t fp− q

2 t 〈c†
p+ q

2
cp− q

2
〉

=
∫ ∞

−∞

du

2π

[
1

2
(1 + cos2 θp) cos u + i cos θp sin u

]

×
[

i�(k−
F − |p|)

u + i0+sgn(vp)
+ −i�(k+

F − |p|)
u − i0+sgn(vp)

]
(B7)

= 1

4
(1 + cos2 θp)[�(k+

F − |p|) + �(k−
F − |p|)]

+ 1

2
sgn(p)[�(k+

F − |p|) − �(k−
F − |p|)]. (B8)

To obtain the last line, we employ the complex expo-
nential representation of the trigonometric functions [e.g.,

cos u = 1
2 (eiu + e−iu)] and evaluate each term as a contour

integral which must be closed on either the upper or lower half
of the plane, resulting in one of the two poles being enclosed.
The remaining terms in Eq. (B5) are evaluated similarly,
giving

lim
t→∞〈c†

j (t )c j+n(t )〉 = 〈c†
j c j+n〉NESS (B9)

=
∫ π

−π

d p

2π
e−ipnG( j)

m0
(p), (B10)

where

G( j)
m0

(p) = 1
4 [Sm0 (p) + Sm0 (p + π )]

+ 1
4 [cos θp − (−1) j sin θp] cos θp

× [Sm0 (p) − Sm0 (p + π )] + 1
2 {cos θpDm0 (p)

− 1
2 (−1) j sin θp[Dm0 (p) + Dm0 (p + π )]}σ (p),

(B11)
where Sm0 (p) = �(k+

F − |p|(−π,π ) ) + �(k−
F − |p|(−π,π ) ),

Dm0 (p) = �(k+
F − |p|(−π,π ) ) − �(k−

F − |p|(−π,π ) ), and σ (p)
is defined in Eq. (57). The function | · |(−π,π ) evaluates
the absolute value after mapping the argument to the
interval (−π, π ). For example, |−π

4 |(−π,π ) = π
4 , while

|π
4 + π |(−π,π ) = |− 3π

4 | = 3π
4 .

An identical procedure applied to the dimerized XY model
yields

G( j)
� m0

(p) = 1

4
[Sm0 (p) + Sm0 (p + π )]

+ 1

4
[cos φp − i(−1) j sin φp] cos φp

× [Sm0 (p) − Sm0 (p + π )] + 1

2
{cos φpDm0 (p)

− i

2
(−1) j sin φp[Dm0 (p) + Dm0 (p + π )]}σ (p).

(B12)

In the limit m0 → 1
2 , we have k+

F → π and k−
F → 0 so that

S 1
2
(p) = D 1

2
(p) = 1, and Eqs. (B11) and (B12) reduce to

Eqs. (56) and (86) in the main text, respectively.
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