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Interplay of spin and mass superfluidity in antiferromagnetic spin-1
Bose-Einstein condensates and bicirculation vortices
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This paper investigates the coexistence and interplay of spin and mass superfluidity in antiferromagnetic
spin-1 Bose-Einstein condensates (BEC). The hydrodynamic theory describes the spin degree of freedom by
equations similar to the Landau-Lifshitz-Gilbert theory for bipartite antiferromagnetic insulators. The variables
in the spin space are two subspins with absolute value h̄/2, which play the role of two sublattice spins
in the antiferromagnetic insulators. As well as in bipartite antiferromagnetic insulators, in antiferromagnetic
spin-1 BEC there are two spin-wave modes: One is a gapless Goldstone mode and the other is gapped. The
Landau criterion shows that in limit of small total spin (two subspins are nearly antiparallel), the instability of
supercurrents starts from the gapped mode. In the opposite limit of large total spin (two subspins are nearly
parallel), the gapless modes become unstable earlier than the gapped one. Mass and spin supercurrents decay
via phase slips, when vortices cross streamlines of the supercurrent. The vortices participating in phase slips
are nonsingular bicirculation vortices. They are characterized by two topological charges, which are winding
numbers describing circulations of two angles around the vortex axis. The winding numbers can be half-integers.
A particular example of a half-integer vortex is a half-quantum vortex with the superfluid velocity circulation
h/2m. However, the superfluid velocity circulation is not a topological charge, and in general the quantum of
this circulation can be continuously tuned from 0 to h/2m.
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I. INTRODUCTION

Spin superfluidity in magnetically ordered systems has
been discussed for several decades [1–12]. The phenomenon
is based on the analogy of special cases of the Landau-
Lifshitz-Gilbert (LLG) theory in magnetism and superfluid
hydrodynamics. While in a superfluid mass (charge in super-
conductors) can be transported by a current proportional to
the gradient of the phase of the macroscopic wave function, in
a magnetically ordered medium there are spin currents which
are proportional to the gradient of the spin phase. The spin
phase is defined as the angle of rotation around some axis
in the spin space. Strictly speaking, this analogy is complete
only if this axis is a symmetry axis in the spin space. Then,
according to Noether’s theorem, the spin component along
this axis is conserved. However, possible violation of the spin
conservation law usually is rather weak because it is related
to relativistically small (inversely proportional to the speed
of light) processes of spin-orbit interaction. In fact, the LLG
theory itself is based on the assumption of weak spin-orbit
interaction [13].
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The analogy of the LLG theory with the theory of super-
fluidity suggests a new useful language for the description of
phenomena in magnetism, but not a new phenomenon. During
the whole period of spin superfluidity investigations and up to
now there have been disputes about the definition what spin
superfluidity is. There is a school of thinking that the existence
of spin current proportional to the spin phase (rotation angle)
means spin superfluidity [5]. There is no law which forbids
the use of this definition, but then spin superfluidity becomes
a trivial ubiquitous phenomenon existing in any magnetically
ordered medium. A spin current proportional to the spin phase
gradient emerges in any domain wall and in any spin wave.
Under this broad definition of spin superfluidity, spin super-
fluidity was detected experimentally beyond reasonable doubt
in experiments of the middle of the 20th century detecting
domain walls and spin waves.

We prefer to define the term superfluidity using its original
meaning known from the times of Kamerlingh Onnes and
Kapitza: transport of some physical quantity (mass, charge,
or spin) over macroscopic distances without essential dis-
sipation. This requires a constant or slowly varying phase
gradient at macroscopic scale with the total phase variation
along the macroscopic sample equal to 2π multiplied by a
very large number. In examples of domain walls and spin
waves, this definitely does not take place. Gradients oscillate
in space or time or both. The total phase variation is on
the order of π or much less. Currents transport spin over
distances not more than the domain wall thickness, or the
spin wavelength. Although such currents are also sometimes
called supercurrents, we use the term supercurrent only in the
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case of macroscopic supercurrent persistent at large spatial
and temporal scales.

The possibility of supercurrents is conditioned by the spe-
cial topology of the magnetic order parameter space (vacuum
manifold). Namely, this space must have the topology of the
circumference on the plane. In magnetically ordered systems
this requires the presence of easy-plane uniaxial anisotropy.
It is possible also in nonequilibrium coherent precession
states, when spin pumping supports coherent spin precession
with a fixed spin component along the magnetic field (the
axis z). Such nonequilibrium coherent precession states were
considered as a manifestation of magnon BEC [14,15]. These
states were experimentally investigated in the B phase of
superfluid 3He [3] and in YIG films [16]. The resemblance
and distinction of coherent precession states with BEC and
lasers were discussed in Ref. [4].

For assessment of the possibility of observation of long-
distance spin transport by spin supercurrents one should con-
sider the Landau criterion, which checks the stability of super-
current states with respect to weak excitations of all collective
modes. Although the Landau criterion indicates a threshold
for the current state instability, it reveals nothing about how
the instability develops. The decay of the supercurrent is
possible only via phase slips. In a phase slip event a vortex
crosses current streamlines, decreasing the phase difference
along streamlines. Below some critical value of supercurrent,
phase slips are suppressed by energetic barriers. The critical
value of the supercurrent at which barriers vanish is of the
same order as those estimated from the Landau criterion. This
leads to the conclusion that the instability predicted by the
Landau criterion is a precursor of the avalanche of phase slips
not suppressed by any activation barrier.

Recently, investigations of spin superfluidity were ex-
tended to spin-1 BEC, where spin and mass superfluidity
coexist and interplay. This interplay leads to a number of
new nontrivial features of the phenomenon of superfluidity.
Investigations focused on the ferromagnetic BEC [17–19].
The present paper extends the analysis to all states of spin-1
BEC, either ferromagnetic or antiferromagnetic.

The first step of the analysis was reformulation of hy-
drodynamics of spin-1 BEC, presenting it in a form more
suitable for the goals of this paper. It was already known
that the hydrodynamics of ferromagnetic spin-1 BEC is de-
scribed by equations of spin motion similar to those in
the LLG theory in magnetism but taking into account the
possibility of superfluid motion as a whole [17–19]. This
allowed us to use some results known from investigations
of spin superfluidity in magnetically ordered solids. In the
present paper we demonstrate that the hydrodynamics of the
antiferromagnetic spin-1 BEC is similar to the LLG theory
for a bipartite antiferromagnet with two sublattices, each of
which is characterized by a vector of magnetization (spin).
Despite translational invariance not being broken and there
being no sublattices in the spin-1 BEC, one can introduce two
spins of absolute value h̄/2, which can vary their direction
in space and time, but not their absolute values, similarly
to two sublattice magnetizations in the LLG theory for a
bipartite antiferromagnet. We call them subspins. Thus, the
results of the recent analysis of spin superfluidity in solid
antiferromagnets with localized spins [20] become relevant

for antiferromagnetic spin-1 BEC. In particular, like in solid
antiferromagnets, in the antiferromagnetic spin-1 BEC there
are two spin-wave modes: One is a Goldstone gapless mode
similar to that in the ferromagnetic BEC and the other has a
gap depending on the magnetic field. At weak magnetic fields
(the Zeeman energy is less than the spin-dependent interaction
energy) the Landau critical values are reached in the gapped
mode earlier than in the gapless one. At strong magnetic fields
close to the field at which spin polarization is completely
saturated along the magnetic field, the situation is opposite:
The gapless mode becomes unstable earlier than the gapped
one.

While in scalar superfluids the Landau critical velocities
for mass currents are scaled by the sound velocity and in
magnetically ordered media with localized spins critical ve-
locities for spin currents are scaled by the spin-wave velocity,
in the spin-1 BEC, where spin and mass superfluidity coexist,
critical velocities for both currents are determined by the
lesser of the sound and spin-wave velocity. Usually this is the
spin-wave velocity, and the analysis of the paper focuses on
the spin degree of freedom. Another remarkable outcome of
the interplay of mass and spin superfluidity is properties of
vortices participating in phase slips. In the multicomponent
spin-1 BEC, vortices are determined not by one but by two
winding numbers (topological charges). The two charges are
related to two gauge invariances: with respect to the global
phase of the wave function and with respect to the spin phase.
We call these vortices bicirculation vortices.

In the spin-1 BEC, like in other multicomponent superflu-
ids, the circulation of superfluid velocity is not a topological
charge anymore, and the superfluid velocity is not curl-free.
In single-component scalar superfluids, where the velocity
circulation is a topological charge, the velocity field around
the vortex is singular and diverges as 1/r, when the distance
r from the vortex axis goes to 0. The divergence in the energy
can be avoided only if the superfluid density vanishes at the
vortex axis. However, in the spin-1 BEC the singularity 1/r
can be compensated without suppression of the superfluid
density in the vortex core by a proper choice of the ratio
between two topological charges (winding numbers). Such
vortices are called nonsingular or continuous [21]. Normally,
the Landau critical gradients and the critical gradients for the
instability with respect to phase slip are of the order of the
inverse core radius. Therefore, the instability with respect to
phase slips starts earlier for nonsingular vortices because of
their larger core radius compared to singular vortices. The
existence of vortices with different ratios of two winding
numbers makes the decay of supercurrents more complicated.
There are vortices which are effective for relaxation of mass
supercurrents and those which are effective for relaxation of
spin supercurrents. For complete relaxation of all supercur-
rents to the ground state, at least two different types of vortices
must participate in phase slips.

In spin-1 BEC winding numbers of vortices can be not
only integers, but also half-integers. The known example of
half-integer vortices is the half-quantum vortex, which has
attracted a great deal of attention in the literature [22,23].
However, in the spin-1 BEC the “quantum” of velocity cir-
culation not only can be equal to the fundamental quantum
h/m or its half, but in fact can be continuously tuned by a
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magnetic field or by the intensity of spin pumping, which
supports the nonequilibrium coherent precession state with a
fixed z component of spin.

II. HYDRODYNAMICS FROM THE GROSS-PITAEVSKII
THEORY OF SPIN-1 BEC

The wave function of bosons with spin 1 is a three-
dimensional (3D) vector in the spin space. In the Cartesian
basis [23–25] the wave-function vector is

ψ =
⎛
⎝ψx

ψy

ψz

⎞
⎠, (1)

where

ψx = ψ+ − ψ−√
2

, ψy = i(ψ+ + ψ−)√
2

, ψz = −ψ0, (2)

with ψ± and ψ0 coefficients of the expansion of the wave
function in eigenfunctions of the spin projection on the quan-
tization axis (the axis z) with eigenvalues ±1 and 0.

The Gross-Pitaevskii equation for the wave-function
vector ψ,

ih̄
∂ψ

∂t
= δH

δψ∗ , (3)

is obtained by variation of the Lagrangian

L = ih̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− H(ψ,ψ∗) (4)

with respect to ψ∗. The complex-conjugate equation follows
from variation with respect to ψ. Here

δH
δψ∗ = ∂H

∂ψ∗ − ∇i
∂H

∇i∂ψ∗ (5)

is a functional derivative of the Hamiltonian

H = h̄2

2m
∇iψ

∗∇iψ + V |ψ|4
2

+ Vs(|ψ|4 − |ψ2|2)

2

− γ H · S|ψ|2, (6)

where γ is the gyromagnetic ratio, H is the magnetic field,
and V and Vs are amplitudes of spin-independent and spin-
dependent interaction of bosons, respectively. Spin-1 BEC is
ferromagnetic if Vs is negative and antiferromagnetic if Vs is
positive. The complex vector ψ determines the particle density
n = |ψ|2 of bosons with spin per particle

S = − ih̄[ψ∗ × ψ]

|ψ|2 (7)

and the superfluid velocity

vi = − ih̄

2m|ψ|2 (ψ∗∇iψ − ψ∇iψ
∗). (8)

The equation of the spin balance is

∂ (nSi )

∂t
+ ∇kJik = Gi, (9)

where the tensor

Jik = εist

(
ψ∗

s

∂H
∂∇kψt

+ ψs
∂H

∂∇kψ
∗
t

)
(10)

is the current of the ith spin component along the axis k and

Gi = εist

(
ψ∗

s

∂H
∂ψt

+ ∇kψ
∗
s

∂H
∂∇kψt

+ ψs
∂H
∂ψ∗

t
+ ∇kψs

∂H
∂∇kψ

∗
t

)
(11)

is the torque on the ith spin component, which vanishes if the
Hamiltonian is spherically symmetric in the spin space.

Now we perform the generalized Madelung transformation
presenting the wave-function vector as

ψ = ψ0ei�

(
cos

λ

2
d + i sin

λ

2
f
)

, (12)

where the real scalar ψ0 = √
n, the two real unit mutually or-

thogonal vectors d and f , and the two phase (angle) variables
� and λ are six parameters fully determining the complex 3D
vector ψ. Using the new hydrodynamical variables, the spin is

S = h̄ sin λ[d × f ] (13)

and the superfluid velocity is

vi = h̄

m

[
∇i� + sin λ

2
(d∇i f − f∇id )

]
. (14)

The two unit vectors d and f , together with the third unit
vector

s = S
S

= [d × f ], (15)

fully determine the quantum state for the ferromagnetic spin-1
BEC, when λ = π/2. States with 0 � λ < π/2 are antiferro-
magnetic states with the absolute value S of the total spin less
than its maximal value h̄ in the ferromagnetic state. The pure
antiferromagnetic state with zero total spin (λ = 0) is called
the polar phase [23].

The Hamiltonian (6) transforms to

H = mnv2

2
+ H0, (16)

where

H0 = nh̄2

2m

[
cos2 λ

2
∇d2 + sin2 λ

2
∇ f 2

− sin2 λ( f∇d )2 + ∇λ2

4

]

+ V n2

2
+ Vsn2 sin2 λ

2
− γ nh̄ sin λH · [d × f ] (17)

is the Hamiltonian in the coordinate frame moving with the
superfluid velocity v. The dynamical equations for our hydro-
dynamical variables follow from the nonlinear Schrödinger
equation (3):

h̄[�̇ + (v · ∇)�] = −δH0

δn
,

ṅ = 1

h̄

δH
δ�

= −1

h̄
∇ · ∂H

∂∇�
= −∇ · (nv), (18)

nh̄ cos λ[λ̇ + (v · ∇)λ] = −
(

f
δH0

δd
− d

δH0

δ f

)
, (19)
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nh̄[ḋ + (v · ∇)d] = f
cos λ

δH0

δλ
+ s

sin λ

(
s
δH
δ f

)
, (20)

nh̄[ ḟ + (v · ∇) f ] = − d
cos λ

δH0

δλ
− s

sin λ

(
s
δH
δd

)
. (21)

The continuity equation [the second equation in Eq. (18)]
takes into account that, because of gauge invariance,
the Hamiltonian depends on the gradient of � but not
on the phase � itself. The superfluid velocity is not curl-free
and the generalized Mermin-Ho relation is

∇ × v = h̄

2m
{cos λ[∇λ × (di∇ fi − fi∇di )]

+ sin λεi jksi[∇s j × ∇sk]}. (22)

In the ferromagnetic state (λ = π/2) this reduces to the
original Mermin-Ho relation [26].

We want to demonstrate the analogy of the spin-1 BEC
hydrodynamics with the LLG theory for bipartite antiferro-
magnet. The vector L = h̄ cos λd is an analog of the anti-

ferromagnetic vector (staggering magnetization) in the LLG
theory of a bipartite antiferromagnet. Continuing this analogy,
we may introduce the spins S1 and S2, which are similar to
spins of two sublattices of a bipartite antiferromagnet and
determine the antiferromagnetic vector L = S1 − S2 and the
total spin S = S1 + S2. The vectors L and S are orthogonal
to each other, and the absolute values of vectors S1 and S2 are
equal to S0 = h̄/2 and do not vary in space and time, similarly
to sublattice magnetizations in a bipartite antiferromagnet.

The spins S1 and S2 may replace λ, d, and f as hydrody-
namical variables. Then the canonical equations for the spin
degree of freedom become

n[Ṡi + (v · ∇)Si] = −
[

Si × δH0

δSi

]
, (23)

where i = 1, 2. Apart from the term proportional to v on the
left-hand side taking into account the superfluid motion as a
whole, Eq. (23) is exactly the LLG equation for a bipartite
antiferromagnet. The Hamiltonian H0 in Eq. (23) directly
follows from the Hamiltonian in the Gross-Pitaevskii theory:

H0 = n

2m

[
(∇S1 + ∇S2)2

2(1 + cos λ)
+ (∇S1 − ∇S2)2 +

(
1 − 2 cos2 λ

1 + cos λ
− 4 sin2 λ

)∇(S1 · S2)2

sin2 2λ
+ (S1∇S2 − S2∇S1)2

(1 + cos λ) cos λ

]

+ Vsn2(S1 + S2)2

2h̄2 − nγ H · (S1 + S2). (24)

In the LLG theory for localized spins they usually use the
Hamiltonian, which is a general quadratic form of gradients
∇S1 and ∇S2 with constant coefficients. In Eq. (24) the
coefficients depend on the angle λ, which depends on S1

and S2:

cos 2λ = −S1 · S2

S2
0

= −4(S1 · S2)

h̄2 . (25)

In polar angles determining directions of S1 and S2,

Six = S0 cos θi cos ϕi,

Siy = S0 cos θi sin ϕi, (26)

Siz = S0 sin θi,

Eq. (23) transforms to

cos θi[θ̇i + (v · ∇)θi] = − 1

nS0

δH0

δϕi
,

cos θi[ϕ̇i + (v · ∇)ϕi] = 1

nS0

δH0

δθi
. (27)

Of course, there are no lattices or sublattices in the spin-1
BEC, but this strong analogy with an antiferromagnet with
two spin sublattices means that the LLG theory remains valid
even if spins are delocalized and sublattices melt down. In
a bipartite antiferromagnet the angle λ is a canting angle
measuring deviation of sublattice spins from the strictly an-
tiparallel orientation in a pure antiferromagnetic state with
zero total spin. We will call spin vectors S1 and S2 subspins.

In cold-atom BEC the spin-independent interaction pro-
portional to V is much stronger than the spin-dependent one
proportional to Vs. According to Ho [24], the ratio |Vs|/V is

0.04 for 23Na and 0.01 for 97Ru. Correspondingly, the ratio of
the spin-wave velocity to the sound velocity proportional to√|Vs|/V is also small. In the further analysis this allows us to
ignore Eq. (18) describing motion of the superfluid as a whole
and to assume that the superfluid is incompressible. This does
not rule out the possibility of superfluid mass currents with
v �= 0, but the velocity must be divergence-free: ∇ · v = 0.
The stability of mass currents also can be investigated by
considering only the spin degree of freedom and ignoring the
mechanical degree of freedom. As was shown in Ref. [20]
for ferromagnetic spin-1 BEC and will be shown below for
antiferromagnetic spin-1 BEC, instability starts in the softest
mode, the spin mode in our case. So our further analysis
focuses on Eqs. (19)–(21) with the Hamiltonian (24).

III. COLLECTIVE MODES AND THE
LANDAU CRITERION

For further analysis it is convenient to transform the angle
variables in Eq. (26) to angles

θ0 = π + θ1 − θ2

2
, θ = θ1 + θ2 − π

2
,

ϕ0 = ϕ1 + ϕ2

2
, ϕ = ϕ1 − ϕ2

2
, (28)

which have already been used in the analysis of spin dynamics
in antiferromagnetic insulators [20]. A benefit of these vari-
ables is that the dynamical equations are reduced to decoupled
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θ

θ0

x

z

θ0

θ

S

H

2

S1

FIG. 1. Angle variables θ and θ0 for the case when the both
subspins are in the plane xz (ϕ0 = ϕ = 0).

equations for two noninteracting modes. In these variables the
equations of motion (27) transform to

(cos 2θ0 + cos 2θ )[θ̇0 + (v · ∇)θ0]

= − 1

nS0

(
cos θ0 cos θ

δH0

δϕ0
+ sin θ0 sin θ

δH0

δϕ

)
,

(cos 2θ0 + cos 2θ )[ϕ̇0 + (v · ∇)ϕ0]

= 1

nS0

(
cos θ0 cos θ

δH0

δθ0
− sin θ0 sin θ

δH0

δθ

)
; (29)

(cos 2θ0 + cos 2θ )[θ̇ + (v · ∇)θ ]

= 1

nS0

(
cos θ0 cos θ

δH0

δϕ
+ sin θ0 sin θ

δH0

δϕ0

)
,

(cos 2θ0 + cos 2θ )[ϕ̇ + (v · ∇)ϕ]

= − 1

nS0

(
cos θ0 cos θ

δH0

δθ
− sin θ0 sin θ

δH0

δθ0

)
. (30)

The canting angle λ is given by

cos 2λ = cos 2θ0(1 + cos 2ϕ) − cos 2θ (1 − cos 2ϕ)

2
. (31)

The meaning of the angles θ0 and θ for the simple case
ϕ = ϕ0 = 0 is illustrated in Fig. 1.

The Hamiltonian H0 in the angle variables (28) is gauge
invariant with respect to phases � and ϕ0. The general expres-
sion for it rather clumsy, and in the following we will present
the Hamiltonian only for particular cases. We consider states
with ϕ = 0 when the canting angle λ coincides with the angle
θ0. Then the Hamiltonian is

H = nmv2

2
+ nh̄2

m

[∇θ2
0

8
+ ∇θ2 1 + cos θ0

4

+ ∇ϕ2
0

(
1 − cos θ0

4
sin2 θ + cos2 θ0 cos2 θ

2

)]
+ Em,

(32)

where the superfluid velocity is

v = h̄

m
(∇� − sin θ0 cos θ∇ϕ0), (33)

and the energy Em includes the spin-dependent interaction
proportional to Vs and the Zeeman energy:

Em = Vsn2

2
sin2 θ0 − h̄nγ H sin θ0 cos θ. (34)

The current of the spin z component is given by Eq. (10)
for i = z and can be written as

Jzk = nSzvk + Jk, (35)

where the first term on the right-hand side is an advection
term, which is related to the spin transport by motion of the
whole superfluid and has nothing to do with spin superfluidity.
We determine the spin supercurrent in the coordinate frame
moving together with the superfluid. In the angle variables the
spin supercurrent is a vector

J = −nh̄2

m

[
sin2 θ0 sin2 θ

2(1 + cos θ0)
+ cos2 θ0 cos2 θ

]
∇ϕ0. (36)

Considering the collective mode connected to oscillations
of θ0 and ϕ0, one can further simplify the Hamiltonian assum-
ing that θ = 0 in Eqs. (32)–(34). Then the equations of motion
are

cos θ0[θ̇0 + (v · ∇)θ0] = ∇ ·
(

h̄ cos2 θ0∇ϕ0

m

)
,

ϕ̇0 + (v · ∇)ϕ0 = − h̄ sin θ0∇ϕ2
0

m
− h̄∇2θ0

4m cos θ0

+ Vsn

h̄
sin θ0 − γ H. (37)

We address the state with stationary uniform currents char-
acterized by two constant gradients K� = ∇� and K = ∇ϕ0.
In this state the spins precess around the axis z with a constant
precession frequency

ϕ̇0 = −v · K +
(

Vsn

h̄
− h̄K2

m

)
sin θ0 − γ H. (38)

One may consider the field H not as an external magnetic
field, but as a Lagrange multiplier determined from the con-
dition δH/δθ0 = 0. Then the precession in the current state is
absent in the laboratory coordinate frame.

Next we linearize Eq. (37) with respect to small oscillations
θ ′

0 and ϕ′
0 around the constant values of θ0 and ϕ0 in the

stationary current state

θ̇ ′
0 + (w0 · ∇)θ ′

0 = h̄ cos θ0∇2ϕ′
0

m
,

ϕ̇′
0 + (w0 · ∇)ϕ′

0 − K · v′ = − h̄∇2θ ′
0

4m cos θ0
+

(
Vsn

h̄
− h̄K2

m

)
× cos θ0θ

′
0, (39)

where

w0 = v + 2 sin θ0
h̄K
m

= h̄

m
(K� + sin θ0K ) (40)

is the Doppler velocity w0, which takes into account not
only the true Doppler effect (the term proportional to v),
but also the pseudo-Doppler effect [20] proportional to the
gradient K responsible for spin current. Although we consider
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incompressible fluid, the superfluid velocity also oscillates,
but it must be divergence-free:

∇ · v′ = h̄

m
[∇2�′ − sin θ0∇2ϕ′

0 − cos θ0(K · ∇)θ ′
0] = 0.

(41)

There are plane-wave solutions θ ′
0, ϕ

′
0 ∝ eik·r−iωt of

Eqs. (39) and (41) with the dispersion relation

ω − w0 · k = csk

√[
1 − ξ 2

0 (K · k)2

k2

]
cos2 θ0 + ξ 2

0 k2

4
, (42)

where

cs =
√

Vsn

m
(43)

is the spin-wave velocity in the ground state without currents
and spin polarization (θ0 = 0) and

ξ0 = h̄√
Vsmn

= h̄

mcs
(44)

is the coherence length of the spin degree of freedom. This is
a gapless Goldstone mode.

The stability condition of the current state (the Landau
criterion) requires that the frequency ω is positive and real for
any k. For the sake of simplicity, we consider the case when
w0 and K are parallel or antiparallel. The instability threshold
is minimal at k parallel to w0. Then the current state is stable
as long as

w2
0 =

(
v + 2 sin θ0

h̄K
m

)2

< c2
s

(
1 − ξ 2

0 K2
)

cos2 θ0. (45)

Another spin-wave mode is connected to the oscillations of θ and ϕ. The quadratic in θ and ϕ correction to the Hamiltonian
of the stationary current state in the coordinate frame moving with the superfluid is

H′
0 = nh̄2

2m

{
1 + cos θ0

4
∇θ2 + cos2 θ0∇ϕ2

4(1 + cos θ0)
+ sin 2θ0θ (K · ∇)ϕ

2
+

[
Vsn sin2 θ0

h̄
− h̄K2(1 + cos θ0)

2m

]
θ2

2

+
[

Vsn

h̄
− h̄K2

2(1 + cos θ0)m

]
cos2 θ0ϕ

2

2

}
. (46)

Linearized equations of motion for θ and ϕ after trivial Galilean transformation to the laboratory coordinate frame are

θ̇ + w · ∇θ = − cos θ0∇2ϕ

2(1 + cos θ0)
+

[
Vsn

h̄
− h̄K2

2(1 + cos θ0)m

]
cos θ0ϕ,

cos θ0(ϕ̇ + w · ∇ϕ) = 1 + cos θ0

2
∇2θ −

[
Vsn sin2 θ0

h̄
− h̄K2(1 + cos θ0)

2m

]
θ, (47)

where the Doppler velocity is

w = v + sin θ0
h̄K
m

= h̄

m
K�. (48)

These equations describe the gapped mode with the spectrum

ω − w · k = cs

ξ0

√[
1 − ξ 2

0 (K2 − k2)

2

]2

− cos2 θ0. (49)

The Landau criterion imposes two inequalities on gradients
(velocities) in the current state. The first one,

K2 <
2(1 − cos θ0)

ξ 2
0

, (50)

provides that at no k does the frequency have an imaginary
part, i.e., the gap in the spectrum is positive. The second
inequality

w2 <
m2c4

s

h̄2k2

{[
1 − ξ 2

0 (K2 − k2)

2

]2

− cos2 θ0

}
(51)

guarantees that the frequency is positive at any k. The right-
hand side of the inequality has a minimum at

k2 = 2

ξ 2
0

√(
1 − ξ 2

0 K2

2

)2

− cos2 θ0. (52)

Using this value in Eq. (51), the latter becomes

|w| < cs

⎛
⎝

√
sin2 θ0

2
− ξ 2

0 K2

4
+

√
cos2

θ0

2
− ξ 2

0 K2

4

⎞
⎠. (53)

Figure 2 shows the stability areas for two modes in the
plane of two dimensionless parameters Kξ0 and v/cs. The
current state is stable in the area where both modes are stable.
At weak spin polarization (small canting angle θ0) the gapped
mode destabilizes the current state earlier than the gapless
one, like in antiferromagnetic insulators [20]. In the opposite
limit θ0 → π/2, where the spin polarization is saturated,
the gapless mode becomes unstable first. For comparison, in
the ferromagnetic spin-1 BEC the only mode is the gapless
Goldstone mode, which must be checked with the Landau
criterion [19].

The Landau criterion checks the stability of a current state,
but it does not indicate what happens when the instability
threshold is reached. In scalar superfluids the outcome of
instability is the disappearance of potential barriers preventing
vortex nucleation and motion of vortices across streamlines
(phase slips). In multicomponent superfluids this issue is more
complicated because there are various types of vortices. The
type of vortex participating in a phase slip depends on which
mode becomes unstable [19]. We will return to the problem of
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v/cs

Kξ0

v/cs

Kξ0

FIG. 2. Stability of two spin-wave modes according to the Landau criterion. (a) Weak spin polarization θ0 = 0.1. The gapped mode
becomes unstable earlier than the gapless mode. The dotted line shows states to which the current state relaxes after phase slips with
antiferromagnetic vortices (0, ±1). (b) Strong spin polarization θ̃0 = π/2 − θ0 = 0.2. The gapless mode becomes unstable earlier than the
gaped mode. The dotted line shows states to which the current state relaxes after phase slips with ferromagnetic vortices (±1/2, ±1/2).

stability of current states after the analysis of vortices possible
in antiferromagnetic spin-1 BEC.

IV. NONSINGULAR VORTICES IN
ANTIFERROMAGNETIC SPIN-1 BEC

In scalar (single-component) superfluids only singular vor-
tices are possible, in which the superfluid density must vanish
at the vortex axis in order to compensate for the 1/r diver-
gence in the velocity field. In multicomponent superfluids
it is possible to compensate for the divergence at the axis
without suppression of the superfluid density in the vortex
core. Since we consider here an incompressible superfluid,
in the following we will focus only on phase slips with
nonsingular vortices.

Studying nonsingular vortices, we can use the Hamiltonian
(32) derived under the assumption that ϕ = 0. The vortex is
characterized by two topological charges (winding numbers),
determined by circulations of the angles � and ϕ0,

N� = 1

2π

∮
∇� · dl, Nϕ = 1

2π

∮
∇ϕ0 · dl, (54)

where integration is along the closed path (loop) around
the vortex axis. We call these vortices bicirculation vortices
and label them as (N�, Nϕ ) vortices. The superfluid velocity
circulation around the path surrounding the vortex at large
distances from its axis is

� =
∮

v · dl = h

m
(N� − sin θ∞Nϕ ). (55)

Here we introduced the angle θ∞ equal to the value of θ0 far
from the vortex axis where θ = 0 and the gradient-dependent
energy is negligible. The angle θ∞ depends on the magnetic
field and is determined by minimization of the energy Em

given by Eq. (34):

sin θ∞ = h̄γ H cos θ

Vsn
. (56)

Single-valuedness of the wave function (12) requires that
N� is an integer if the unit vectors d and f return to their
original values after going around the path encircling the
vortex. However, the wave function also remains single valued
if d and f rotate by 180◦ around the axis normal to both
of them, i.e., parallel to the total spin, while the charge
N� is a half-integer. The angle of rotation around the spin
coincides with the angle ϕ0 only if the spin is strictly parallel
or antiparallel to the magnetic field H (axis z). In this case
the topological charges Nϕ and N� can either both be integers
or both be half-integers. Correspondingly, we call vortices
integer or half-integer vortices.

We will consider axisymmetric vortices. Then the gradient
of the angles � and ϕ0 equal to ∇�v and ∇ϕv , respectively,
have only azimuthal components

∇�v = N�[ẑ × r]

r2
, ∇ϕv = Nϕ[ẑ × r]

r2
, (57)

while the angles θ0 and θ depend only on the distance r
from the vortex axis. The angle gradients diverge as 1/r.
According to the Hamiltonian (32) and the expression (33) for
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FIG. 3. Variation of two subspins S1 and S2 with the distance r
from the vortex axis in skyrmion cores of various types of vortices.
Rows (a)–(c) show vortices in the antiferromagnetic spin-1 BEC.
Row (d) shows the vortex in the ferromagnetic spin-1 BEC. Row
(e) shows the vortex (−N, N ) at saturated spin polarization far from
the vortex axis (θ0 → θ∞ = π/2). This vortex can be a half-integer
in both antiferromagnetic and ferromagnetic spin-1 BEC.

the superfluid velocity, this divergence can be compensated
only for the two types of vortices.

(i) Vortices (0, N ), with any integer Nϕ , but N� = 0; at
the vortex axis θ0 = 0 and θ = ±π

2 . The structure of the
skyrmion core of the vortex is illustrated schematically in
Fig. 3(a), showing variation of two subspins with the distance
r from the vortex axis. The vortex can be called antiferro-
magnetic because the angle θ showing the direction of the

antiferromagnetic vector varies in the vortex core and there
is no spin polarization at the vortex axis. A similar vortex was
investigated in the bipartite antiferromagnet in the LLG theory
of localized spins [20].

The velocity circulation far from the (0, N ) vortex axis is

� = −Nh

m
sin θ∞. (58)

The result (58) is remarkable. The velocity circulation is
quantized but with the circulation quantum dependent on
the magnetic field, since the canting angle θ∞ depends on
the magnetic field. The quantum varies from zero (i.e., no
quantization) to the fundamental quantum h/m.

(ii) Vortices (±N, N ), with two charges (winding numbers)
satisfying the condition N� = ±Nϕ ; at the axis θ0 = ±π

2 and
θ = 0. We call these vortices ferromagnetic because the spin
is fully polarized at the vortex axis. The skyrmion structures of
both ferromagnetic vortices are shown in Figs. 3(b) and 3(c).
Ferromagnetic vortices (±N, N ) have the velocity circulation

� = Nh

m
(±1 − sin θ∞). (59)

The circulation quanta for these vortices can also be tuned
by the magnetic field. Since N can be a half-integer the cir-
culation quantum varies from 0 to the fundamental quantum
h/m. The half-quantum vortices [22,23] with � = ±h/2m are
possible in the limit of very weak spin polarization (weak
magnetic field), when θ∞ → 0.

Investigation of the stability of current states with respect
to phase slips (the next section) requires knowledge of core
radii of various vortices, which can be estimated from the
quantitative analysis of vortex cores. Variation of the Hamilto-
nian (32) with respect to θ0 and θ yields two coupled nonlinear
Euler-Lagrange equations

− 1

4r

d

dr

(
r

dθ0

dr

)
−

(
dθ

dr

)2 sin θ0

4
− N�Nϕ cos θ0 cos θ

r2
+ N2

ϕ sin θ0 sin2 θ

4r2
+ (sin θ0 − sin θ∞ cos θ ) cos θ0

ξ 2
0

= 0, (60)

− 1

2r

d

dr

[
r

dθ

dr
(1 + cos θ0)

]
+ N�Nϕ sin θ0 sin θ

r2
+ N2

ϕ sin 2θ (1 − cos θ0 − 2 cos2 θ0)

4r2
+ sin θ∞ sin θ0 sin θ

ξ 2
0

= 0. (61)

Let us start from vortices (0, N ) when there is no circula-
tion of the phase �. The (0,1) vortex with minimal winding
number N = 1 is energetically more favorable for phase slips.
The natural scale in Eq. (61) is the spin coherence length
ξ0, which determines the vortex-core radius rc ∼ ξ0 except
in the limit of weak spin polarization θ∞ � 1. In this limit
the size of the vortex core is much larger than the coherence
length, as we will see soon. Then all gradient terms and terms
proportional to 1/r2 in Eq. (60) can be neglected and the small
θ0 is determined by a simple expression

θ0(r) = θ∞ cos θ (r). (62)

Inserting it into Eq. (61) transforms it into

−1

r

d

dr

(
r

dθ

dr

)
− sin 2θ

2r2
+ θ2

∞ sin 2θ

2ξ 2
0

= 0. (63)

The boundary conditions for this equation are θ = π/2 at the
vortex axis (r = 0) and θ = 0 at r → ∞. The spatial scale of
this equation determines the vortex core radius

rc ∼ ξ0

θ∞
, (64)

which essentially exceeds the spin correlation length ξ0. This
justifies ignoring gradient terms in Eq. (60).

Switching to vortices (±N, N ), we also consider the vor-
tices with minimal circulations. These are the (± 1

2 , 1
2 ) vortices

with half-integer winding numbers. In these vortices θ = 0
everywhere in space, and Eq. (60) becomes

− 1

4r

d

dr

(
r

dθ0

dr

)
− cos θ0

4r2
+ (sin θ0 − sin θ∞) cos θ0

ξ 2
0

= 0.

(65)
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In the limit of strong spin polarization when two subspins
are nearly parallel, the angle θ̃0 = π/2 − θ is small every-
where, varying from 0 at the axis of the vortex ( 1

2 , 1
2 ) to small

θ̃∞ far from the axis. The equation for θ̃ ,

1

4r

d

dr

(
r

d θ̃

dr

)
− θ̃

4r2
+

(
θ̃2
∞ − θ̃2

)
θ̃0

2ξ 2
0

= 0, (66)

is similar to the equation for the amplitude of the wave
function in the Gross-Pitaevskii theory for scalar superfluids.
The vortex core radius is

rc ∼ ξ0

θ̃∞
, (67)

which essentially exceeds the coherence length ξ0 at small
θ̃∞. If the Zeeman energy h̄γ H exceeds the spin-dependent
interaction energy Vsn [see Eq. (56)], spin polarization is
saturated and both subspins become parallel to the magnetic
field. Then the core radius rc of the vortex ( 1

2 , 1
2 ) given by

Eq. (67) becomes infinite. This vortex should be ignored
because its energy and circulation vanish. However, the half-
integer vortex (− 1

2 , 1
2 ) has a finite core radius of the order ξ0,

and according to Eq. (59) its circulation quantum h/m is the
same as in the scalar superfluids.

It is interesting to compare the vortices in antiferromag-
netic spin-1 BEC with vortices in ferromagnetic spin-1 BEC,
which were considered in Ref. [19]. An example of the vortex
in ferromagnetic spin-1 BEC is illustrated in Fig. 3(d). In
antiferromagnetic spin-1 BEC in the vortex core the canting
angle θ0 varies, while θ = 0 everywhere [Fig. 3(c)]. In con-
trast, in ferromagnetic spin-1 BEC in the vortex core the angle
θ varies, while the canting angle is θ0 = π/2 everywhere.
This is because in ferromagnetic spin-1 BEC the interaction
constant Vs is negative and the structure with parallel subspins
has lower energy than the structure with antiparallel subspins.
In this structure the total spin deviates from the direction of
the magnetic field, and this is incompatible with the existence
of half-integer vortices. However, at magnetic fields sufficient
for saturated spin polarization along the magnetic field there
is a possibility of a half-integer vortex also in ferromagnetic
BEC, if the wave function in its core is antiferromagnetic, i.e.,
θ0 < π/2. The corresponding structure of the skyrmion core
is shown in Fig. 3(e). Thus, a half-integer vortex is possible
in both the antiferromagnetic and the ferromagnetic phase.
However, there is a difference in the energy and the size of
the core in these two phases.

In the ferromagnetic spin-1 BEC the spin-dependent inter-
action energy Vsn is a negative constant, which does not affect
the vortex structure. At weak magnetic fields the core radius
is scaled not by the coherence length ξ0 given by Eq. (44)
but by a much longer length determined by the easy-plane
anisotropy energy, which is usually smaller than |Vs|n. How-
ever, if inside the core the wave function is antiferromagnetic
(θ0 < π/2), the energy of the core does depend on |Vs|n.
As a result, the core radius of the integer vortex (−1, 1) is
larger than the core radius of the half-integer vortex (− 1

2 , 1
2 ).

This difference vanishes in the limit of very strong magnetic
fields when the Zeeman energy essentially exceeds |Vs|n. In
this limit the core radius of all vortices is determined by the
Zeeman energy: rc ∼ h̄/

√
γ HS0. The integer vortex (−1, 1)

with double-quantum velocity circulation 2h/m is an analog
of the Anderson-Toulouse vortex existing in the A phase of
superfluid 3He [21,27].

V. BICIRCULATION VORTICES AND PHASE SLIPS

For the analysis of participation of nonsingular vortices
in phase slips, one must consider the interaction of vortices
with mass and spin currents. The total energy of the vortex is
mostly determined by the area outside the core (the London
region), where one must take into account the interaction of
vortices with mass and spin currents. In the London region the
angles θ0 and θ are close to their asymptotic values θ∞ and
0, respectively. Then only terms quadratic in gradients ∇�

and ∇ϕ0 are kept in the Hamiltonian (32). The phase (angle)
gradients in the presence of a vortex and currents are

∇� = ∇�v + K�, ∇ϕ0 = ∇ϕv + K, (68)

where ∇�v and ∇ϕv are given by Eq. (57). Substituting
these expressions into the Hamiltonian and integrating over
the plane normal to the vortex axis, one obtains the energy of
the straight vortex per unit length in the presence of currents,

Ev = πnh̄2

m

(
N2

� − 2 sin θ∞N�Nϕ + N2
ϕ

)
ln

R

rc

− 2π h̄nt · [R × ṽ], (69)

where t is the unit vector along the vortex axis, R is the
position vector for the vortex axis with its origin being either
at a wall or the position of the other vortex (antivortex), and

ṽ = h̄

m
[(N� − sin θ∞Nϕ )K� + (Nϕ − sin θ∞N�)K]

= m�

h
v + Nϕ h̄ cos2 θ∞

m
K (70)

is the effective velocity.
The vortex energy Ev has a maximum at

R = h̄
(
N2

� − 2 sin θ∞N�Nϕ + N2
ϕ

)
2mṽ

(71)

and the energy at the maximum is a barrier preventing phase
slips. The barrier vanishes if R becomes of the order of
the vortex core radius. Thus, phase slips are suppressed by
energetic barriers as long as

ṽ <
h̄
(
N2

� − 2 sin θ∞N�Nϕ + N2
ϕ

)
mrc

. (72)

In single-component scalar superfluids the effective velocity
ṽ coincides with the superfluid velocity v. When the latter
vanishes the barrier is infinite and phase slips are impossible.
This reflects the trivial fact that the currentless state is the
ground state and phase slips cannot decrease its energy. In
our case of a multicomponent superfluid, phase slips also
cannot decrease the energy if the effective velocity ṽ vanishes.
However, the latter vanishes not only in the currentless ground
state but also in states with nonzero gradients satisfying the
condition ṽ = 0. Thus, only one type of vortex with a fixed
ratio of two winding numbers is not sufficient for complete
decay of a current state with arbitrary values of two phase
gradients. Complete relaxation to the ground state requires
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at least two types of vortices with different ratios of winding
numbers.

For the vortex (0,1) with the core radius (64) at weak spin
polarization θ∞ � 1 the inequality (72) becomes

K <
1

rc
= θ∞

ξ0
. (73)

This condition imposes the same restriction on the stability of
the current state as the Landau criterion (50) on the stability
of the gapped mode at small θ∞. Thus, instability of the
gapped mode is a precursor of phase slips with this type of
vortex. Phase slips only with vortices (0,±1) cannot result in
complete relaxation of arbitrary current states to the ground
state. A final state after these phase slips is a state with zero
effective velocity ṽ. The latter states lie on the dotted line in
Fig. 2(a).

For the vortex ( 1
2 , 1

2 ) close to saturated spin polarization
(θ∞ ∼ π/2) with the core radius (67), the inequality (72)
yields the inequality

mv

h̄
+ 2K <

1

rc
= θ̃∞

ξ0
, (74)

which at small θ̃∞ agrees with the Landau criterion (45) for
the gapless mode. Thus, instability of this mode is a precursor
of phase slips with ferromagnetic vortices ( 1

2 , 1
2 ). These phase

slips result in relaxation of an initial arbitrary current state
to current states with ṽ = 0, which lie on the dotted line in
Fig. 2(b).

At complete saturation of spin polarization (θ∞ = π/2)
no stable spin current is possible. The vortex ( 1

2 , 1
2 ) has

zero energy and zero velocity circulation and is irrelevant.
However, mass persistent currents are possible as long as they
are stable with respect to phase slips with vortices (− 1

2 , 1
2 ).

The core radius of this vortex is of the order of the coherence
length ξ0, and the condition of stability with respect to phase
slips is similar to that obtained from the Landau criterion.

In our analysis the criterion for instability was disappear-
ance of energetic barriers suppressing the decay of mass or
spin supercurrents. The critical velocities (gradients) are in-
versely proportional to the core radius of vortices participating
in phase slips. In reality, phase slips may occur even in the
presence of barriers due to thermal activation or quantum
tunneling, although their probability is low. At low velocities
(gradients) the logarithmic factor in the vortex energy (69) is
very large and weakly depends on the value of the core radius
rc. Then the chance of the vortex participating in the phase slip
is determined mostly by the prelogarithmic factor in Eq. (69).
The vortex with the smallest prefactor is the most probable
actor in the phase slip. This makes vortices with smaller
circulations better candidates for phase slips. In particular,

in the ferromagnetic spin-1 BEC at magnetic fields sufficient
for spin orientation along magnetic fields, the half-integer
vortex (− 1

2 , 1
2 ) with single-quantum circulation h/m is a more

probable actor in phase slips than the Anderson-Toulouse in-
teger vortex (−1, 1) with double-quantum velocity circulation
2h/m despite the latter having a larger core radius.

VI. CONCLUSION

The hydrodynamics of the antiferromagnetic spin-1 BEC
was derived from the Gross-Pitaevskii theory showing its
analogy to the LLG theory of bipartite solid antiferromagnets.
In the hydrodynamics of spin-1 BEC, two subspins with the
absolute value h̄/2 play the role of two sublattice spins in
the antiferromagnetic insulators. Thus, the Gross-Pitaevskii
theory is a simple microscopic model justifying the LLG
theory for antiferromagnets, while the microscopic derivation
of the LLG theory for localized spins is problematic [13].

The developed hydrodynamical theory was used for the in-
vestigation of spin and mass supercurrents in the spin-1 BEC.
In analogy to the ferromagnetic state, in the antiferromagnetic
state of the spin-1 BEC the Landau criterion shows that the
stability of both mass and spin supercurrents is determined
by the softest mode, which is one of spin-wave modes if
the sound velocity exceeds essentially the spin-wave velocity.
Then one can check the Landau criterion only for spin-wave
modes, assuming that the superfluid is incompressible. In
the antiferromagnetic state of the spin-1 BEC there are two
spin-wave modes: One is a gapless Goldstone mode and the
other has a gap. According to the Landau criterion, the gapped
mode becomes unstable earlier than the gapless mode at small
canting angles (weak spin polarization). In the opposite limit
of the canting angle close to π/2 (two subspins are nearly
parallel), the gapless mode becomes unstable earlier than the
gapped one.

The Landau instability is a precursor of the fast decay
of supercurrents via phase slips. The present paper analyzed
what sort of vortices can participate in phase slips. These
are nonsingular vortices with skyrmion cores without density
suppression inside the cores. The vortices are called bicircula-
tion vortices because they are determined by two topological
charges. The charges are winding numbers for circulations of
two angle variables around the vortex axis. At the same time,
the superfluid velocity circulation is not a topological charge
because the superfluid velocity is not curl-free. The winding
numbers of two angle variables can be half-integers. A partic-
ular case of half-integer vortices is a half-quantum vortex with
the superfluid velocity circulation h/2m. However, in general,
one can tune continuously the velocity circulation quantum
of a vortex between 0 and h/2m. This must have important
consequences for properties of the spinor BEC, especially at
its rotation.
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