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The efficient validation of quantum devices is critical for emerging technological applications. In a wide
class of use cases the precise engineering of a Hamiltonian is required both for the implementation of gate-
based quantum information processing as well as for reliable quantum memories. Inferring the experimentally
realized Hamiltonian through a scalable number of measurements constitutes the challenging task of Hamiltonian
learning. In particular, assessing the quality of the implementation of topological codes is essential for quantum
error correction. Here, we introduce a neural-net-based approach to this challenge. We capitalize on a family of
exactly solvable models to train our algorithm and generalize to a broad class of experimentally relevant sources
of errors. We discuss how our algorithm scales with system size and analyze its resilience toward various noise
sources.
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I. INTRODUCTION

While finding an eigenstate |�〉 of a given Hamiltonian
H might be a daunting task, the problem is nevertheless well
defined and can often be solved by a set of existing tools. The
inverse question, the identification of a Hamiltonian H given
the knowledge of a state |�〉, is a much more complicated one
and without a unique answer in the general case.

Hamiltonian engineering is one of the central objectives in
the context of constructing quantum information processing
and storage devices [1–3]. Despite significant progress of
quantum technologies over the last decades, the validation
of the engineered Hamiltonian will always be an essential
step for any quantum device. Moreover, the implemented
Hamiltonian cannot be accessed directly, but only through the
measurements performed on the system. Given these measure-
ments one would like to verify that the desired Hamiltonian
has been implemented correctly. In addition to that, this
verification should ideally be done in an efficient and scalable
way.

Reconstructing the Hamiltonian governing the system’s
dynamics directly from the measurement results constitutes
the inverse problem we address. Beyond not being unique, in
the quantum setting there arises an additional challenge due to
the exponential size of the Hilbert space: Reconstructing even
just the state alone via full quantum tomography is in gen-
eral exponentially costly [4] (though there are notable cases
where tomography can be done efficiently [5–7]). However,
even with one eigenstate fully reconstructed, we still do not
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have enough information to determine which Hamiltonian it
belongs to in the general setting.

There are two aspects one can exploit to simplify the
inverse problem. First, we are typically not interested in the
full Hamiltonian. For many purposes we only need to make
sure we implement a Hamiltonian which possesses a ground
state with desired properties, such as topological ground state
degeneracies [8]. In other words, we only aim at finding
a possible parent Hamiltonian to this ground state family.
Second, the implemented Hamiltonian we try to reconstruct
will typically be in a predefined class of parent Hamiltonians.
Reducing the task of reconstructing an arbitrary Hamiltonian
to learning the parameters of a restricted class of parent
Hamiltonians results in a well-defined problem. This restric-
tion can render the reconstruction feasible and will not require
a full tomography.

In this work, we develop a method to recover a parent
Hamiltonian for a generic example important in the context
of quantum devices: the family of the so-called stabilizer
Hamiltonians [9] that lie at the heart of the theory of fault-
tolerant quantum computation [10,11]. A canonical example
of this family of Hamiltonians is the toric code model [8].
The toric code is a quantum spin-1/2 model defined on square
lattice with periodic boundary conditions. Its ground state
manifold is exactly known and its structure can be used for
a stable encoding of quantum states.

In particular, we design a machine-learning-driven method
for the validation of the implementation of the toric code. Our
approach addresses all of the aforementioned challenges in the
solution of the inverse problem: (i) We find a minimal set of
local measurements performed on a ground state that allows
us to learn the system’s Hamiltonian; i.e., we do not need full
tomography. (ii) Capitalizing on the proximity to the targeted
toric code Hamiltonian we can train the neural network on a
restricted class of exactly solvable models. Using the power
of generalization of machine learning algorithms, we can
then apply these trained networks to reconstruct a class of
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more general Hamiltonians outside the analytically solvable
manifold. (iii) The need for only a very restricted set of
measurements and the use of efficient computing algorithms
allow us to scale the solution problem beyond system sizes
required for near-term experiments. Moreover, the generaliza-
tion power of neural nets equips our approach with a certain
resilience to experimental noise.

Our work has to be seen in the context of recent devel-
opments in the field. Specifically, using a trusted quantum
simulator [12–15], determining a Hamiltonian from eigen-
state dynamics [16–22], compressed sensing [23], restricted
Boltzmann machine quantum tomography [24], maximum-
likelihood generalization [25], and mapping on a straightfor-
ward parameter estimation problem [26] have been used to
address the inverse problem. Recently, methods to recover a
local Hamiltonian based on measurements on a single eigen-
state have been proposed [27–30]. The introduced frame-
works, however, come either with the necessity to measure
long-range correlators or are not applicable to Hamiltonians
consisting of commuting terms [30].

The ability to efficiently validate Hamiltonians with topo-
logically protected ground state degeneracies has direct im-
plications for quantum error correction [10,31]. One way of
using the toric code as a quantum memory is to prepare the
ground state in order to encode logical qubits in its ground
state manifold [8]. In practice, this means designing the many-
body interactions that the stabilizer Hamiltonians contain.
While many-body interactions can be difficult to implement
in general in an experiment, there are theoretical proposals
and experimental progress toward achieving the four-body
interaction needed for the toric code in a variety of platforms
[32–39]. However, only through the reliable validation of
these schemes can one lift these proposals to a potential
avenue for topologically protected quantum memories. Here
we provide such a validation protocol.

In an alternative approach to using the toric code, one ar-
rives at a ground state without the need to engineer any Hamil-
tonian, but an arbitrary state is successively projected into the
desired state by a series of projective measurements [40,41].
The performance of these methods depends on the frequency,
correlations, and types of errors [42–49], and we comment
below on how our algorithm relates these approaches.

This paper is organized as follows: In Sec. II we discuss
the family of exactly solvable stabilizer Hamiltonians and
the phase transitions they manifest. Section III addresses
the neural-network-based Hamiltonian learning scheme we
designed for this class of topological models. In Sec. IV we
present the numerical analysis of the convergence and errors
of the model and elaborate on its resilience to experimental
noise. We discuss our results presented here in the broader
context of the field and their implications for the future
research directions in Sec. V.

II. SOLVABLE TOPOLOGICAL MODELS

Kitaev’s toric code model [8] is defined on a k × k square
lattice with periodic boundary conditions and spin-1/2 de-
grees of freedom located on the edges. The Hamiltonian

FIG. 1. Schematic of our method: We add background fields
to the stabilizer Hamiltonian. We use expectation values of star
operators, Ai, to determine σz fields (shown in blue) and expectation
values of plaquette operators, Bi, to determine σx fields (shown in
red).

consists of the sum of four-spin interaction terms

HTC = −
∑

s

As −
∑

p

Bp, (1)

where the stabilizer operators are defined as

As =
∏
i∈s

σ x
i , (2)

Bp =
∏
i∈p

σ z
i . (3)

Here, s denotes the set of four spins around a vertex and p
the set of four spins around a plaquette (see Fig. 1). Since the
stabilizer operators, As and Bp, mutually commute, the ground
state manifold is exactly known. It corresponds to eigenstates
of all operators As and Bp with maximal eigenvalues +1.

The ground state degeneracy depends on the topology of
the manifold the model is defined on. On a torus, there are four
degenerate ground states |GSi〉, i ∈ {0, 1, 2, 3}. Moreover, the
topological order of these ground states results in stability
of the degeneracy against arbitrary local perturbations. A
qubit state can then be encoded through a suitably chosen
superposition:

|�〉encoded =
3∑

i=0

αi|GSi〉. (4)

The quantum operations on this state can be performed by
so-called noncontractible loops, open strings of σ z or σ x

operators across the lattice. This property of the toric code
ground state provides exceptionally stable encoding for the
state of a logical qubit: A lattice-size long string of qubits
needs to be flipped for the state of the logical qubit to change.
For the purpose of our Hamiltonian learning we can restrict
the discussion to one of the four states and we will use

|GS〉TC = 1

2

∏
s

(1 + As)|0〉, (5)
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where |0〉 is a reference state of the lattice with all spins up.
We comment below on why our method is insensitive to the
choice made here.

A question can be posed about how the ground state
changes if the stabilizer Hamiltonian is perturbed. In
Refs. [50,51] it was shown that there exists a way to leave
the topologically ordered toric code phase while keeping the
model analytically solvable. In particular, we can add σ z terms
to the star operators, As, in a way that slightly modifies the
ground state, while keeping its degeneracy untouched. We
write this Hamiltonian as

H =
∑

s

(
−As +

∑
s

e−β
∑

i∈s λiσ
z
i

)
−

∑
p

Bp, (6)

where λi ∈ [−1, 1]. The positive, real-valued parameter β

drives the phase transition out of the topological phase.
The particular position of the phase transition depends on

the distribution of fields given by λi. The ground state of H
can be expressed in terms of the original toric code ground
state, |GS〉TC, as

|�〉 = 1√
Z

e
β

2

∑
i λiσ

z
i |GS〉TC. (7)

The normalization factor Z is given and explained in
Appendix A. The above described modification is not the
only approach for keeping the Hamiltonian (1) analytically
solvable while driving the phase transition. For example,
we can symmetrically modify the plaquette terms, Bp, by
σ x terms. In particular, adding exp{−β

∑
i∈p λiσ

x
i } to each

plaquette would yield an analogous analytical ground state,
|�〉 = 1√

Z
exp{ β

2

∑
i λiσ

x
i }|GS〉TC.

The added perturbations are of experimental relevance, as
they simplify to small σ z (or σ x) background fields when
Eq. (6) is expanded to lowest order in β. Similarly, one obtains
σ z (or σ x) background fields if the field configuration {λi} is
sufficiently sparse (see Appendix A). This effect could be a
result of an imperfection or systematic errors in an engineered
interaction.

For the sake of Hamiltonian learning, understanding the
phase transition of model (6) is of central importance. Given
the analytical form (7), it seems obvious that from suitably
chosen measurements one should be able to infer the pa-
rameters of the Hamiltonian. However, this one-to-one cor-
respondence might be obstructed by the set of degenerate
ground states. It turns out that as long as we are in a phase
adiabatically connected to the pure toric code the Hamiltonian
can be recovered independently of the specific superposition
of degenerate ground states.

We show the position of phase transition in the perturbed
toric Hamiltonian (6) pictorially in Fig. 2. The phase transi-
tion is found via mapping to classical spin models [50,51].
In particular, if the corresponding classical model is in its
paramagnetic phase we are in the phase of the toric code.
Transitions out of this quantum phase are indicated by the
ordering of the classical spins. Details about this mapping are
provided in Appendix B. Stability against local perturbations
is a known property of topological order. The phase diagram
in Fig. 2 shows that topological order in Kitaev’s toric code

TC line

(FM)

(AFM)

configurations

non-TO

(PM)
TO

non-TO

FIG. 2. Phase diagram of the modified toric code model. The
field strength β (blue axis) and configuration {λi} are encoded as
amplitude and angle in the phase diagram. Important field config-
urations are marked at the phase diagram boundary with an exam-
ple field configuration and a small diagram. The small diagrams
show the percentages of fields λi being equal to +1, 0, or −1. A
phase transition out of the topologically ordered phase (TO) into
the non–topologically ordered phase (non-TO) occurs at the black
phase boundary. The phase of the corresponding 2D classical spin
model is denoted by PM (paramagnetic), FM (ferromagnetic), or
AFM (antiferromagnetic). If all fields are equal to zero, the system
corresponds to the pure toric code model (1). In the phase diagram,
these configurations are indicated by a red dashed line with label “TC
line”.

model is also stable with respect to a large class of nonlocal
perturbations.

These considerations lead to an immediate application
to quantum error correction. Let us now assume four-body
interactions of the toric Hamiltonian (1) are implemented
in a chosen physical system. Consequently, the system will
eventually arrive at its ground state. The sources of possible
errors and inaccuracies are then systematic errors and noise
inherently present in the experiment. We argue that error
correction can then be performed at the level of Hamiltonian
learning by finding a minimal set of measurements that has
to be performed on the state at hand in order to deduce the
Hamiltonian. Once the Hamiltonian is exactly found it can be
corrected in order to arrive at the ideal Hamiltonian HTC.

III. HAMILTONIAN LEARNING

In order to solve the inverse problem we need to identify
a minimal set of measurements that allows us to infer the
faulty Hamiltonian. This requirement is intrinsically bound to
the question of how we deduce the Hamiltonian from such
measurements. In this section we outline how we approach
this problem and how we can extend our scheme to the case of
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Hamiltonians where we do not have access to an exact ground
state.

The measurements we need to perform to reconstruct the
Hamiltonian H should identify the product of field distri-
butions given by {λi} with the parameter β. To simplify
the notation, we introduce the parameters {bi} to denote the
product, bi = βλi.

Using translational invariance of the underlying lattice we
find that the expectation values 〈Ai〉, 〈Ai+1〉, 〈AiAi+1〉, where
i corresponds to the chosen lattice site coordinate, contain a
sufficient amount of information to recover the parameter bi.

This observation implies that for each lattice site we need
to evaluate correlation functions of the star operators, Ai =∏

i∈s σ x
i , “touching” at a given lattice site. The function that

maps these expectation values on the Hamiltonian parame-
ters is implemented via a small neural network; see Fig. 1.
For each spin we input the expectation values 〈Ai〉, 〈Ai+1〉,
〈AiAi+1〉 and obtain bi that determines the field strength on a
given spin.

We denote with bz
i the field strength of σz fields and with

bx
i the field strength of σx fields (which are determined from

the expectation values of the plaquette terms 〈Bi〉, 〈Bi+1〉,
〈BiBi+1〉). As a consequence of symmetry under the exchange
of vertices and plaquettes as well as σ x and σ z, the neural net-
work trained to identify the field parameter bz

i also succeeds
in identifying the parameter bx

i .
Assuming access to sufficiently many copies of the sys-

tem, one can evaluate the expectation values described above
with arbitrary precision. We address questions of the readout
statistics in Sec. IV. Note that the total amount of expectation
values needed scales linearly with the number of parameters
to be estimated and hence, linearly with the number of spins
in the lattice.

We train a small neural net on the exact ground states
of the family of Hamiltonians (6). Owing to the analytical
solution we are able to simulate lattices of almost arbitrary
size. We choose a particular spin in the lattice and evaluate
the expectation values 〈Ai〉, 〈Ai+1〉, 〈AiAi+1〉 for a range of
different field distributions on the surrounding spin and a
range of values of bz

i .
We restrict ourselves to the field configurations {bz

i } such
that the system is in the toric code phase; cf. Fig. 2. Conse-
quently, it is possible to recover the Hamiltonian H even if the
system is in an arbitrary state in the ground state manifold,
while the training set is restricted to a specific ground state.
The reason for this simplification lies in the properties of the
nature of the toric code ground state: The degenerate ground
states cannot be distinguished by local measurements and
hence, the measurement outcome of the stabilizer expectation
values is identical for all states in the ground state manifold.

We use the set of expectation values 〈Ai〉, 〈Ai+1〉, 〈AiAi+1〉
as the input for our neural net. The labels we train the network
to associate with these inputs are the field strength on the
given spin bz

i (Fig. 1). We find that a dense neural network of 3
layers with 128, 150, and 128 neurons, respectively, is able to
reliably approximate this mapping. We detail the architecture
and details of the training in Appendix C.

We evaluate the performance of the network on states that
lie outside the manifold of ground states of exactly solvable
Hamiltonians. This strategy would in principle allow us to

apply the trained models on measurements of a large quantum
computer or simulator. Above, we introduced two examples
of toric code Hamiltonian modifications, one through σ z and
one through σ x fields:

H =
∑

s

(−As + e− ∑
i∈s bz

i σ
z
i ) +

∑
p

(−Bp + e− ∑
i∈p bx

i σ
x
i ). (8)

Separately, these modifications do not violate exact solvability
of the model. However, in the small-β limit this Hamiltonian
covers a very general set of errors that may occur in an actual
quantum device. Therefore, we showcase our method on this
Hamiltonian.

The above Hamiltonian cannot be solved for large systems.
However, we can use the network trained on the solvable
Hamiltonian. We then apply it to the ground state of (8)
which for small system sizes can be obtained by brute force
diagonalization.

Let us introduce an iterative algorithm designed to evaluate
the fields that characterize Hamiltonian (8). We take one of
the above described ground states and evaluate the required
correlators 〈Ai〉, 〈Ai+1〉, 〈AiAi+1〉 and 〈Bi〉, 〈Bi+1〉, 〈BiBi+1〉 for
each of the spins, and we use them as input to the trained
neural network. For each spin we obtain the magnitude of the
field strength in the σ x and σ z directions. We follow this step
by numerically removing the found fields from the original
input Hamiltonian. While in a numerical simulation this is a
straightforward task, in a quantum simulation this would be
implemented by adjusting the interaction parameters to cancel
the fields and reinitializing, or by an adiabatic transition
between two Hamiltonians. An implementation of the corre-
sponding set of gates is also possible. We use the “corrected”
state as the new input for the same neural network, remove
the resulting fields, and repeat the procedure iteratively un-
til convergence. The iterative application is not completely
straightforward as β and −β result in the same expectation
values of As and Bp. Hence, the iterative procedure includes
a decision tree for the sign of the field. With these adjust-
ments (addressed in detail in Appendix C) the correct fields
(and therefore the correct Hamiltonian) are found within five
iterations. We illustrate the algorithmic field removal in Fig. 3.

IV. RESULTS

We define two quantities to characterize the performance
of our method. First, we introduce a measure at the level of
the resulting corrected quantum ground states: the probability
that physical qubits pertain to spin flip or phase errors after
the projection onto the stabilizers. Second, we put forward a
criterion at the level of the corrected Hamiltonian. This mea-
sure is simply a distance between the ideal and the corrected
Hamiltonian in a suitably chosen metric.

To formulate the error measure for the corrected states we
draw the connection to standard error correction strategies:
One starts from an arbitrary quantum state and implements a
projection on the eigenspaces of the operators As = ∏

i∈s σ x
i ,

Bp = ∏
i∈p σ z

i by measuring the state of ancillary qubits that
are entangled with star and plaquette operators [40]. This
projection results in an eigenstate of Hamiltonian (1). Us-
ing the measurement outcomes, a decoder identifies single
spin operations that map the state to the ground state of
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FIG. 3. Visualization of the removal of the fields for a small
lattice with arbitrary fields. The left panel shows a possible field
distribution in Hamiltonian (8). The right panel shows the field
distribution after five iterations of our protocol are performed. This
illustrates the arrival at the toric code Hamiltonian (1).

Hamiltonian (1). The decoder will succeed if the probability
of spin and phase flip errors between the projective measure-
ments is lower than a given threshold. This threshold ranges
anywhere between 2%–11% depending on the chosen error
model [42–46,52–55].

For our case we do not start from an arbitrary state, but
from the ground state of the corrected parent Hamiltonian. We
can relate the precision of our method to standard decoding
techniques by calculating the probability that a single physical
qubit will flip its spin or phase when projecting into the
stabilizer eigenspace. The calculation of a single qubit spin
or phase flip can be deduced from the stabilizer expectation
values 〈As〉 and 〈Bp〉 and is detailed in Appendix D.

FIG. 4. Error probability for bit and phase flips (red and blue,
respectively; left-hand axis) and Hamiltonian error (gray; right-hand
axis) as a function of the iteration of the protocol; see text for details.
At each iteration step the field configuration strength is shown (color
scheme same as in Fig. 3).

In Fig. 4, we show the probability of a single bit or phase
flip error as a function of the iteration of our algorithm [56].
The iteration axis also contains pictorial illustrations of the
absolute field strengths on the state. When projecting on
the stabilizer eigenstates from the original faulty eigenstate
we find errors well above the decoding thresholds (typically
above 12%). We are, thus, able to show that even a small
systematic error present in the Hamiltonian engineering can
potentially confuse a decoder. After five iterations we arrive at
a single qubit error probability of order 10−2% [57]. In other
words, if we attempted to decode the initial faulty ground
state, the decoder may fail. After our correction procedure it
is always highly likely to succeed.

Another measure that quantifies the precision of Hamil-
tonian learning can be implemented on the level of the
Hamiltonian directly [30]. This method relies on expanding
the family of Hamiltonians we would like to estimate in a
suitable basis and then measure the distance of the estimated
coefficients from the ideal ones. In particular, the Hamiltonian
is expressed as H = ∑

m cmSm, where {Sm} is an operator
basis with expansion coefficients cm. Once we make sure that
the chosen basis {Sm} is independent of the parameters to be
estimated, the Hamiltonian error simply translates into the
distance

�H = ||ĉtrue − ĉrecovered||2, (9)

where ĉtrue and ĉrecovered are the normalized vectors of exact
and found coefficients, respectively. In our case ĉtrue/recovered

are nonlinear functions of bi = βλi, the parameters the neural
network is estimating. We show this functional dependence to-
gether with the expansion of the Hamiltonian in Appendix D.
The resulting Hamiltonian error is shown as a function of iter-
ations of the protocol in Fig. 4. We normalize the Hamiltonian
error such that the maximal value is one. After five iterations
of the protocol, the distance between expansion coefficients
decreases to the order of 10−3.

Both state and Hamiltonian error explained up to this point
were evaluated under the assumption of perfect experimental
readout. We now briefly discuss how our method performs
when this assumption is relaxed. We assume that the exper-
imental input for the neural network is in the form of the
measured expectation values. Experimental noise would then
enter through these expectation values not being evaluated
correctly. Additionally, estimating an expectation value using
a finite number of samples induces a statistical uncertainty.
We simulated this scenario by adding Gaussian noise on our
numerically evaluated inputs 〈As〉, 〈Bp〉. This type of noise
can be understood as statistical error, resulting from using a
finite number of samples to calculate the expectation values.
In particular, the standard deviation, δ, of the added Gaussian
distribution corresponds to 1/

√
M, where M is the number of

samples used. We show the behavior of the single qubit errors
as well as the Hamiltonian error in Fig. 5. We observe that
even in the presence of Gaussian noise the single qubit error
rate after projection onto the stabilizers is reliably reduced
below 5%.

All simulations so far are conducted for a lattice with 18
spins, as a full quantum simulation is required to simulate the
correction procedure for the nonsolvable model [see Eq. (8)].
However, this restriction is not necessary when it comes to
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FIG. 5. Single qubit error probability and Hamiltonian error as
a function of a standard deviation of the measurement noise. In red
we show the bit flip error, in blue the phase error, and in gray the
Hamiltonian error. The Hamiltonian error is plotted on the right-hand
axis. The results are shown after N = 5 iterations of our protocol.

training of the neural network. In an experiment, the presented
Hamiltonian learning procedure can therefore be applied to
lattice sizes limited only by the computational cost of creating
the training data generated via Monte Carlo sampling. As
a consequence, computation time for the calculation of one
expectation value scales linearly with the number of spins.
While informational completeness might require increasing
the training set for larger lattices, we have not observed
reduction in the reconstruction accuracy for a fixed size of
the training set in a numerical study for up to 2 × 24 × 24
spins. As shown in Fig. 6, the error measure outcomes are
approximately independent of the studied lattice sizes for
fixed training set size. The evaluation of the network (cor-
rection process) for lattices larger than k = 3 (18 spins) can
only be simulated by keeping the model solvable. We want
to emphasize that this restriction appears purely for testing
purposes and is not of relevance in an experimental setup.

V. DISCUSSION

In this work we have introduced a machine-learning-driven
method for scalable quantum Hamiltonian learning based on

FIG. 6. Single qubit error probability and Hamiltonian error as a
function of the lattice size. The used notation is the same as in Fig. 5.

a toy model relevant for quantum information processing, the
toric code. Training the neural network on exactly solvable
models resulted in scalability only limited by the computation
time of Monte Carlo sampling. We have shown that our
method performs well even for states that lie outside this
class of analytical solutions. Using knowledge of topological
phases and the stability of the toric code to a large class
of nonlocal perturbations, we justified the restriction of the
correction to the topological phase. However, an expansion of
the correction process outside of the topological phase should
be a straightforward procedure.

Our work is complementary to standard approaches to
quantum error correction. More specifically, the performance
of a standard decoder is significantly improved when com-
bined with the procedure introduced here. When the Hamilto-
nian is engineered precisely, logical errors are suppressed. We
provided a tool for precise engineering based on measuring
a minimal set of local expectation values scaling linearly
with number of qubits. Implementing a practical protocol
that incorporates both the Hamiltonian learning techniques
presented here and stabilizer-measurement-based decoders
would therefore be a natural step toward running a fault-
tolerant quantum computation.
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APPENDIX A: SUPPLEMENTARY CALCULATIONS

The ground state structure in limiting cases of the disor-
dered toric code model introduced throughout this work is
detailed in this section.

1. Normalization factor

The ground state of the disordered Hamiltonian defined in
Eq. (6) is of the form

|�〉 = 1√
Z

e
β

2

∑
i λiσ

z
i |GS〉TC. (A1)

To explain the normalization factor Z , we rewrite the toric
code ground state as

|GS〉TC = 1

2

∏
s

(1 + As)|0〉 (A2)

= 1

2

∑
ni=0,1

i=1,...,k2

k2∏
i=1

Ani
si
|0〉 (A3)

=
∑
g∈G

g|0〉, (A4)
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where G denotes the Abelian group whose elements g are all
possible spin flip operations defined by the action of products
of vertex operators on an initial spin configuration [50]. In
the toric code, periodic boundary conditions in all directions
are imposed leading to the relation

∏
s As = 1. The group

elements of the group G are only determined modulo the
factor

∏
s As. As a consequence, the number of elements in

the group is equal to half the number of possible products of
vertex operators. We can rewrite the ground state |�〉 using
the introduced notation

|�〉 = 1√
Z

∑
g∈G

e
β

2

∑
i λiσ

z
i (g)g|0〉. (A5)

Here, σ z
i (g) can take the values ±1. More concretely, σ z

i (g)
corresponds to the eigenvalue of the operator σ z

i on the
eigenstate g|0〉. The normalization factor (partition function)
has the following form:

Z :=
∑
g∈G

eβ
∑

i λiσ
z
i (g). (A6)

2. Disorder in the limit of small fields

In particular cases, the disorder defined in Eq. (6) simplifies
to σ z (σ x) single spin fields. In the limiting case of small fields
(β � 1), we expand the added term as

e−β
∑

i∈s λiσ
z
i ≈ 1 − β

∑
i∈s

λiσ
z
i . (A7)

Terms of higher order containing β2, β3, and β4 are ne-
glected as a result of the approximation. Hence, we arrive
at a model containing only σ z fields acting on single spins,
and interactions between spins vanish. More specifically, the
Hamiltonian of the disordered model in this limit is given by
[50]

H ≈ HTC − 2β
∑

i

λiσ
z
i + const., β � 1. (A8)

3. Disorder in the limit of sparse fields

A similar approximation can be made for sufficiently
sparse fields. We denote with “sufficiently sparse” here a field
configuration where at most one field parameter λi per vertex
is not equal to zero. If this condition is met, all interactions
between spins vanish and only fields acting on single spins
remain:

e−β
∑

i∈s λiσ
z
i = cosh

(
βλs0

)
1 − sinh

(
βλs0

)
σ z

s0
. (A9)

The index s0 denotes the spin in vertex s for which λs0 �= 0.
We insert this simplification into the Hamiltonian defined in
Eq. (6) and arrive at

Hsparse = HTC −
∑
i∈U

2 sinh(βλi )σ
z
i + const. (A10)

Here, U is defined as the sparse set of spins i with field
strength λi �= 0. We conclude that we arrive at a model con-
sisting of the toric code model with σz fields and no additional
interactions.

FIG. 7. The mapping to a classical (pseudo)spin model. The
introduced pseudospins on the lattice sites are marked in green, the
spins (qubits) on the edges in gray. The mapping is given by the
relation σ z

i (g) = θsθs′ for a spin and two adjacent pseudospins.

APPENDIX B: TOPOLOGICAL PHASES

We analyze topological order and phase transitions of the
disordered toric code model in this section. For this purpose,
we map the system to a classical spin model as done in [50].
The ground state of the modified toric code (6) is given by
[Eq. (A5)]

|�〉 = 1√
Z

∑
g∈G

e
β

2

∑
i λiσ

z
i (g)g|0〉. (B1)

It should be noted that the group element g is only determined
by the product

∏
s∈Si

As modulo the product of all vertex oper-
ators, due to periodic boundary conditions. We can map every
product of vertex operators to a pseudospin configuration,
defined as follows: Artificial degrees of freedom θs ∈ {−1, 1}
are introduced on all vertices s. The value of θs determines
whether the vertex s is flipped (contained in the product of
vertex operators we map the pseudospin configuration to).
More specifically, the vertex s is flipped if θs = −1. We can
now make a change of variables. The eigenvalue σ z

i (g) of the
spin i depends on the two adjacent vertices s, s′ being flipped
or not. As a consequence, this eigenvalue is given by σ z

i (g) =
θsθ

′
s, resulting in a mapping between the spin configuration

{σ z
i (g)} and the pseudospin configuration {θs} with a gauge

freedom of an overall factor of (−1). The mapping is further
illustrated in Fig. 7.

Let us define an Ising model on the pseudospin configura-
tion with the Hamiltonian given by [50,51]

HIsing = −
∑
〈s,s′〉

Js,s′
s
s′ . (B2)

The connection to the field parameters β and {λi} is given by
the coupling constant Js,s′ . In particular, Js,s′/(kBT ) := βλi,
where kBT is a product between the Boltzmann constant kB
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and the temperature T . The edge with adjacent sites s and s′ is
denoted by the index i. An indication of a connection between
the phase transition of the quantum model and the classical
spin model can be obtained from the partition function of the
defined Ising model

ZIsing =
∑
{
s}

e
1

kBT

∑
〈s,s′ 〉 Js,s′
s
s′ (B3)

=
∑
{
s}

eβ
∑

〈s,s′ 〉 Js,s′
s
s′ . (B4)

By comparing to the partition function of the disordered toric
code (A6) model we observe that ZIsing = 2Z [58].

We can show that the phase transition of the disordered
toric code is mapped to the phase transition of the Ising model
by considering a well-known measure to detect quantum
phase transitions, the fidelity susceptibility [59]. The fidelity
susceptibility is defined as

χF = −∂2 ln〈�(β )|�(β + �β )〉
∂ (�β )2

∣∣∣∣
�β=0

. (B5)

Here, the state |�(β )〉 is a ground state of a given Hamiltonian
depending on the parameter β, for our case the state is defined
in Eq. (7). A quantum phase transition is indicated via a maxi-
mum or divergence in the fidelity susceptibility χF [60,61]. In
particular, this property has been shown for generic second-
order symmetry-breaking quantum phase transitions [62]. It
has further been suggested by numerical studies [58] that
the fidelity susceptibility is also able to detect a topological
phase transition. The fidelity susceptibility for the introduced
disordered toric code model is calculated as

χF = 1

4

∑
g∈G

[ ∑
i λiσ

z
i (g)

]2
eβ

∑
i λiσ

z
i (g)Zz,0

Z2
z,0

− 1

4

{∑
g∈G

[ ∑
i λiσ

z
i (g)

]
eβ

∑
i λiσ

z
i (g)

}2

Z2
z,0

. (B6)

We can understand the connection between the phase
transition of the quantum toric code model and the phase
transition of the classical spin model by examining the heat
capacity of the mapped Ising model:

Cv = β2 ∂2 ln ZIsing

∂β2
(B7)

= β2 ∂2

∂β2
ln

(
2

∑
g

eβ
∑

i λiσ
z
i (g)

)
= 4β2χF . (B8)

We observe that the heat capacity is proportional to the fidelity
susceptibility of the disordered toric code model. A similar
relation has already been found in [58] for the fidelity metric,
an equivalent measure to the fidelity susceptibility regarding
the characterization of quantum phase transitions. For the dis-
ordered toric code model, both fidelity measures simplify to
the same expression. As both the heat capacity and the fidelity
susceptibility indicate a phase transition via a maximum or
divergence respectively, we conclude that a phase transition
in the classical spin model at a critical temperature T = Tc

indicates a quantum phase transition in the disordered toric
code model at critical field strength βc = 1

kBTc
.

We now understand that a phase transition in the de-
fined Ising model indicates a quantum phase transition of
the disordered toric code model. It remains to be examined
whether the indicated quantum phase transition is topological,
i.e., whether the transition is made to a topologically trivial
phase. This question has already been discussed in [50,51]. In
particular, it has been shown that the paramagnetic phase of
the Ising model maps to the topological phase of the perturbed
toric code model, whereas the ferromagnetic phase maps to
the topologically trivial phase. The antiferromagnetic phase
also maps to the topologically trivial phase due to sublattice
symmetry. The argument for the mapping of Ising phases
to topological phases holds only deep in the corresponding
phases in the case of arbitrary field strengths. Combined with
the discussion of the fidelity susceptibility, we can conclude
that it also holds close to the phase transition and that the
topological phase transition is sharp.

Let us examine how the field configuration {λi} influences
the position of the phase transition at critical field strength
βc. A complete description is in general a daunting task due
to the number of degrees of freedom related to the field
configuration {λi}. However, we can gain insights about the
stability of the topological phase when focusing on a more
conceptual {λi}-β phase diagram (see Fig. 2). In particular, we
aim to show for which field configurations phase transitions
out of the topological phase occur at all.

In order to analyze the relation between field configuration
and phase transition, we examine two limiting cases. We start
with a configuration with λi = 1 ∀i. This configuration is
mapped to an Ising model with equal bond strengths, for
which the phase transition occurs at critical field strength
βc ≈ 0.44. Let us ask a question as to whether we can modify
the field configuration such that no phase transition occurs
anymore. As long as all fields are strictly greater than 0,
there can always be found a critical field strength such that
the system leaves the topological phase. More concretely, the
value of β can always be chosen large enough such that every
product of fields βλi is larger than βc ≈ 0.44. Therefore, a
phase transition must occur. Due to sublattice symmetry, the
same statement holds for all fields strictly smaller than 0.

There are two options to arrive at a configuration where no
phase transition occurs. This can be achieved by obtaining a
configuration of neither only strictly positive nor only strictly
negative fields. One option lies in setting a fraction of fields
equal to 0 and arriving at a mixture of strictly positive fields
and fields equal to 0 (or strictly negative fields and fields
equal to 0). Here, we can examine the critical concentration
of fields that have to be removed such that no phase transition
occurs. In other words, we are interested in how sparse the
configuration has to be such that the topological phase is never
left. To answer this question, we consider a well-known prob-
abilistic classical spin model: an Ising model with random
bond dilution. In particular, the Hamiltonian of the diluted
Ising model is given by

H = −
∑
〈s,s′〉

Js,s′θsθ
′
s, (B9)

P(Js,s′ ) = qδ(Js,s′ ) + (1 − q)δ(Js,s′ − 1), (B10)
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FIG. 8. Phase diagram of the two probabilistic classical spin
models. Temperature T on the y axis is plotted against dilution
probabilities q and p. The ferromagnetic (F) and paramagnetic (PM)
phase and the correspondent topological order (TO) are marked for
each model. The Boltzmann constant kB is set to 1.

corresponding to

β = 1

kBT
, P(λi ) = qδ(Js,s′ ) + (1 − q)δ(Js,s′ − 1).

Here, P(Js,s′ ) is the probability distribution of a bond strength,
translating into the probability distribution P(λi ) of a field λi

with i denoting the edge connecting the sites s and s′. The
question of the critical fraction of fields set to zero hence
corresponds to a critical dilution probability q. The model has
been well studied [63–66] and the critical concentration found
to be qc = 0.5. In other words, the presence of the background
field on less than half of the spin cannot drive the system out
of the topological phase regardless of the field strength.

Another way one can modify the field configuration in
order to preserve topological order is to flip signs of a fraction
of fields. We can make use of a probabilistic Ising model,
which has already been studied in connection to the disordered
toric code model [51]. In this model, we consider a bond
dilution determined by the probability distribution

P(Js,s′ ) = pδ(Js,s′ + 1) + (1 − p)δ(Js,s′ − 1), (B11)

where p is the probability that the sign of a bond strength is
flipped. The critical value of p has been found to be pc ≈
0.12 [63–66]. Due to sublattice symmetry, the phase diagram
for this model is symmetric with respect to p = 0.5. Hence,
a second critical value occurs at pc = 0.88. The J-T phase
diagram of both models is well known and shown in Fig. 8.

The found relations between field configuration and phase
transition are summarized into a conceptual phase diagram,
shown in Fig. 2. The field configuration {λi} and the field
strength β are encoded as angle and amplitude in the phase
diagram. The field distribution {λi} is varied continuously
with change of angle in between the configurations explicitly
marked in the diagram. The depicted configurations either
mark a phase transition or correspond to a limiting case of
field strengths. An exemplary field distribution and a small di-
agram indicating the percentages of occurring field strengths
illustrate the depicted configurations. The field configurations
on the left-hand side do not contain fields of different signs
simultaneously. On the right-hand side, all fields are different

from 0. The phase diagram is symmetric with respect to its
horizontal axis as a result of sublattice symmetry.

APPENDIX C: NEURAL NETWORK

1. Network training and architecture

The architecture and training process of the artificial neural
network used for the Hamiltonian learning process is detailed
in this section. We have introduced in the main text a class of
Hamiltonians of the form

H =
∑

s

(−As + e− ∑
i∈s bz

i σ
z
i ) +

∑
p

(−Bp + e− ∑
i∈p bx

i σ
x
i ).

(C1)

Our algorithm aims at determination of the parameters {bz
i }

and {bx
i }.

We found the measurement set used as an input for the
network heuristically. This set is obtained by minimizing the
amount of measurements containing sufficient information
to determine the Hamiltonian parameters. The result of this
search is the set of expectation values 〈As〉, 〈As′ 〉, and 〈AsAs′ 〉,
which proves to be sufficient to determine the fields |bz

i |. Sym-
metry leads to the equivalent set of plaquette operators 〈Bs〉,
〈Bs′ 〉, and 〈BsBs′ 〉 determining fields |bx

i |. As a result, when
the trained network receives as input the vertex stabilizer
expectation values, it outputs the field |bz

i | on the qubit i with
adjacent vertices s, s′. Analogously, when given the inputs
〈Bp〉, 〈Bp′ 〉, and 〈BpBp′ 〉, it returns |bx

i | for qubit i with adjacent
plaquettes p and p′. We can combine the ability of neural
networks to generalize knowledge with the symmetry of the
model with respect to exchange of vertices and plaquettes.
It follows that it is sufficient to train on the solvable model
containing only fields in one direction, and use the network
for evaluation of the general nonsolvable model. Even though
the training is restricted to either vertex stabilizer expectation
values or plaquette expectation values, the symmetry ensures
that both types of expectation values can be taken as input
for evaluation and consequently both field configurations {bz}
and {bx} can be determined. We choose to train on the solvable
model with σ z-type fields:

H =
∑

s

(−As + e− ∑
i∈s bz

i σ
z
i ). (C2)

Thus, the network is trained on the inputs 〈As〉, 〈As′ 〉, and
〈AsAs′ 〉. It is furthermore sufficient to train for a field strength
at a specific position (spin), as the measurements for a field at
a different position are translationally invariant with respect
to the position of the field. In other words, we just choose a
single spin to evaluate the expectation values and create the
training set by changing the size of the lattice and distribution
of the background fields.

We design a neural network with three input neurons,
three hidden layers, and one output neuron. The network
architecture is depicted in Fig. 9. As we estimate a continuous
parameter, we calculate the loss function as mean squared
distance between the estimated value boutput and the correct
field strength blabel,

CMS = ||�blabel − �boutput||2
BS

, (C3)
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128

150

128

FIG. 9. The illustrated network consists of 3 input neurons
(blue), 3 hidden layers with 128, 150, and 128 neurons, and one
output neuron (red) to predict the absolute value of the field strength.
The same network can be used to estimate the absolute value of bx

i

with given inputs 〈Bp〉, 〈Bp′ 〉, and 〈BpBp′ 〉.

where the vector �boutput/label corresponds to the field vector of
the network output and labeled data, respectively. The batch
size is denoted by BS.

The network is trained separately for each lattice size k,
as the stabilizer expectation values vary with lattice size.
Training data are generated by calculating the vertex stabilizer
expectation values via Monte Carlo sampling for sufficiently
distinct field configurations {bz

i }, such that the network learns
to neglect the contribution in the expectation values from
fields we do not aim to determine. More concretely, every
field strength is taken from a uniformly random distribution
in the interval [−bmax, bmax] and the label is chosen to be the
absolute value of the field strength at position i. The maximal
value of the field strength bmax = 1.7 is selected such that field
configurations are included inducing a probability of a single
qubit error after projection into the stabilizer eigenspace larger
than the error threshold of standard decoders. We use a
training set of 7450 examples. The size of the training set is
identical for all lattice sizes. We use this restriction in order to
be able to analyze scaling behavior (see Fig. 6).

In Fig. 10, we show that training and evaluation loss
(50 evaluation examples) both converge after less than 104

training steps. The training results for the lattice length k = 16
are plotted. We consider statistical uncertainty in the input
expectation values as a main source for the nonzero loss the
training converges to, which is similar for all tested lattice
sizes. In particular, the neural network has been trained for
the lattice sizes k = 3, 4, 8, 12, 16, 20, 24.

2. Determining the sign

We use a trained neural network to determine the absolute
value of bz

i and bx
i by feeding in stabilizer expectation values.

These expectation values do not contain sufficient information
to determine the sign of bz

i and bx
i . In order to find the sign,

for each spin we additionally measure the expectation values
〈σ z

i 〉 and 〈σ x
i 〉. We show in the following that the sign of

the field strength can be approximated as the sign of the

FIG. 10. Training loss (blue) and evaluation loss (red) calculated
as mean squared loss against number of training steps for a lattice of
length k = 16.

corresponding expectation value 〈σ z
i 〉 and 〈σ x

i 〉. In particular,
we demonstrate this approximation for a model containing
fields in both directions with an additional restriction ensur-
ing solvability. Exact diagonalization and application to the
complete Hamiltonian learning process for the analytically
nonsolvable model discussed throughout this work confirm
that this decision mechanism to determine the sign holds
approximately also for the generalized model. Let us examine
the restriction added on the model to keep it solvable. For this
purpose, we introduce the sets Iz and Ix, which denote the set
of spins for which bz

i �= 0 and bx
i �= 0, respectively. We set

Iz ∩ Ix = ∅. In different words, only a field in one direction
can be present on each spin. The Hamiltonian is then given by

H =
∑

s

(−As + e− ∑
i∈s∩Iz bz

i σ
z
i )

+
∑

p

(−Bp + e− ∑
i∈p∩Ix bx

i σ
x
i ). (C4)

It can straightforwardly be verified that the un-normalized
ground state is of the form

|ψ〉 = e
1
2

∑
i∈Ix

bx
i σ

x
i e

1
2

∑
i∈Iz bz

i σ
z
i |GS〉TC. (C5)

As we aim to determine a sign, we can ignore overall factors.
Hence, we will not discuss normalization here. We calculate
the sign of the expectation value 〈σ z

i 〉 measured on the intro-
duced ground state with the restriction Iz ∩ Ix = ∅:

sgn
(〈
σ z

i

〉)
= sgn

(〈�|σ z
i |�〉)

= sgn

⎛
⎝ebz

i

∑
g∈G1⊂G

e
∑

j, j �=i bz
jσ

z
j (g) − e−bz

i

∑
g∈G2⊂G

e
∑

j, j �=i bz
jσ

z
j (g)

⎞
⎠

= sgn(ebz
i A1 − e−bz

i A2). (C6)

Any overall factors occurring during the calculation are elim-
inated by the sign function sgn. In particular, all dependen-
cies on the parameters bx

i can be factorized to an overall
factor using the condition Iz ∩ Ix = ∅ and therefore vanish. In
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addition, we introduced the group G1 as the subgroup G1 ⊂ G
containing all elements g for which σ z

i (g) = 1. Analogously,
the group G2 is defined such that σ z

i (g) = −1 for g ∈ G2. The
factors A1 and A2 are given by

A1 =
∑

g∈G1⊂G

e
∑

j, j �=i bz
jσ

z
j (g), A2 =

∑
g∈G2⊂G

e
∑

j, j �=i bz
jσ

z
j (g).

We can relate the sign of the expectation value 〈σ z
i 〉 to the sign

of the parameter bz
i by introducing the approximation A1 ≈

A2 [67]. In addition, we make use of the fact that A1, A2 > 0.
Combining the two relations, we arrive at

sgn
〈
σ z

i

〉 ≈ sgn(ebz
i − e−bz

i ),

where we dropped the overall factor A1. Henceforth, the
relations

bz
i > 0, if

〈
σ z

i

〉
> 0, bz

i < 0, if
〈
σ z

i

〉
< 0,

hold approximately. Symmetry implies the analogous rela-
tions for the parameter bx

i and the expectation value 〈σ x
i 〉.

We can summarize the Hamiltonian learning process in two
steps. In the first step, the stabilizer expectation values 〈As〉,
〈As′ 〉, 〈AsAs′ 〉 and 〈Bp〉, 〈Bp′ 〉, 〈BpBp′ 〉 are measured for each
spin and the results fed into the trained neural network, which
outputs the absolute values of the field configurations. In the
second step, 〈σ z

i 〉 and 〈σ x
i 〉 are measured for each spin and the

signs of the parameter determined correspondingly. With the
obtained field strengths, the system can be corrected toward
the pure toric code. The process can be iterated to achieve
optimal results.

APPENDIX D: ERROR MEASURES

1. Probability of a single qubit error

On the level of quantum states, we have introduced as an
error measure the probability that a single qubit flips its spin
or phase after projection into the stabilizer eigenspace. In par-
ticular, this probability allows us to assess the improvement
our introduced method can in principle bring to quantum error
correction. More concretely, if the calculated probability is re-
duced below the decoder-specific threshold, the performance
of a standard decoder applied to the system is significantly
improved. Let us make two clarifications to refine the relation
to quantum error correction. The single qubit error threshold is
usually defined with respect to the probability of a single qubit
error per correction cycle [31,42–45], where a correction cycle
corresponds to measurements of stabilizers and applied single
qubit gates. Here, we examine a single cycle and hence, it is
sufficient to calculate the probability of a single qubit error. In
addition, the examined disorder throughout this work is not of
the form of single qubit spin or phase flip errors. Nevertheless,
any disorder is translated to spin and phase flip errors by
projective measurements of the stabilizers. Consequently, we
explain in this section how to calculate the single qubit error
probability after projecting into the toric eigenspace.

Instead of simulating the projective measurements and
“counting” the single qubit errors, we calculate the single
qubit error probability in a way that does not rely on full
quantum simulation and is hence also accessible for large
lattice sizes.

We determine the probability of a physical phase flip (spin
flip), by calculating as a first step the probability for an
arbitrary vertex (plaquette) to be flipped and deducing the
single qubit error probability. We explain the calculation on
the example of vertex flips and single qubit phase flip errors.
It can be repeated analogously for the case of plaquette flips
and single qubit bit flip errors.

Calculating the stabilizer flip rate. We deduce the vertex
stabilizer flip rate using the expectation values 〈As〉, which
have already been calculated during the Hamiltonian learning
procedure. Every vertex has the eigenvalues {±1}. Thus, we
can make an approximation and rewrite a vertex expectation
value as

〈As〉 = −ps + (1 − ps). (D1)

Here, the probability of the vertex As to be flipped (projected
into an eigenstate with eigenvalue −1) is given by ps. We
invert the relation to find the probability ps:

ps = 1 − 〈As〉
2

. (D2)

To obtain an average vertex flip rate p, we average over all
vertices:

p := 1

k2

∑
s

ps = 1 − 1
k2

∑
s〈As〉

2
. (D3)

Calculating the error rate. We now understand how to
obtain the probability of a vertex flip. We proceed by using
the vertex flip probability to deduce the probability of a single
qubit phase flip er as follows.

We calculate the vertex flip rate p for different probabilities
of a single qubit phase flip by numerically sampling. In partic-
ular, we start with a lattice where no phase is flipped and flip
each phase with probability er . The vertex flip probability p is
obtained by repeating the procedure, counting the number of
flipped vertices, and averaging. We arrive at a function p(er ).
The inverse function er (p) and as a result the probability of a
single qubit error can be found by numerical regression.

The function p(er ) is independent of lattice size in the
parameter range we are considering here. We verified this
by calculating the vertex flip probability for the single qubit
phase flip probabilities er ∈ [0, 0.2] for the lattice sizes k =
8, 12, 16, 20, 24, 28, 32, where the total number of spins is
equal to 2k2 (see Fig. 11).

We can conclude that it is sufficient to find a numerical fit
for the function of one lattice size. To minimize uncertainties
caused by the statistical error of the simulation, we pick the
largest simulated lattice size, k = 32, to fit the curve. We use
an ansatz of a polynomial of degree 4 and minimize the mean
squared distance. The curve is fitted up to a mean squared loss
of lms ≈ 10−7 by the function

er (p) = 0.2187p + 0.72419p2 − 2.5398p3 + 4.90118p4.

(D4)
Both numerically simulated data and the fit are shown in
Fig. 12. The obtained function returns the probability of a
single qubit phase flip given the vertex stabilizer expectation
values and similarly applies to single qubit bit flip errors
given plaquette expectation values. Full quantum simulation
for k = 3 confirms these results.
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FIG. 11. The relation between single qubit error rate er on the
x axis and vertex flip rate p on the y axis obtained by numerical
sampling is shown for the lattice sizes k = 8, 12, 16, 20, 24, 28, 32.

2. Measure for Hamiltonian error

An error measure on the level of Hamiltonian learning is
given by the reconstruction error �H [30]. In this section,
we detail the calculation of this Hamiltonian error for the
disordered toric code model. As a reminder, �H is given by
(9)

�H = ||ĉtrue − ĉrecovered||2, (D5)

where the vector ĉ corresponds to the normalized coefficient
vector ĉ = �c

||c|| . The coefficients c are obtained by expanding
the Hamiltonian in a suitable basis S,

H =
∑

m

cmSm, (D6)

where all the parameters that we estimate are contained in
the coefficients, not in the basis. Let us expand the disordered

FIG. 12. The numerically obtained relation between single qubit
error rate er and vertex flip rate p for k = 32 are plotted together with
the fitted curve (see text for details).

toric Hamiltonian in an operator basis:

H =
∑

s

(−As + e− ∑
i∈s bz

i σ
z
i ) +

∑
p

(−Bp + e− ∑
i∈p bx

i σ
x
i )

=
∑

s

[
−

∏
i∈s

σ x
i +

∏
i∈s

cosh
(
bz

i

)
1

−
∑
i∈s

sinh
(
bz

i

) ∏
j∈s, j �=i

cosh
(
bz

j

)
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i
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. (D7)

Each term in the expansion of the Hamiltonian is a product
of the form ciSi, with ci being a coefficient and Si an operator.
The dependence on the parameters bz

i and bx
i is fully contained

in the coefficients ci; the operator basis is independent of
the parameters. More specifically, the operator basis resulting
from the Hamiltonian expansion is a combination of the unit
matrix and products of Pauli matrices. We illustrate the sep-
aration into coefficients and basis by rewriting all occurring
operators as Si, an (arbitrarily) numbered basis element. The
expansion of the Hamiltonian can be divided in two parts:
a sum over all vertices s and a sum over all plaquettes p.
For a simpler basis numbering, all basis elements (operators)
occurring in the sum over vertices are denoted by Ss,i and
the operators in the sum over plaquettes are denoted by Sp,i.
Inserting the basis elements yields

H =
∑

s

[
−1Ss,0 +

∏
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i
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(
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)
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(
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Ss,5+4i+ j

−
∑

j<k<l∈s
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cosh
(
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)
sinh

(
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j

)
sinh

(
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)
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(
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l

)
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∏
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sinh
(
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Ss,15+i

]
+ (

s ↔ p, x ↔ z, bz
i ↔ bx

i

)
(D8)

=
∑

s,i

cs,iSs,i +
∑
p,i

cp,iSp,i =
∑

m

cmSm. (D9)

The field parameters bz
i and bx

i only occur in the coeffi-
cients cm. The operator basis {Sm} is the joined set of the
basis elements contained in {Ss,i} and in {Sp,i}. Similarly, the

033092-12
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coefficients {cm} are given by {cm} = {cs,i} ∪ {cp,i} and can
be read off easily. Having hereby deduced the coefficients

from the field parameters {bz
i } and {bx

i }, we can calculate the
Hamiltonian error �H using Eq. (D5).
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[62] P. Zanardi and N. Paunković, Ground state overlap and quantum
phase transitions, Phys. Rev. E 74, 031123 (2006).

[63] A. Honecker, M. Picco, and P. Pujol, Universality Class of
the Nishimori Point in the 2D ± J Random-Bond Ising Model,
Phys. Rev. Lett. 87, 047201 (2001).

[64] M. Picco, A. Honecker, and P. Pujol, Strong disorder fixed
points in the two-dimensional random-bond Ising model, J. Stat.
Mech. (2006) P09006.

[65] J. D. Reger and A. Zippelius, Three-Dimensional Random-
Bond Ising Model: Phase Diagram and Critical Properties,
Phys. Rev. Lett. 57, 3225 (1986).

[66] I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Random-
bond Ising model in two dimensions: The Nishimori line and
supersymmetry, Phys. Rev. B 63, 104422 (2001).

[67] The two factors are not exactly equal, as the spin i is flipped
as part of a vertex and not independently. As a consequence,
the value of σ z

i (g) is correlated with the values of the remaining
spins in the two adjacent vertices.

033092-14

https://doi.org/10.1103/PhysRevLett.108.023005
https://doi.org/10.1103/PhysRevLett.108.023005
https://doi.org/10.1103/PhysRevLett.108.023005
https://doi.org/10.1103/PhysRevLett.108.023005
https://doi.org/10.1038/nphys1151
https://doi.org/10.1038/nphys1151
https://doi.org/10.1038/nphys1151
https://doi.org/10.1038/nphys1151
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nature09801
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevLett.108.180501
http://arxiv.org/abs/arXiv:1207.1443
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
http://arxiv.org/abs/arXiv:1810.07207
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.1103/PhysRevA.94.012318
https://doi.org/10.1103/PhysRevA.94.012318
https://doi.org/10.1103/PhysRevA.94.012318
https://doi.org/10.1103/PhysRevA.94.012318
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevB.77.054433
https://doi.org/10.1103/PhysRevB.77.054433
https://doi.org/10.1103/PhysRevB.77.054433
https://doi.org/10.1103/PhysRevB.77.054433
https://doi.org/10.1103/PhysRevB.83.075124
https://doi.org/10.1103/PhysRevB.83.075124
https://doi.org/10.1103/PhysRevB.83.075124
https://doi.org/10.1103/PhysRevB.83.075124
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.22331/q-2018-05-24-68
http://arxiv.org/abs/arXiv:1809.06640
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevA.99.052351
https://github.com/cmt-qo/cm-toricCode
https://doi.org/10.1103/PhysRevA.78.010301
https://doi.org/10.1103/PhysRevA.78.010301
https://doi.org/10.1103/PhysRevA.78.010301
https://doi.org/10.1103/PhysRevA.78.010301
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1209/0295-5075/87/10003
https://doi.org/10.1209/0295-5075/87/10003
https://doi.org/10.1209/0295-5075/87/10003
https://doi.org/10.1209/0295-5075/87/10003
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://doi.org/10.1088/1742-5468/2006/09/P09006
https://doi.org/10.1103/PhysRevLett.57.3225
https://doi.org/10.1103/PhysRevLett.57.3225
https://doi.org/10.1103/PhysRevLett.57.3225
https://doi.org/10.1103/PhysRevLett.57.3225
https://doi.org/10.1103/PhysRevB.63.104422
https://doi.org/10.1103/PhysRevB.63.104422
https://doi.org/10.1103/PhysRevB.63.104422
https://doi.org/10.1103/PhysRevB.63.104422

