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Bath-mediated interactions between driven tracers in dense single files
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Single-file transport, where particles cannot bypass each other, has been observed in various experimental
setups. In such systems, the behavior of a tracer particle (TP) is subdiffusive, which originates from strong
correlations between particles. These correlations are especially marked when the TP is driven and leads to
inhomogeneous density profiles. Determining the impact of this inhomogeneity when several TPs are driven
in the system is a key question, related to the general issue of bath-mediated interactions, which are known to
induce collective motion and lead to the formation of clusters or lanes in a variety of systems. Quantifying this
collective behavior, the emerging interactions, and their dependence on the amplitude of forces driving the TPs
remains a challenging but largely unresolved issue. Here, considering dense single-file systems, we analytically
determine the entire dynamics of the correlations and reveal out-of-equilibrium cooperativity and competition
effects between driven TPs.
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The motion of particles in narrow channels in which par-
ticles cannot bypass each other is known as single-file diffu-
sion. Such systems have been studied in various experimental
setups with zeolites [1,2], microchannels [3,4], nanochannels
[5], and simulations of carbon nanotubes [6]. Key features,
on the theoretical side, involve the existence of a subdiffusive
scaling for the mean position of a given particle [7,8] and
strong correlations between particles [9].

The basic phenomenology of the single-file transport is
well captured by the symmetric exclusion process (SEP). In
this paradigmatic model of crowded equilibrium systems, par-
ticles perform symmetric random walks on a one-dimensional
lattice with the constraint of at most a single occupancy
of each lattice site. Different facets of the SEP have been
scrutinized (see Refs. [8,10–15]), including several important
extensions to out-of-equilibrium situations. In particular, the
mean displacement [16], as well as all higher-order cumulants
[17], of an unbiased tagged particle (TP) placed initially at the
shock point of a steplike density profile has been determined.
Moreover, for a SEP with a single biased TP (due to either an
energy consumption or an external force), the mean displace-
ment of the latter [18,19] and the higher-order cumulants in
the dense limit [20] have been calculated and shown to grow
sublinearly as

√
t . Here the particles accumulate in front of

the TP and are depleted behind it, which results in an inhomo-
geneous, nonstationary spatial distribution of particles.

A general open question concerns situations when several
biased TPs are introduced in an otherwise quiescent medium
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of bath particles. The TPs are then expected to entrain the
bath particles in a directional motion, which brings the system
out of equilibrium and gives rise to effective bath-mediated
interactions (BMIs) between the TPs. Such BMIs potentially
lead to self-organization, as observed in systems as diverse as
colloidal solutions [21–30], nearly critical fluid mixtures [31],
dusty complex plasmas [32], and pedestrian counterflows
[33].

Quantifying the emerging interactions between biased TPs
and the ensuing collective behavior is thus a key issue which
however remains largely unresolved. Here, modeling a host
medium as a dense SEP, we analytically determine the tempo-
ral evolution of all correlation functions, reveal intrinsically
out-of-equilibrium cooperativity and competition effects be-
tween multiple TPs, and quantify BMIs.

The quiescent host medium is modeled as a SEP which
involves a high density ρ (ρ → 1) of hard-core bath particles
performing symmetric random walks (with unit jump rate)
on a one-dimensional lattice. We then tag N particles at
initial positions X 0

j (see Fig. 1). These TPs are biased: The
jth TP jumps to the left (right) with probability (1 − s j )/2
[(1 + s j )/2]. The bias s j ∈ (−1, 1) may be due either to an
“activity” of the particle or to an external force f j , in which
case one has the detailed balance condition eβ f j = 1+s j

1−s j
, with

β the reciprocal temperature.
We aim at determining the correlations between the

TPs, embodied in the so-called cumulant-generating func-
tion ψ (k, t ) ≡ ln〈eik·Y(t )〉, where k = (k1, . . . , kN ) and Y =
(Y1, . . . ,YN ), with Yj (t ) = Xj (t ) − X 0

j the displacement of the
jth TP. The cumulants are denoted by 〈•〉c and defined by the
expansion

ψ (k, t ) =
∞∑

p1,...,pN =0

(ik1)p1 · · · (ikN )pN

(p1 + · · · + pN )!

〈
Y p1

1 · · ·Y pN
N

〉
c. (1)
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FIG. 1. System with two tagged particles. All particles perform
random walks with unit jump rate, constrained by hard-core exclu-
sion. Bath particles jump to the left or right with probability 1/2.
The TPs jump with probabilities (1 ± s j )/2. L is the initial distance
between TPs.

In densely populated single files (ρ → 1), the dynamics of
the system can be reformulated in terms of independent vacan-
cies. In essence, this amounts to neglecting events where two
vacancies interact simultaneously with any TP [20,34]. Our
approach is based first on considering an auxiliary problem
involving a single vacancy, initially at position U . By counting
all the interactions of this vacancy with the TPs, we determine
the probability pU (Y, t ) that the TPs have displacements Y at
time t . Then, for a density of vacancies ρ0 = 1 − ρ → 0, the
cumulant-generating function reads [35]

lim
ρ0→0

ψ (k, t )

ρ0
=

∑
U /∈{X 0

i }
[ p̃U (k, t ) − 1], (2)

where p̃U (k, t ) is the Fourier transform of pU (Y, t ) and can
be expressed in terms of first-passage quantities of simple
random walks with or without absorbing sites [36]. Analysis
of the explicit expression of the cumulant-generating function
for densely populated single files [35] allows us to draw a
number of important conclusions, which we present below.

Bath-mediated binding. As expected, at short times, the
TPs move independently subject to their own biases. Our first
finding is that, at long times and at high particle density,
they are moving as a single TP. More precisely, in the long-
time limit the N-TP cumulants are given by 〈Y1 · · ·Y qN

N 〉c =
〈Zq1+···+qN 〉c for positive integer q j , where Z = ∑N

j=1 Yj/N is
the displacement of the center of mass. At high density, even
and odd cumulants of Z satisfy

〈Z (t )2n〉c

ρ0
= 〈Z (t )2n+1〉c

ρ0S
=

√
2t

π
, (3)

where S = tanh(βF/2) is the effective bias, F = ∑N
j=1 f j is

the effective force, and the ratio 〈•〉/ρ0 is understood as the
limit ρ0 → 0. Equation (3) implies in particular that for any
number of TPs and arbitrary forces 〈Yj〉 = 〈Z〉, meaning that
at long times all the TPs move like their center of mass with
an effective force F (in agreement with the hydrodynamic
analysis of Ref. [37]).

In the following, we determine the full dynamics of the
correlations between TPs and focus for simplicity on the case
of two TPs.

Bath-mediated entrainment. We examine the case of a
single biased TP (s2 	= 0) followed by an unbiased TP (s1 =
0), initially separated by a distance L [see Fig. 2(a)], which
allows us to quantify the perturbation induced by a biased
tracer in a quiescent medium. While the behavior of 〈Y2〉 is
known [20], we unveil an interesting scaling behavior of 〈Y1〉

FIG. 2. Entrainment of the bath particles by a biased TP for
ρ0 = 10−2. Only the right TP is biased. (a) Evolution of the mean
displacements, with different symbols corresponding to L = 10, 50
and s2 = −0.2, 0.8. The black lines are the predictions from Eq. (4).
(b) Cumulants 〈Y1Y2〉c and 〈Y1Y 2

2 〉c/s2 for the same set of param-
eters as in (a). The black line corresponds to Eq. (6). The inset
of (a) shows variances for L = 10, s2 = 0.8 (solid lines) and L =
10, s2 = −0.8 (dashed lines). Predictions are in black [35]. The
inset of (b) shows the law of the variation of distance D = Y2 − Y1

at times 10, 102, 103, 104 (blue to red) for L = 10, s = 0.8, and
ρ0 = 0.05. The squares are the numerical results, the colored lines
are the theoretical predictions, and the black line is the asymptotic
prediction [35].

beyond the long-time regime. Indeed, in the limit t → ∞ with
t/L2 constant, one finds

〈Y2(t )〉
ρ0

= s2

√
2t

π
,

〈Y1(t )〉
ρ0

= s2

√
2t

π
g

(
L√
2t

)
, (4)

g(u) = e−u2 − √
πu erfc(u). (5)

This provides the dynamics of the entrainment of TP1 by TP2,
which admits a typical time scale L2 and leads to the final
bound state discussed above (see Fig. 2).

The evolution towards the final regime can further be quan-
tified by the dynamics of the two-TP even (odd) cumulants
κe = 〈Y p

1 Y q
2 〉c (κo = 〈Y p

1 Y q
2 〉c) with p + q even (odd), p, q �

1. They obey

κe

ρ0
= κo

ρ0s2
=

√
2t

π
g

(
L√
2t

)
. (6)
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FIG. 3. Cooperativity and competition (ρ0 = 10−2). (a i) and (b i) The two TPs have identical biases s1 = s2 = 0.8. (a ii) and (b ii) The
biases are in opposite directions s1 = −0.6 and s2 = 0.8. The rescaled velocities A are plotted in (a i) and (a ii) with the displacements in the
inset; two initial distances are plotted: L = 50 and 200. At short times, the rescaled velocities are s1 and s2; at long times they are both equal to
S. The variances and some cumulants are plotted in (b i) and (b ii) (initial distances L = 10 and 20). In the case in (a ii) and (b ii), the velocity
of the first TP changes sign at rescaled time τ ∗ = t∗/L2 [gray square in (a ii)]. The prediction τ ∗ is plotted as a function of s1/s2 for s2 = 0.8.
The dashed lines are the asymptotic behaviors from Eq. (12); the gray square corresponds to the one in (a ii).

Several comments are in order. (i) Equations (4) and (6)
are similar to the expressions found for the random average
process [38,39], which points towards their universality. (ii)
The same scaling function g is involved in the expressions
of 〈Y1(t )〉 and 〈Y1Y2(t )〉c [Eqs. (4) and (6)]. This leads to the
generalized fluctuation-dissipation relation

lim
f2→0

2

β

〈Y1( f1 = 0, f2)〉
f2

= 〈Y1Y2〉c( f1 = f2 = 0). (7)

Note that this relation holds in the opposite limit of a dilute
(ρ → 0) SEP [40]. (iii) Our approach provides the time
dependence of all cumulants of individual particles and the
law of the distance between TPs (insets of Fig. 2 and [35]).
The time, initial distance between TPs, and driving force
dependences from numerical simulations are unambiguously
captured by our theoretical expressions (Fig. 2).

Bath-mediated cooperatively and competition. We now
turn to the general case in which both TPs are biased [see
Fig. 3(a)]. The dynamics of effective interactions between
TPs at the level of averages is conveniently analyzed by
introducing the rescaled instantaneous velocities

Aj (t ) =
√

2πt

ρ0

d〈Yj〉
dt

, (8)

which satisfy Aj (t ) = s j at short times and Aj (t ) = S =
s1+s2

1+s1s2
at long times. The full time dependence is found

[35] to be given by A1 = Hs1,s2(1+s1 ),−s1s2 (L/
√

2t ) and A2 =
Hs2,s1(1−s2 ),s1s2 (L/

√
2t ), with

Hβ0,β1,β2 (u) =
∞∑

n=0

(−s1s2)n
2∑

m=0

βme−[(2n+m)u]2
, (9)

while higher-order cumulants follow

κe

ρ0
= κo

ρ0S
=

√
2t

π
Gs1s2

(
L√
2t

)
, (10)

Gσ (u) = (1 + σ )
∞∑

n=0

(−σ )ng([2n + 1]u). (11)

These results fully quantify the dynamics of the BMIs be-
tween two biased TPs and reveal striking behaviors. (i) In the
case of same sign biases, the TPs cooperate [37] [Figs. 3(a i)
and 3(b i)]. At long times a pair of biased TPs moves faster
than a single TP, in agreement with the asymptotic result (3).
Note that such an accelerated dynamics has been numerically
observed in two-dimensional systems [22,24]. At intermediate
times, we unveil an overshoot of the rescaled velocity of the
trailing TP. (ii) When the biases act in opposite directions (say,
0 < −s1 < s2), each TP starts to move in the direction of its
own force and eventually both TPs move in the direction of
the largest force [Figs. 3(a i) and 3(b i)]. This competing stage
can be quantified from Eq. (9) by determining the U-turn time
t∗ at which the velocity of TP1 changes its sign. This time t∗
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FIG. 4. Rescaled velocity of three TPs for biases s1 = 0.9, s2 =
0.3, and s3 = −0.6, total distance L = X 0

3 − X 0
1 = 60 with X 0

2 −
X 0

1 = 45, and ρ0 = 10−2. The colored circles correspond to the
numerical simulations while the dashed lines are the theoretical
predictions [35]. The inset shows the average displacements of the
TPs in linear rescaled time. The behavior of the second TP displays
several regimes: It first moves to the right, then under the influence
of the third TP it goes to the left, and finally the first TP pushes it
back to the right. Note that this complex dynamics is captured by our
theoretical approach.

vanishes when s1 is small and diverges when s1 is close to −s2

according to the scaling laws

t∗

L2
∼

s1→0

1

2 ln(−s2/s1)
,

t∗

L2
∼

s1→−s2

γ

1 + s1/s2
, (12)

with γ = 2(1 + s2)2/(1 − s2). Figure 3 shows excellent quan-
titative agreement between the analytical predictions and the
numerical simulations.

Our approach can be extended to determine the dynam-
ics of correlations in the case of an arbitrary number of
driven TPs. Cooperativity and competition involve a complex
cascade of timescales associated with the initial distances
between TPs, fully captured by our approach, as exemplified
in the case of three TPs in Fig. 4 and [35].

Bath-mediated interactions. The BMIs between two bound
biased TPs can be further analyzed by associating the prob-
ability distribution of the variation of distance D = Y2 − Y1

with an effective potential U (D) via P(D) = exp[−βU (D)]
[41]. For identical forces ( f1 = f2 = f ) and D sufficiently
close to its average value, the two TPs are effectively bound
by a harmonic potential

U (D) ∼ κ

2
(D − 〈D〉)2,

〈D〉
ρ0L

=
(

1

cosh(β f )
− 1

)
, (13)

where the constant κ is explicitly given by

κ = cosh(β f )

βρ0L[1 + cosh(β f )]
. (14)

In the regime D � 〈D〉, the potential displays a weaker de-
pendence on the distance U (D) ∼ D(ln D + ν)/β (see [35]
for the value of ν). We remark that this qualitative change
of regimes has been observed in two dimensions in numer-
ical simulations of two biased TPs in a quiescent colloidal
bath [24].

Altogether, we determined the full dynamics of correlation
functions in a paradigmatic model of nonequilibrium sta-
tistical physics and entirely characterized the corresponding
bath-mediated interactions.
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