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Hierarchical approach to aggregate equilibria
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Hierarchical aggregation is generally viewed as a kinetic phenomenon governed by kinetic growth laws, such
as in the Smoluchowski equation, and modeled using diffusion or reaction limited kinetic growth models. Some
aggregates, especially those controlled by surface grafting or surfactants, display reversible stability. For these
equilibrated aggregates a simple thermodynamic model is proposed to describe the size distribution and the
enthalpy and entropy of aggregation. The model uses the average degree of aggregation, zi(i−1), as the central
quantifying parameter. Here i is an index reflecting the hierarchical level of structure in an aggregate, for instance,
composed of crystals (i = 0), clustered primary particles (i = 1), aggregates (i = 2), and agglomerates of aggre-
gates (i = 3). A change in Gibbs free energy for aggregation is given by �Gi(i−1) = −RT ln(1/ zi(i−1) ) for each
level (i > 0). This expression is advantageous since the degree of aggregation is directly determined in small-
angle neutron and x-ray scattering, by transmission electron microscopy, simulation, or through spectroscopy.
The atomistic hierarchical model enables an understanding of the mechanism of equilibrium aggregation since it
provides expressions for entropy and enthalpy of aggregation at each structural/thermodynamic level. The model
can be extended to describe pseudoequilibrium for industrially relevant materials such as condensation polymers.
Applications in organic pigments and wormlike micelles are also briefly demonstrated.
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I. INTRODUCTION

Aggregation phenomena are widely experienced. Aggre-
gates are of industrial importance as high surface area ma-
terials such as carbon black and silica. Aggregates can also
provide unique optical and mechanical properties utilized in
pigments and reinforcing agents. Most aggregates are ki-
netically formed, locking in an unstable, high surface area
structure through rapid, often high temperature and/or con-
centration processes through various rapid quench operations
[1–5]. Some aggregates are self-assembled in a thermody-
namically stable state, such as micellar aggregates, surfactant
treated organic pigments, and even molecular aggregates in
reversible polymerization reactions such as in the synthesis of
polydimethyl siloxane, polyesters, and polyamides. Further,
some aggregations of kinetic origin might be modeled using
a pseudothermodynamic approach where accumulated strain
mimics thermal motion [6–8].

For equilibrated aggregation, micellization, or reversible
polymerization, a distribution of products with a plethora
of reaction pathways exists. Formation of an aggregate with
a given number of subunits can be achieved by a number
of routes involving various aggregation or dissociation path-
ways. Because of this the conventional law of mass action
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is not particularly useful for equilibrium aggregation or self-
assembly.

Chemical equilibria are usually quantified by postulating a
chemical potential μi that drives the conversion of the given
chemical species i. It is defined as the partial derivative of the
free energy Gi with the change of molar particle number ni and
can be expressed via a reference potential μ◦

i and the activity
ai of the particles of type i. Commonly,

μi(�, T ) = ∂Gi(�, T )/∂ni = μ◦
i (�, T ) + RT ln ai. (1)

Under dilute conditions or assuming ideal behavior, ai can
be replaced by the mole fraction xi. At constant temperature
and pressure the change �G of the molar Gibbs free en-
ergy for the reaction as compared to a standard free energy
�G◦ = ∑

νiμ
◦
i is given by

�G =
∑

νiμi = �G◦ + RT
∑

νi ln ai, (2)

where νi denotes the stoichiometric coefficient. For a simple
multistage chemical reaction i = {0, 1, 2, . . .}, the reaction
scheme may be written as

ν0M0
K1,c↔ ν1M1

K2,c↔ ν2M2
K3,c↔ · · · . (3)

Here, Mi denotes the chemical species. At equilibrium,
�G = 0 and Eq. (2) can be employed to define the standard
Gibbs free energy �G◦ via the equilibrium constant K◦

c ac-
cording to the law of mass action,

�G◦

RT
= − ln

{
(c1)ν1

(c0)ν0

(c2)ν2

(c1)ν1
· · ·

}

= − ln

(∏
i

Ki,c

)
= − ln

(
K0

c

)
, (4)
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FIG. 1. The decrease of the osmotic pressure �0 upon aggrega-
tion or bond formation to �1 can be expressed as c1 = c0

z1(0)
via the

concentration c0 in the monomeric state and the average aggregation
number z1(0). The aggregated state can be perceived as a higher
structural level i = 1 assembled from monomeric elementals i = 0
yielding the size distribution N1(n0).

where ci is the molar concentration and K0
c the equilibrium

constant of the overall reaction. This approach is well tried
and yields concise expressions for chemical reactions with
discrete stoichiometric coefficients. However, for reactions,
such as aggregation, micellization, or polymerization, which
lead to a distribution of products, even the setup of a reaction
scheme as given in Eq. (3) can be problematic. For free,
nonspecific aggregation a plethora of reaction paths exist that
lead to the formation of an aggregate with a given number
of subunits. It may be formed by the association of smaller
aggregates or by the dissociation of subunits from larger
aggregates. In the above approach, each of these steps along
the path would need to be accounted for as a distinct equilib-
rium reaction with an equilibrium constant Ki,c. Moreover, the
standard free energy �G◦ obtained by the approach refers to a
reference state. The associated equilibrium constant K0

c bears
units depending on the stoichiometry of the reaction. This, and
the a priori postulation of the chemical potential, render an
intuitive assessment of the potential’s characteristic enthalpic
and entropic contributions difficult and complicates compre-
hension of the underlying driving forces. Although kinetic
models describing both reversible and irreversible aggregation
over different reaction pathways have been simulated, an
estimation of the thermodynamic free energy change based
on the hierarchical structural parameters as explained here has
not been explored [9–13].

II. THEORY

An equilibrated aggregate system consists of elemental
particles that associate and dissociate from each other, but
also exhibit a constant observable (osmotic) pressure. The
definition of an elemental particle depends on the nature of
the system. A thermodynamic hierarchy is defined by the
driving force or chemical potential difference that leads to
the assembly of that particular level (i � 0), which differs
somewhat from more traditional structural hierarchies.

A. Atomistic model and the osmotic pressure

Consider a system of NT
0 elemental particles dispersed

in a volume, V , Fig. 1. If the elemental particles remain

monomeric and behave ideally, one would expect to measure
an (osmotic) pressure

�0 =
(

NT
0

V

)
RT, (5)

where c0 = (NT
0

V

)
is the total concentration of elemental parti-

cles in moles per volume. Upon aggregation, the (osmotic)
pressure will decrease from �0 to �1. This reduction can
be expressed via the second virial coefficient B2, indicating
interactions that lead to clustering. At the same time, one
may express the pressure decrease by the average number of
elementals per aggregate, z1(0) = c0

c1
,

�1

RT
≈ c0 + B2(c0)2 + · · · = c0

z1(0)
. (6)

The subindex “1” on z1(0) expresses that the average aggre-
gation number belongs to the first aggregated state, whereas
the subindex “0” highlights parameters of the monomeric par-
ticles. Because the aggregated particles i = 1 are assembled
from monomers i = 0, their number distribution as a function
of subunit number is designated as N1(n0). Here, n0 indicates
the number of elemental particles in an aggregate analogous
to the degree of polymerization. Note that this distribution
contains the free, unbound monomers as N1(n0 = 1). The total
number of elementals, NT

0 is given by

NT
0 =

∫ ∞

0
N1(n0)n0dn0, (7)

and the total number of aggregated particles NT
1 can be defined

as

NT
1 =

∫ ∞

0
N1(n0)dn0. (8)

Defining v0 as the volume of an elemental and N�,0 = V
v0

as
the number of volume elements of size v0 within the total
volume V , the total volume fraction, φ is given by

φ =
(

v0

V

)∫ ∞

0
N1(n0)n0dn0 = NT

0

N�,0
. (9)

Considering the transition from the purely monomeric
state with the overall concentration c0 to the aggregated state
c1 in Fig. 1, the change in the molar Gibbs free energy,
�G1(0) = μ◦

0 − μ1, is given by

�G1(0) = −RT ln

(
NT

1

NT
0

)
= −RT ln

(
1

z1(0)

)
= −RT ln(K1(0)). (10)

Note that in this form �G1(0) denotes the free energy of
dissociation. This is done to allow direct comparison with
previous results from the literature (see below).

Equation (10) is valid if the very same driving force
assembles all the aggregate types. The formulation makes
no assumptions on reaction paths leading to the aggregated
particles in the hierarchical level, i = 1. Further aggregation
governed by a different chemical potential of particles at level
i = 1, would constitute a new hierarchical level i = 2, Fig. 2.
The assembly of aggregate distribution, N2(n0), in the second
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FIG. 2. The hierarchical principle of particle association/dissociation. A level of hierarchy i is defined by the binding motif and its
underlying driving force and not by the number of subunits that associate (a). Likewise, the dissociation from large aggregates is categorized
according to which kind of bonds are decomposed (b) and (c).

hierarchical level is governed by free energy change, �G2(0).
In this case, the (osmotic) pressure in Eq. (6) would further
decrease by a factor of 1

z2(1)
, and

�G2(0) = −RT ln

(
NT

2

NT
0

)
= −RT ln

(
1

z2(1)z1(0)

)
= −RT ln(K2(1)K1(0)). (11)

The hierarchical approach yields formally the same product
of equilibrium constants given by the law of mass action but
it uniquely links the free energy directly to the average degree
of aggregation for each hierarchical level.

Combining Eqs. (6) and (10) one finds that

�1

RT
= c0 exp

(−�G1(0)

RT

)
. (12)

c0 is the molar concentration of monomers and using the ideal
gas approximation, c0 = �0

RT . For the logarithm of the ratio of
osmotic pressure at two different temperatures T ′ and T ′′ one
may write

ln

[
�1(T ′)
�1(T ′′)

]
= −�G1(0)

RT ′ + �G1(0)

RT ′′

= −�H1(0)

R

(
1

T ′ − 1

T ′′

)
, (13)

which represents the integrated form of the Clausius-
Clapeyron equation (the usual assumption that the volume of
the condensed phase must be ignored is not necessary in this
approach since the condensed phase is counted as a vapor
particle). This underlines that the hierarchical approach also
describes simple phase equilibria.

While the above consideration started with the ideal gas
law, nonetheless the existence of a chemical potential μi

was presupposed in the derivation of the equilibrium con-
stant K1(0). This was done in order to demonstrate that the
atomistic hierarchical approach is compatible with the law of
mass action and the concept of a chemical potential. How-
ever, the hierarchical definition of the free energy �G1(0) =
−RT ln

(
1

z1(0)

)
can likewise be derived using a purely atomistic

approach as discussed below.

B. Differential expression for equilibrated population balances

If one considers a distribution of aggregated particles
consisting of two hierarchical levels, monomeric elementals
(i = 0) and aggregates of them (i = 1), that give rise to a
stable (osmotic) pressure, then one may state

〈�N1(n0)dn0 + dN1(n0)〉t = 0. (14)

This equation shows that averaged over an appropriate
time t , the change of number of subunits N1(n0)dn0 occurring
to the aggregates times a constant � will be compensated
by a corresponding change of aggregate number dN1(n0). It
expresses that any number of subunits dn0 leaving or joining
an aggregate will correspond to a change of free particle
number dN1(n0). Referring to the chemical potential and the
Gibbs equilibrium principle, Rusanov derived a very similar
relation [14,15]. If one considers noncooperative aggregation
with a constant � that is not a function of n0, one obtains an
exponential distribution function N1(n0) (see below).

Setting � = 1
z1(0)

yields the probability distribution with
the maximum entropy according to information theory (that
is related but not identical to the entropy defined via ther-
modynamics) [16]. One might also apply a constant to the
right-hand term of Eq. (14), but then this would describe
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the opposite reaction, i.e., the association reaction. Note that
further hierarchical levels would simply add up as continuing
summands, �iNi(ni−1)ni−1dni−1 + ni−1dNi(ni−1).

Equation (14) represents a first-order differential equation
of the form � f (x)dx + df (x) = 0 so that dN1(n0 )

dn0
+ N1(n0 )

z1(0)
=

0. This results in an exponential distribution function

N1(n0) = C exp

(
− n0

z1(0)

)
, (15)

where C is a constant. From Eqs. (7) and (15), the total number
of elementals is given by

NT
0 = C

∫ ∞

0
exp

(−n0

z1(0)

)
n0dn0. (16)

Note that the integration limits from n0 = 0 to n0 = ∞
were considered for the sake of conciseness of the result-
ing expressions. In the resulting exponential distribution n0

exhibits an offset value of −1 that can be neglected if z1(0)

is sufficiently large. The definite integral in Eq. (16) can be
solved via integration by parts,

∫
udv = uv − ∫

vdu, such
that u = n0 and dv = exp

(−n0
z1(0)

)
dn0. Then du = dn0 and v =

−z1(0) exp
(−n0

z1(0)

)
, and the total number of elemental particles

is

NT
0 = C

{
−n0z1(0) exp

(−n0

z1(0)

)
− z1(0)

2 exp

(−n0

z1(0)

)}∣∣∣∣
n0=∞

n0=0

.

(17)

For the upper bound, n0 = ∞, the first term on the right
side of Eq. (17) results in the indeterminate form, −∞

∞ . From
the L’Hôpital’s rule, limn0→∞

[−n0z1(0)/exp
(−n0

z1(0)

)] = 0.
Additionally, the second term at n0 = ∞ equals 0. Simi-

larly, for the upper bound, n0 = 0, the first term equals 0 and

the second term equals −z2
1(0). Thus the constant, C = NT

0

z2
1(0)

.

The resulting number distribution of aggregated particles from
Eq. (15) is

N1(n0) =
(

NT
0

z2
1(0)

)
exp

(−n0

z1(0)

)
. (18)

Dividing both sides of Eq. (18) by N�,0 and substituting for the
the particle volume fraction from Eq. (9) upon rearragnement
results in

−n0

z1(0)
= ln

(
(z1(0))2

φ

)
+ ln

(
N1(n0)

N�,0

)
. (19)

Combining Eqs. (14) and (19) results in the following differ-
ential expression:〈

N1(n0)

{
ln

[
(z1(0))2

φ

]
+ ln

[
N1(n0)

N�,0

]}
dn0 − n0dN1(n0)

〉
t

= 0. (20)

The term N1(n0) ln
(N1(n0 )

N�,0

)
can be identified as the mixing

entropy. Accordingly, the term ln
[ (z1(0) )2

φ

]
represents the free

molar energy of dissociation �Gd
1(0). The sum of the two

logarithmic terms is the chemical potential of the aggregation
process. The average number z1(0) in an aggregate is therefore
given by

z1(0) = φ1/2 exp

(
−�Gd

1(0)

2RT

)
. (21)

Cates obtained the very same expression for wormlike mi-
celles via minimization of the same thermodynamic potential
within the mean field/Flory-Huggins solution theory using La-
grange multipliers [17–19]. In Cates’ work �Gd

1(0) = �GSC
1(0),

an analog to the scission free energy. Here it is shown that the
relation in Eq. (21) applies to all systems where aggregation
is driven by this kind of potential, i.e., a term describing
attractive interaction balanced by the mixing entropy.

The change in chemical potential from the monomeric state
to the aggregated state, with the total change in mixing en-
tropy, can be obtained from the indefinite integral of Eq. (19)
with respect to z1(0). Substituting for the distribution function,
N1(n0) from Eq. (18) and noting that the term

∫ −n0
z1(0)

dz1(0) on
both sides of the expression nullifies, results in

2
∫

ln

(
z1(0)

φ1/2

)
dz1(0) − 2

∫
ln

[
z1(0)(N�,0)1/2(

NT
0

)1/2

]
dz1(0) = 0.

(22)

The two integral terms in Eq. (22) can be solved through
integration by parts,

∫
udv = uv − ∫

vdu. For the first term

let u = ln( z1(0)

φ1/2 ); then du = dz1(0)

z1(0)
. Also, let dv = dz1(0); then

v = z1(0).

Similarly for the second term, let u = ln
[ z1(0) (N�,0 )1/2

(NT
0 )1/2

]
; then

du = dz1(0)

z1(0)
. Also, let dv = dz1(0); then v = z1(0), resulting in

ln

(
z2

1(0)

φ

)
+ ln

⎧⎨
⎩

(
NT

0
z1(0)

)
N�,0

⎫⎬
⎭ = ln(z1(0)). (23)

To obtain the overall free energy associated with the dissocia-
tion process in a hierarchical system both sides of Eq. (23) are

multiplied by RT . Since z1(0) = c0
c1

= NT
0

NT
1

, one obtains

�G1(0) = RT ln(z1(0)) = RT

{
ln

[
(z1(0))2

φ

]
+ ln

(
NT

1

N�,0

)}
,

(24)

in agreement with Eq. (10) and the derivation based on a
chemical potential. The above potential consists of a free

association/dissociation energy, �Gd
1(0) = RT ln

[ (z1(0) )2

φ

]
, and

a mixing entropy, �Gm
1(0) = ln

( NT
1

N�,0

)
. Many reactions, e.g.,

condensation processes, can be described with this simple
model.

More complex reactions can be described depending on
the approach for � in Eq. (10). If clustering occurs in a
cooperative manner, i.e., the aggregation is driven by the
number of subunits, one may set � ∝ n0. If there is an optimal
cluster size due to the chemical nature of the elementals, one
may set � ∝ k1(n0 − z1(0)). The result of this approach is
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a normal distribution where the constant k1 is given by the

reciprocal of the variance, k1 = σ−2
1 = 1/(n0 − z1(0))2. The

formation of spherical surfactant micelles could be described
in this manner. The cooperativity of micelle formation and
the optimal cluster size are governed by the amphiphilic
nature as well as the packing parameter of the surfactants.
Here approximately normal or lognormal size distributions
are often found [20–23]. Other distributions can be derived
depending on the definition of �. However, in all cases the
resulting chemical potential has to add up to RT ln(z1(0)) as
demonstrated in Eq. (24) in order to comply with Eqs. (6)
and (10).

III. RESULTS AND EXAMPLE CALCULATIONS

In the following, the atomistic model will be illustrated
in more detail. The focus is set on systems driven by a
trade-off between free energy of association/dissociation on
the one hand and the free energy of mixing on the other,
that yield a quasicontinuous exponential size distribution. For
this case the usefulness of the atomistic hierarchical approach
can be demonstrated most concisely. In the first section a
qualitative examination will be given and the connections to
the Schulz-Flory model of polymerization/condensation will
be highlighted. Sections III B and III C deal with example cal-
culations using experimental data. The examples are chosen
to demonstrate the versatility and coherence of the approach
rather than for delving into details. The approach outlined
above is intended to serve as a general framework for the
hierarchical stratification of a system and to obtain the free
energies, enthalpies, and entropies to enhance mechanistic
understanding. The examples focus on such decompositions.

A. Exponential equilibrium distribution and the Schulz-Flory
kinetic polymerization model

The atomistic model defines the purely monomeric state
as reference and determines the free energy difference �G1(0)

between the pure monomeric and the aggregated equilibrium
state as characterized by z1(0). The start and end states re-
semble those defined by Flory’s polymerization model [24].
Flory’s model looks at aggregation from a kinetic perspective
and considers the reaction as irreversible. Flory defines a
reaction parameter 0 � p � 1 that describes the progress of
a polymerization reaction. In the context of aggregation, the
reaction parameter is defined as

p =
(
NT

0 − N
)

NT
0

. (25)

Here NT
0 is the total number of monomers/particles in the

system that can take part in a condensation/aggregation re-
action. (NT

0 − N ) is time dependent and denotes the number
of particles that have reacted and are not present as monomers
anymore. If we consider the degree of aggregation of these
(NT

0 − N ) reacted particles as n0, the fraction of monomers in
n0-mers is given by the probability distribution function

P(n0) = n0 pn0−1(1 − p)2. (26)

FIG. 3. For large z1(0) an aggregation/polymerization reaction
can be considered quasi-irreversible and 1/z1(0) ≈ 1 − p. The agree-
ment between the molar Schulz-Flory distribution and N1(n0)
from the atomistic model for simple aggregation improves with
increasing z1(0). The last two curves in the legend overlap in the plot.

The number of particles consisting of n0 subunits/segments
N1(n0) is given by

P(n0)

(
NT

0

n0

)
= N1(n0) = NT

0 pn0−1(1 − p)2. (27)

The exponential form of Eq. (27) is given by

N1(n0) = NT
0 (1 − p)2 exp{−(n0 − 1)(− ln p)}. (28)

Since − ln(p) ≈ 1 − p if p ≈ 1,

lim
p→1

N1(n0) = NT
0 (1 − p)2 exp{−(n0 − 1)(1 − p)}

≈ lim
z1(0)→∞

[
NT

0

(z1(0))2 exp

(−n0

z1(0)

)]
. (29)

The comparison with Eq. (18) demonstrates that in this limit
z1(0) = 1/(1 − p). However, because of the constraint p → 1
the relation can just be true for very large values of z1(0),
i.e., z1(0) → ∞. This in turn leads to a free energy differ-
ence �G1(0) = RT ln(z1(0)) that increases without boundaries.
Bearing in mind that �G1(0) was defined as the free energy
difference for the dissociation reaction (see the Theory sec-
tion), this means that the free energy of association, −�G1(0),
decreases without limits. This is a characteristic of an irre-
versible reaction, as premised by Flory [24].

From a thermodynamic point of view there are no perfect
irreversible chemical reactions in nature. The presence of
thermal energy RT and the finite energy of ground states
implies that there is always a finite probability that a sub-
unit or segment dissociates from an aggregate or composite
particle. The premise of an irreversible reaction approximates
simpler theoretical expressions. In reality a polymerization or
condensation reaction that is governed by a trade-off between
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FIG. 4. Structural hierarchies for the surfactant stabilized pigment dispersion of PY14 (5.5 wt% in H2O) yielding clusters/aggregates of
first and second kind (top). From small-angle and ultra small-angle x-ray scattering (SAXS & USAXS) measurements at different temperatures
the distributions N1(n0) and N2(n1) and change in free energies for dissociation can be determined (middle). The results confirm that the total
free energy change for dissociation is a sum of the individual contributions according to Eq. (24). The presented data were adapted from
Ref. [26].

an attractive energy �Gd
1(0) or �Ga

1(0) and the mixing entropy
�Sm

1(0) has to reach equilibrium at a finite z1(0) when N1(n0)
adopts an overall exponential distribution that marks the end
of the net reaction at a value of p < 1 (see Fig. 3):

p = 1 − 1

z1(0)
= 1 − exp

(−�G1(0)

RT

)
. (30)

If a given number distribution N1(n0) exhibits an overall
exponential distribution already at low values of p, this might
be an indication that the equilibrium state is already achieved
and that �G1(0) is not large enough to drive the reaction
towards large values z1(0). Figure 3 demonstrates that for
average aggregation values z1(0) as low as 20 the criterion of
quasi-irreversibility is approximately fulfilled. The atomistic
hierarchical approach, however, predicts that the net reaction
will stop at a finite p = 1 − 1

z1(0)
and allows for the calculation

of its free energy difference �G1(0) with respect to the starting
point of the reaction, the purely monomeric state.

B. Pigment particles in aqueous dispersions

Pigment Yellow 14 (PY14) is a common pigment used for a
variety of applications including ink-jet ink. A model aqueous

formulation for an ink includes PY14 nanoparticles and a
nonionic surfactant, Triton X-100®. Under these conditions
the pigment displays three levels of hierarchy. Elemental
crystals form compact clusters that in turn assemble to less
dense, fractal aggregates. This stable colloidal suspension is
subject to thermal equilibrium [25].

Whether these dispersions will just form monomeric
particles i = 0, i.e., a core formed by pigment crystals
surrounded by a shell of surfactants, or whether the monomers
will aggregate into clusters i > 0 is a question of the mutual
interactions. A shell of charged surfactants will promote
dispersion and hinder aggregation to higher assemblies.
The long-range repulsive interactions do not allow short-range
attractive forces to come into effect. However, short-range
attractive interactions like van der Waals interactions can
lead to the formation of clusters if nonionic surfactants like
Triton X-100 are used which display lower solution-critical
temperature phase behavior in water.

Figure 4 depicts the dissociation enthalpies and en-
tropies for clusters (i = 1) and aggregates (i = 2) of the
pigment PY14 system [26]. The equilibrium concentrations of
Triton X-100 solubilized pigment particles as well as the
concentrations of primary and secondary aggregates were

033081-6



HIERARCHICAL APPROACH TO AGGREGATE EQUILIBRIA PHYSICAL REVIEW RESEARCH 1, 033081 (2019)

FIG. 5. Change in free energies, �G1(0), �G2(1), and �G2(0) ac-
cording to Eq. (31) for association/dissociation of pigment Pigment
yellow 14 with three hierarchical levels [26]. Note that the cloud
point of Triton X-100 under these conditions (0.1 wt%) is about
340 K [30]. The data points at 353 K were therefore excluded from
the fits.

determined with small-angle x-ray scattering at different tem-
peratures. From these values the free dissociation energies

RT ln
[ (z1(0) )2

φ

]
and free mixing energies RT ln

( NT
1

N�,0

)
were

determined. Note that the error bars depict the largest possible
inaccuracy calculated by error propagation. The final value for
�G1(0) is therefore shown to the second significant digit for a
better comparison with the calculation. From the balance be-
tween the free dissociation energies and free mixing energies
one would conclude that the overall free energy change on
dissociation amounts to about 11 kJ mol−1. The entropic terms
nearly cancel each other.

On the other hand, employing Eq. (6) and formulating the
osmotic pressure of a system with three hierarchical levels
(i = 0, 1, 2), one obtains

ln

(
�2

c0RT

)
= ln

(
c2

c0

)
= ln

(
c2

c1

c1

c0

)
= ln(K2(1)K1(0))

= − ln(z2(1)z1(0)) = −1

RT
(�G2(1) + �G1(0))

= −�G2(0)

RT
, (31)

where �2 is the overall osmotic pressure and c2 the overall
concentration of particles in the aggregated system (elemen-
tals as well as primary and secondary aggregates).

Figure 5 shows a plot of RT ln(z1(0)) and RT ln(z2(1))
versus temperature T , which should yield lines that corre-
spond to the values found in Fig. 4 and sum up to �G2(0).
Figure 5 demonstrates that this is indeed the case. By linear re-
gression, values of (30 ± 2), (−19 ± 3), and (9 ± 4) kJ mol−1

are found for �H1(0), �H2(1), and �H2(0), respectively. The
entropies �S1(0), �S2(1), and �S2(0) amount to (84 ± 8),

FIG. 6. Structural hierarchies for WLMs. The surfactants can
either reside in a hemispherical end cap or in the denser cylindrical
geometry connecting the end caps. The two states are energetically
not equivalent. Scission leads to an increase of the surfactant popu-
lation residing in end caps. The smallest entity that can be created
by scission consists of two hemispherical end caps, i.e., a spherical
micelle.

(−83 ± 11), and (6 ± 14) J mol−1 K−1, respectively. Within
the accuracy the balance performed in Fig. 4 matches with
the ones obtained by relation (31). The latter values, however,
are more accurate since fewer variables are employed for cal-
culation. The x-ray scattering measurements in Ref. [26] were
analyzed using the structural-hierarchical model of Beaucage
[27–29], underlining the congruency of the structural and the
thermodynamic approach.

With the atomistic hierarchical approach a much subtler
decomposition of the forces governing cluster formation of
the pigment is possible. The analysis reveals and quantifies
that the number of subunits for the primary clusters i = 1
decreases with increasing temperature. For the secondary
aggregates i = 2 the opposite trend is observed. For pigment
systems, this information may be invaluable to understand the
temperature dependent optical properties like the saturation,
haze, and luster. After separating the driving forces as outlined
above, the free energies in turn can be employed to deepen
the understanding of the aggregate structures, e.g., fractal
dimension or branching.

C. Free energy of scission of wormlike micelles

The final example deals with a less obvious case of struc-
tural hierarchy and demonstrates that the explicit assignment
of the hierarchical levels can deepen the understanding of
supposedly easy systems. Wormlike micelles (WLMs) are
structures assembled from surfactant molecules in an aqueous
environment. While at low surfactant and salt concentrations
spherical micelles (i = 1) are found, addition of further sur-
factant or salt leads to the assembly of elongated, threadlike
structures (i = 2) (see Fig. 6) [31]. Below the overlap con-
centration the structure of wormlike micelles can be deter-
mined using small-angle neutron scattering. When the length,
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FIG. 7. Semilogarithmic plot of average aggregation number z2(1) (read from the left axis) versus temperature for a mixed surfactant system
(sodium laureth-1 sulfate and cocoamidopropyl betaine 9:1) in D2O with 5 and 3 wt% NaCl denoted by open red circles and open blue triangles
respectively; the free scission energies �Gsc

2(1) (read from the right axis) as a function of temperature for the mixed surfactant system with 5
and 3 wt% NaCl denoted by solid red circles and solid blue triangles, respectively. For both cases, �Gsc

2(1) is nearly independent of temperature.

diameter, and density of these threadlike structures are de-
termined, the average aggregation number z2(1) can be cal-
culated and employed together with the volume fraction φ

to determine the free energy of scission �GSC
2(1) [32]. The fit

parameters to small-angle neutron scattering are listed in the
Appendix.

Figure 7 shows the resulting average aggregation number
z2(1) as function of temperature for two salt concentrations
(3 and 5 wt% NaCl). At higher salt concentration the WLMs
are much larger, in agreement with literature data [31]. The
wormlike micelles break and merge, and in the process two
end caps are formed or removed, respectively (see Fig. 6). The
free energy of surfactant molecules residing in the cylindrical
part of the WLM is not the same as for surfactants located
in an end cap. Since every WLM exhibits just two end caps,

the size of the individual WLM does not play a role for the
free energy of scission, but only affects the mixing entropy.
In terms of structural hierarchies, the system consists of
surfactants in hemispherical end caps on the one hand and
surfactants residing in the elongated, cylindrical geometry on
the other.

The presence of ionic compounds like salt or salicylate
screens Coulombic interactions, so that a cylindrical pack-
ing geometry with smaller head-group/head-group distances
becomes more favorable, leading to an elongation of the
WLMs [31,33,34]. While the repulsion between the charged,
hydrophilic head groups disfavors the cylindrical geometry,
the hydrophobic effect favors a dense packing of the surfac-
tant molecules with smaller head-group/head-group distances.
Here the hydrophobic tails of the surfactant molecules are
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shielded much better from contact with water molecules; i.e.,
the solvent accessible surface area is smaller. The mixing
entropy �Sm

2(1), however, fosters a large dispersion of small
particles with a large overall number of end caps.

Within the accuracy of the experiment the free energy
�GSC

2(1) is roughly constant in temperature (read from right
axis in Fig. 7), so that the depicted scission free energy
can be identified with an enthalpy. Since the hydrophobic
effect is involved, a thermodynamic description of the process
employing the change of heat capacity �CP would probably
be more appropriate [35]. The error bars and the limit of the
employed method when the aggregates become very large (see
data at 5 wt% NaCl and low temperatures) do not allow for
this kind of analysis. However, for the given experimental
conditions and accuracy the results underline that it is indeed
the thermodynamic pseudopotential expressed in relation (21)
that governs the assembly.

IV. CONCLUSIONS

While most aggregates are obtained from kinetically lim-
ited growth processes, some self-assembled and equilibrated
aggregates exist and there are some cases where a pseudoequi-
librium model can be of use. For these aggregates a thermody-
namic analysis is possible and is useful in controlling growth.
An atomistic hierarchical theory is presented that couples well
with small-angle scattering, simulation, and other analytic
techniques that can quantify the average degree of aggregation
which is directly used to calculate the free energy, enthalpy,
and entropy change on aggregation.

The new approach is demonstrated for three systems, con-
densation polymerization, surfactant stabilized pigments, and
wormlike micelles.
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APPENDIX: MATERIALS, METHODS
AND SANS RESULTS FOR WLMs

Sample material, preparation, and measurements for the
wormlike micelles were similar to those described by Vogtt
et al. [36]. The small-angle neutron measurements were
conducted at the Bio-SANS instrument at the Oak Ridge

FIG. 8. Scattered intensity I (q) versus momentum transfer q for
0.1% mixed surfactant (sodium laureth-1 sulfate and cocoamido-
propyl betaine 9:1) in D2O (3% NaCl) at various temperatures. The
red lines depict fits according to a wormlike-chain model yielding
the length L1 and radius R1 of the cylindrical segments as well as the
number of segments, z2(1) (see Table I) [32].

National Laboratory in Oak Ridge, TN. Data analysis was
performed as described by Vogtt et al. [37], except that the
scattering fit parameters G2 and Rg,2 were substituted for

FIG. 9. Scattered intensity I (q) versus momentum transfer q for
0.1% mixed surfactant (sodium laureth-1 sulfate and cocoamido-
propyl betaine 9:1) in D2O (5% NaCl) at various temperatures. The
red lines depict fits according to a wormlike-chain model. The fitting
results are given in Table I. The values allow calculating the average
aggregation number z2(1) and the Gibbs free energy of scission,
�Gsc

2(1), shown in Fig. 7.
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the number of cylindrical subunits z2(1) using the following
relations [37,38]:

G2 = (z2(1) − 1)G1, (A1)

Rg,2 ≈
⎧⎨
⎩

1.75
(
z2(1)

2
d f ,2

)
L1

2

(d f ,2+2)
dmin,2

(dmin,2+d f ,2+2)
dmin,2

⎫⎬
⎭

1
2

. (A2)

Figures 8 and 9 show the scattered intensity I (q) as a
function of momentum transfer q for 0.1% mixed surfactant
(9:1 sodium laureth-1-sulfate:cocoamidopropyl betaine) in

deuterated water with 3% and 5% NaCl at various tempera-
tures, respectively. The solid red lines in both figures depict
fits according to a wormlike-chain model described by Vogtt
et al. [37]. The fit parameters for structural level i = 1, length
L1, and radius R1 and σR1 of the cylindrical segments as
well as the number of segments z2(1) are listed in Table I.
Additionally, the parameters d f ,2 and dmin,2 were set to the
value 1.67 that corresponds to a self-avoiding walk of the
segments in the wormlike chain rendering the remaining fit
parameters in Eqs. (A1) and (A2) solely a function of z2(1).
The average aggregation number z2(1) was used to determine
the Gibbs free energy of scission, �Gsc

2(1) shown in Fig. 7.

TABLE I. Fitting parameters for 0.1 wt% mixed surfactant in D2O (3 and 5 wt% NaCl) at various temperatures. The parameters df ,2 and
dmin,2 were set to the value 1.67 corresponding to a self-avoiding walk of the segments in the wormlike chain.

φ(�ρ)2 R1 L1

Temperature (1022 cm−4) (Å) σR1 (Å) z2(1)

3% NaCl
288 K 4.58 ± 0.03 16.3 ± 0.2 0.264 ± 0.006 882 ± 6 5.6 ± 0.1
293 K 4.37 ± 0.03 16.0 ± 0.2 0.285 ± 0.006 854 ± 6 5.7 ± 0.1
298 K 4.42 ± 0.03 15.8 ± 0.2 0.279 ± 0.006 817 ± 5 5.0 ± 0.1
303 K 4.45 ± 0.03 16.4 ± 0.2 0.234 ± 0.007 796 ± 5 3.79 ± 0.07
308 K 4.53 ± 0.03 16.0 ± 0.2 0.242 ± 0.007 753 ± 5 3.61 ± 0.06

5% NaCl
288 K 4.25 ± 0.02 18.5 ± 0.2 0.243 ± 0.005 900 ± 5 28 ± 4
293 K 4.20 ± 0.02 18.6 ± 0.2 0.227 ± 0.005 869 ± 5 33 ± 5
298 K 4.36 ± 0.02 18.3 ± 0.2 0.209 ± 0.006 819 ± 5 20 ± 1
303 K 4.41 ± 0.03 17.8 ± 0.2 0.210 ± 0.006 788 ± 5 20 ± 1
308 K 4.43 ± 0.03 17.7 ± 0.2 0.206 ± 0.006 750 ± 4 17.2 ± 0.8
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