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Emergence of exploitation as symmetry breaking in iterated prisoner’s dilemma
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In society, mutual cooperation, defection, and exploitative relationships are common. Whereas cooperation
and defection are studied extensively in the literature on game theory, exploitative relationships between players,
in which one receives a larger benefit than the other while the game itself is symmetric, are little explored. In a
recent seminal study, Press and Dyson demonstrated that if only one player can learn about the other, asymmetric
exploitation is achieved in the prisoner’s dilemma game. In their study, however, asymmetry is assumed in
decision making between persons; the exploiting player one-sidedly determines and fixes the strategy and the
exploited player follows it. It is unknown whether such exploitation emerges and is stably established even when
both players learn about each other symmetrically and try to optimize their payoffs. Here, we first formulate a
dynamical system that describes the change in a player’s probabilistic strategy with reinforcement learning to
obtain greater payoffs, based on the recognition of the other player. By applying this formulation to the standard
prisoner’s dilemma game, we numerically and analytically demonstrate that an exploitative relationship can be
achieved despite symmetric strategy dynamics and symmetric rule of games. This exploitative relationship is
stabilized by both the players: The exploiting player demands the other’s unfair cooperation. Even though the
exploited player, who receives a lower payoff than the exploiting player, has optimized the own strategy, the
player accepts the other’s defection to some degree. Whether the final equilibrium state is mutual cooperation,
defection, or exploitation crucially depends on the initial conditions. Response to decrease the cooperation
probability against a defector leads to oscillations in the probabilities of cooperation between the players and
thus a complicated basin structure to the final equilibrium. In particular, any slight difference between both
players’ initial strategies can be amplified and fixed as a large difference in the probabilities of cooperation,
leading to fixation of exploitation. In other words, symmetry breaking between the exploiting and exploited
players results. Considering the generality of the result, this study provides another perspective on the origin of
exploitation in society.
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I. INTRODUCTION

Equality is not easily achieved in society; instead, inequal-
ity among individuals is common. Exploitative behavior, in
which one individual receives a greater benefit at the expense
of others receiving lower benefits, is frequently observed. Of
course, such exploitation can originate from a priori differ-
ences in individual capacities or environmental conditions.
However, such exploitation is also developed and sustained
historically. Even when inherent individual capacities or en-
vironmental conditions are not different, and even when indi-
viduals are able to choose other actions to escape exploitation
and optimize their benefits, exploitation somehow remains.

In this study, we consider how such exploitation emerges
and is sustained. Of course addressing this question
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completely is too difficult, as the answer may involve eco-
nomics, sociology, history, and so forth. Instead, we sim-
plify the problem by adopting a game theoretic framework
and investigate whether exploitative behavior can emerge a
posteriori as a result of dynamics in individuals’ cognitive
structures. By using a symmetric game in which both players
have an identical payoff matrix, the exploitation is defined
as a state in which one player chooses an action to accept
a lower score than the other, even though the former player
can potentially recover the symmetry and receive the same
payoff as the other. With the change in strategies of the players
through learning, we check whether “symmetry breaking”
can occur when individuals have symmetric capacities and
environmental conditions.

For this analysis, we adopt the celebrated prisoner’s
dilemma game. In this game, both players can independently
choose cooperation or defection. Regardless of the other
player’s choice, defection is more beneficial than cooperation,
but the payoff when both players defect is lower than that
when both players cooperate. In the prisoner’s dilemma game,
the emergence and sustainability of cooperation, even though
defection is any individual player’s best choice, has been
extensively investigated [1,2].
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Cooperation can indeed emerge in repeated games in which
each player chooses his or her own action (cooperation or
defection) depending on the other’s previous actions. In other
words, a cooperative relationship emerges with the potential
for punishment. Players cooperate conditionally with cooper-
ators and defect against defectors [e.g., by a tit-for-tat (TFT)
strategy]. In evolutionary games, cooperation is known to
stably emerge from the introduction of a “space structure”
[3], “hierarchical structure” [4], “stochastic transition of rule”
[5], and so forth, in which a certain punishment mechanism
against defection is commonly adopted.

In contrast to the intensive and extensive studies on cooper-
ative relationships, however, studies on exploitative relation-
ships (i.e., asymmetric cooperation between two players) are
very much limited. In this game, an exploitative relationship is
represented by unequal cooperation probabilities between the
players, as a defector can get higher benefit at the expense
of a cooperator. A recent study proposes zero-determinant
strategies [6], classified as one-memory strategies, in which
one player stochastically determines whether to cooperate or
defect depending on the condition on the previous actions of
both players. If a player one-sidedly adopts and fixes the zero-
determinant strategy while the other accordingly optimizes
his or her own strategy, the former player can exploit the
latter. Here, however, the study focuses only on one-way
learning. Hence, the two players have different abilities in
the beginning. Thus, whether reciprocal optimization between
two symmetric players can generate an exploitative relation-
ship remains unresolved. Indeed, in the evolution of strategies
with zero-determinant ones, the exploitative relationship does
not last forever; rather, cooperation or generosity is promoted
[7–11].

To consider the possibility of exploitation, we take a learn-
ing process into account here. Indeed, the coupled replicator
model was introduced in game theory for reciprocal changes
in strategies by learning [12–14]. Such models use a deter-
ministic reinforcement learning process in which every player
has a probability distribution that provides a probabilistic
strategy for taking actions. Each player updates his or her
strategy based on the experience of repeated games. In other
words, a probability to take a successful action is reinforced.
If the other player’s strategy is fixed, a player deterministically
increases his or her own payoff throughout the repeated game.
There are several models for the reinforcement learning based
on the experience of game, like fictitious play [15,16] and
Q learning [17]. As far as we know, however, such previous
models have no memories in the player’s strategy, and thus the
exploitation does not emerge. Here, we seek the possibility of
whether tiny differences in the initial strategies between the
players are amplified through learning, and symmetry break-
ing in the strategies and accordingly in the scores between the
players results, so that one player keeps on getting a higher
score than the other.

In the next section, we extend the coupled replicator model
to take the reference to the other’s previous action so that the
player conditionally determines his or her action depending on
it. In fact, such a strategy with the reference of other’s action
is justified by an ability to make a model on the other [19–21].
We formulate the learning dynamics of strategies accordingly
and apply it into the prisoner’s dilemma. In Sec. III, we

FIG. 1. Schematic diagram for the prisoner’s dilemma game and
the strategy. Player 1 (horizontal) and 2 (vertical) independently
choose their own actions from C and D. The resultant payoffs T ,
R, P, and S are displayed. The black arrows indicate the stochastic
transition from the previous action to the next one, by using the
probabilistic strategy in the text.

demonstrate that an exploitative relationship emerges by this
extended coupled replicator. Then, we analyze how the ex-
ploitation is stabilized, even though both the players optimize
their own strategies. We uncover the condition in which ex-
ploitation emerges in the symmetric prisoner’s dilemma game
between the players under symmetric learning dynamics. In
Sec. IV, we then investigate the dynamics of the learning
process in depth to demonstrate that a slight difference in
initial strategies between the players is amplified, and this
symmetry breaking results in a large payoff difference, i.e.,
exploitation.

II. MODEL

We study the well-known prisoner’s dilemma (PD) game
(see Fig. 1 for the payoff matrix), in which each of two
players, referred to as players 1 and 2, chooses to cooperate
(C) or defect (D). Thus, a game involves one of four possible
actions, CC, CD, DC, and DD, where the left (right) index
shows player 1’s (2’s) choice. For actions CC, CD, DC, and
DD, player 1’s score is given by R, S, T , and P, respectively.
In the PD game, defection is more beneficial regardless of
the other player’s action, meaning that both T > R and P > S
hold. In addition, mutual cooperation (CC) is more beneficial
than the mutual defection (DD), meaning that R > P holds.
A repeated game requires the additional condition that 2R >

T + S. In other words, sequential cooperation (i.e., always
choosing CC) is more beneficial than reciprocal defection and
cooperation (i.e., repeatedly alternating between CD and DC).

The payoff (Fig. 1) between the players is different only
for the case with asymmetric actions, CD and DC. If DC is
more frequently achieved than CD, player 1 gains T more
frequently than S. Thus, in such a state, player 2 is exploited
by player 1. Indeed, in the original notation in the prisoner’s
dilemma game, T stands for the “temptation” to exploit the
other and S stands for the exploited “sucker” payoff.

We next define a class of strategy (see Fig. 1), in which
one player stochastically determines whether to choose C or
D based on the other player’s action in the previous round.
Player 1’s strategy is given by two variables that represent the
probabilities of cooperation in the next round, xC and xD, when
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player 2 was previously a cooperator or defector, respectively.
Conversely, xC := 1 − xC (xD := 1 − xD) indicates the prob-
ability that player 1’s present action is D when the other’s
previous action is C (D). Throughout this study, we use the
definition X := 1 − X . Similarly, player 2’s strategy is given
by yC and yD. These strategies include several well-known
strategies, All-D (xC = xD = 0), All-C (xC = xD = 1), and
TFT (xC = 1, xD = 0), as extreme cases.

A. Repeated game for fixed strategies

Before considering the dynamics of each player’s strat-
egy, we consider each player’s resulting action and payoff
when the strategies (i.e., xC , xD, yC , and yD) are fixed. We
assume that (CC, CD, DC, DD) is played with probability
p := (pCC, pCD, pDC, pDD)T in the previous period. Then, the
probabilities of the occurrence of (CC, CD, DC, DD) in the
next round are obtained by operating the 4 × 4 Markov matrix
M, which is given by

M :=

⎛
⎜⎝

xC yC xD yC xC yD xD yD

xC yC xD yC xC yD xD yD

xC yC xD yC xC yD xD yD

xC yC xD yC xC yD xD yD

⎞
⎟⎠. (1)

For a given fixed (xC, xD, yC, yD), the probability is updated as
p′ = Mp. Thus, after a sufficient number of iterated games,
the probabilities converge to an equilibrium, pe. Here, this
equilibrium state is uniquely defined at least when 0 <

xC, xD, yC, yD < 1 is satisfied by the full connectivity of M.
The equilibrium state, pe, is represented as the eigenvector of
the above matrix corresponding to the 1-eigenvalue, which is
written with only two variables, xe and ye, as

pe = (xeye, xeye, xeye, xe ye )T (2)

(see the Supplemental Material [22] for the derivation). Here,
note that each player unconditionally cooperates with proba-
bilities xe and ye in the equilibrium state, which are given by

xe(xC, xD, yC, yD) = xD + (xC − xD)yD

1 − (xC − xD)(yC − yD)
,

ye(xC, xD, yC, yD) = yD + (yC − yD)xD

1 − (xC − xD)(yC − yD)
. (3)

At the equilibrium state, the payoff of player 1 (2), denoted by
ue (ve), is given by

ue(xC, xD, yC, yD) = pe · (R, S, T, P)T,

ve(xC, xD, yC, yD) = pe · (R, T, S, P)T. (4)

We emphasize that the equilibrium state for a repeated game
is denoted by the subscript e, but it is unrelated to the

equilibrium of learning dynamics discussed in the following
subsection.

B. Learning dynamics of strategies

Next, we consider the dynamic changes in strategies cre-
ated by a reinforcement learning process. During a repeated
game, every player takes actions following his or her own
strategy and updates the probability of each action to gain
a higher payoff. Here, we assume that the strategy updates
occur much more slowly than the repetition of games does.
Under this assumption, every player can accurately evaluate
the benefit gained by a single action and update his or her
own strategy to increase his or her payoff under an assumption
that the other player’s strategy is fixed. Then, depending on
the frequency of actions adopted, and according payoffs, the
probability to choose each action is updated.

First, we compute the amount of benefits gained by player
1’s cooperative action in a single game, which is denoted
by uC : When the player 1 cooperates, the present state is
given by p = p1C := (ye, ye, 0, 0)T in equilibrium, because
CC (CD) occurs with probability ye (ye) and neither DC nor
DD occurs. This cooperation of the player 1 at the present
round continues to influence on the benefit for the future
rounds, which, however, decays toward zero as Mt (p1C − pe )
for larger t → ∞. Then, the total payoff brought by 1’s single
cooperation is given by

uC :=
{ ∞∑

t=0

Mt (p1C − pe ) + pe

}
(R, S, T, P)T

=
∞∑

t=0

Mt (p1C − pe )(R, S, T, P)T + ue. (5)

In the same way, we obtain the probability of defection of the
player 1 p1D and the resulting payoff uD as

p1D := (0, 0, ye, ye )T,

uD :=
{ ∞∑

t=0

Mt (p1D − pe ) + pe

}
(R, S, T, P)T. (6)

Second, we consider the update of xC by player 1 based on
the above payoffs uC and uD. The advantage of cooperation
relative to the average is given by uC − (xCuC + xCuD). Then,
xC increases proportionally. Note that since player 2’s previ-
ous action and player 1’s present action need to be C and C,
respectively, the probability of using strategy xC is given by
yexC . Then, we obtain the evolution of xC over time as

ẋC = yexC{uC − (xCuC + xCuD)}
= xCxCye(uC − uD). (7)

Here, (uC − uD) is given by

uC − uD = (yC − yD){xe(R − S) + xe(T − P)} − {ye(T − R) + ye(P − S)}
1 − (xC − xD)(yC − yD)

(8)
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(see the Supplemental Material [22] for a detailed calcula-
tion). The dynamics of xD are similarly obtained as

ẋD = yexD{uC − (xDuC + xDuD)}
= xDxD ye(uC − uD). (9)

In the same way, the dynamics of player 2’s strategy are given
by

ẏC = yCyCxe(vC − vD),

ẏD = yDyD xe(vC − vD), (10)

vC − vD = (xC − xD){ye(R − S) + ye(T − P)} − {xe(T − R) + xe(P − S)}
1 − (xC − xD)(yC − yD)

. (11)

Note that xe and ye are also time dependent, because xe

and ye are given as functions of time-dependent variables
(xC, xD, yC, yD).

The above learning dynamics can be divided into three
terms. For example, we focus on the dynamics of xC , given by
Eq. (7). The first term, xCxC , represents frequency-dependent
selection. When xC is close to 0 or 1, evolution proceeds
slowly over time because the nondominant strategy rarely
appears. Thus, the evolution to this strategy takes a long time
under a biased population distribution. The second term, ye,
represents the dependence of the evolutionary speed of xC

upon its frequency of use, because the other player cooperates
with the probability ye in the previous action. The third term,
uC − uD, represents that the change rate of the strategy is
proportional to the difference in resultant payoffs by C and
D, due to the reinforcement learning.

The learning dynamics extend the previous “coupled repli-
cator model” [12–14] to include memory of the other’s previ-
ous action. Indeed, in the coupled replicator model, reinforce-
ment learning of conditional strategies is not adopted. The first
term, the effect of frequency-dependent selection, is common
to this model and previous models. However, the second term,
i.e., the effect of conditional time evolution, is not found in the
previous studies [12–14]. A term that corresponds to our third
term, i.e., the effect of the payoff gap, exists therein, but the
computation of the payoff differs. Specifically, in the previous
studies, only the payoff in the present period is considered
because the deviation from the equilibrium state is completely
relaxed by a single game, and no conditional strategies are
used. In contrast, in the present model, we need to consider
the whole process by which a deviation from the equilibrium
state affects future periods over the long term, as is shown in
Eqs. (5) and (6).

C. Intuitive interpretation of the model

The above equilibrium state [Eq. (2)] and learning dynam-
ics [Eqs. (7), (9), and (10)] seem complicated at first glance.
However, we can intuitively interpret them by employing the
concept of the response function [23].

First, we introduce the response function. We consider
the situation in which player 2 cooperates with probability
y independent of player 1’s previous actions. Player 1, with
strategies given by xC and xD, also becomes an unconditional
cooperator with probability fx(y) = y(xC − xD) + xD (see
the Supplemental Material [22] for a detailed calculation).

Indeed, against player y = 1 (i.e., a pure cooperator), fx(1) =
xC holds, whereas, against a pure defector, fx(0) = xD holds.
Since fx is player 1’s probability of cooperating given player
2’s probability of cooperating, we call it the “response func-
tion,” following the previous studies [23].

Second, the equilibrium probabilities of cooperation, xe

and ye in Eq. (2), are interpreted as the crossing point of both
the response functions, as shown in Fig. 2. In other words,

xe = fx(ye ),

ye = fy(xe ) (12)

hold. Indeed, Eq. (12) is equivalent to Eq. (3).
Third, the above learning dynamics [Eqs. (7), (9), and (10)

can be easily written by using the response function (see the
Supplemental Material [22] for a detailed calculation). Here,
we only focus on Eq. (7) as an example. The second term,
ye, corresponds to the contribution to a change in the crossing
point against a change in xC . Thus, we obtain

ye ∝ ∂xe

∂xC
. (13)

FIG. 2. Interpretation of the equilibrium state for repeated
games. The horizontal (vertical) axis indicates the unconditional
probability of player 1 (2) to cooperate. Blue, green, red, and
magenta dots indicate the strategies xC , xD, yC , and yD, respectively.
Accordingly, response function fx (y) [ fy(x)] is given by connecting
xC (yC) with xD (yD). The crossing point of response functions
(black dot) agrees with (xe, ye ), which is each player’s probability
to cooperate in the equilibrium of repeated game.
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FIG. 3. (a) Final state of learning dynamics in the case of
(T, R, P, S) = (5, 3, 1, 0). Many sets of fixed (x∗

e , y∗
e ) satisfy 0 �

x∗
e , y∗

e � 1 with asymmetry between them. (b) Final state of learn-
ing dynamics in the case of (T, R, P, S) = (5, 4.5, 1, 0). Only
two sets, (x∗

e , y∗
e ) = (0, 0) and (1,1), are reachable. For both the

cases, initial states are uniformly chosen as (xo
C, xo

D, yo
C, yo

D ) = ((2i −
1)/2N, (2 j − 1)/2N, (2k − 1)/2N, (2l − 1)/2N ) with (i, j, k, l ) =
1, . . . , N and N = 10. Accordingly, xo

e and yo
e can take values in

[0,1]. See the Supplemental Material [22] for the animation of each
dynamics.

In addition, the third term, uC − uD, corresponds to the gra-
dient of a player’s payoff on the other player’s response
function. In other words, we obtain

uC − uD ∝ ∂u(xe, fy(xe ))
∂xe

∣∣∣∣
y=ye

. (14)

From Eqs. (13) and (14), with canceling the extra components,
we can rewrite Eq. (7) as

ẋC = xCxC
∂ue

∂xC
. (15)

The same equation holds for the dynamics of xD, yC , and
yD. The learning dynamics is interpreted by associating the
frequency-dependent selection term, xCxC , and the adaptive
learning term, ∂ue/∂xC .

III. ANALYSIS OF LEARNING EQUILIBRIUM

Now, we actually simulate the above learning dynamics.
Figure 3 shows the final states of (x∗

e , y∗
e ) given various

initial states (xo
C, xo

D, yo
C, yo

D). Below, the superscript o (∗)
denotes the initial (final) value of learning dynamics. Here, in-
stead of directly plotting four-dimensional players’ strategies
(x∗

C, x∗
D, y∗

C, y∗
D), we plot only their two-dimensional projec-

tion to (x∗
e , y∗

e ), which is the crossing point generated by their
response functions.

From the figure, we see that in the case of T − R − P +
S � 0, only (1) pure DD (x∗

e = y∗
e = 0) and (2) pure CC (x∗

e =
y∗

e = 0) strategies can be achieved. In the case of T − R −
P + S > 0, however, (3) the intermediate states 0 < x∗

e , y∗
e <

1, which include the case of x∗
e �= y∗

e , can also be achieved. We
now analyze these fixed points mathematically.

A. Analysis of each fixed point

(1) The pure DD fixed point is given by y∗
e = x∗

D = x∗
e =

y∗
D = 0, which satisfies ẋC = ẋD = ẏC = ẏD = 0. Here, x∗

D =

y∗
D = 0 is clearly satisfied from x∗

e = y∗
e = 0. Instead, x∗

C and
y∗

C are arbitrary. Then, the linear stability analysis shows
that the fixed point is stable if u∗

C − u∗
D � 0 and v∗

C − v∗
D �

0 are additionally satisfied. These conditions are equivalent
to x∗

C, y∗
C � (P − S)/(T − P). Thus, the pure DD fixed-point

attractor exists on a two-dimensional plane with continuous
values of xC and yC .

(2) The pure CC fixed point is given by x∗
C = y∗

e = y∗
C =

x∗
e = 1, which satisfies ẋC = ẋD = ẏC = ẏD = 0. Here, x∗

C =
y∗

C = 1 is clearly satisfied from x∗
e = y∗

e = 1. Instead, x∗
D and

y∗
D are arbitrary. Then, the fixed point is linearly stable if u∗

C −
u∗

D � 0 and v∗
C − v∗

D � 0. These conditions are equivalent
to x∗

D, y∗
D � 1 − (T − R)/(R − S). Thus, the pure CC fixed-

point attractor also exists on a two-dimensional plane in which
x∗

D and y∗
D continuously change. Note that x∗

C − x∗
D � (T −

R)/(R − S) and y∗
C − y∗

D � (T − R)/(R − S) hold, implying
that both players sufficient punish the other’s defection.

The pure DD and CC states are both well known as Nash
equilibrium and as Pareto optimal, respectively. Because the
dominance of these states has been extensively studied, their
achievements here are not surprising. In these pure states, no
exploitation appears, and both players’ actions and payoffs are
symmetric. Other states on the boundary of actions (such as
xe = 1, ye = 0) cannot be stable fixed points (see the Supple-
mental Material [22] for details). The only other fixed points
are given by the next case.

(3) When both x∗
e and y∗

e are neither 0 or 1, u∗
C − u∗

D =
v∗

C − v∗
D = 0 should hold to satisfy the fixed-point condition.

Then, ẋC = ẋD = ẏC = ẏD = 0 is satisfied. In such cases, the
condition of a fixed point for learning dynamics is

u∗
C − u∗

D = 0

⇔ y∗
C − y∗

D = y∗
e (T − R) + y∗

e (P − S)

x∗
e (R − S) + x∗

e (T − P)
,

v∗
C − v∗

D = 0

⇔ x∗
C − x∗

D = x∗
e (T − R) + x∗

e (P − S)

y∗
e (R − S) + y∗

e (T − P)
. (16)

From Eqs. (16), the set of (x∗
C, x∗

D, y∗
C, y∗

D) achieving (x∗
e , y∗

e )
is uniquely given by

x∗
C = x∗

e + y∗
e

x∗
e (T − R) + x∗

e (P − S)

y∗
e (R − S) + y∗

e (T − P)
,

x∗
D = x∗

e − y∗
e

x∗
e (T − R) + x∗

e (P − S)

y∗
e (R − S) + y∗

e (T − P)
,

y∗
C = y∗

e + x∗
e

y∗
e (T − R) + y∗

e (P − S)

x∗
e (R − S) + x∗

e (T − P)
,

y∗
D = y∗

e − x∗
e

y∗
e (T − R) + y∗

e (P − S)

x∗
e (R − S) + x∗

e (T − P)
. (17)

Note that as long as the two conditions u∗
C − u∗

D = v∗
C − v∗

D =
0 are satisfied within the region 0 � x∗

C, x∗
D, y∗

C, y∗
D � 1, the

fixed point condition for (x∗
C, x∗

D, y∗
C, y∗

D) is satisfied. Thus,
the fixed points for learning dynamics exist again on a two
(= 4 − 2)–dimensional space. Then, all such fixed points
are represented just as two variables (x∗

e , y∗
e ). According to

Eq. (17), there is a one-to-one correspondence between the
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FIG. 4. (a) The region of stable fixed points in which both eigenvalues are negative. (b) Both players payoffs mapped from fixed points.
(T, P, S) = (5, 1, 0) are fixed in all figures, and R is 2.5, 3.0, 3.5, 3.999, 4.001 and 5.0 from left to right. In panel (a), the horizontal (vertical)
axis indicates x∗

e (y∗
e ). In the case of (T + S)/2 � R < T − P + S, in other words, 2.5 � R < 4.0, there are two-dimensional fixed points

on (x∗
e , y∗

e ) with player asymmetry. However, all of the fixed points become unstable in the case of T − P + S < R � T , in other words,
4.0 < R � 5.0. In panel (b), the horizontal (vertical) axis indicates u∗

e (v∗
e ). Red broken line indicates the possible set of both the payoffs.

Orange (green) dot indicates the state of pure DD (CC) in all figures. Yellow (red) dot indicates the most exploitative state from 1 to 2 (from 2
to 1).

four-dimensional strategies of both players (x∗
C, x∗

D, y∗
C, y∗

D)
and (x∗

e , y∗
e ). Accordingly, we use the plot (x∗

e , y∗
e ) in Fig. 3,

instead of the four-dimensional space for the fixed points, and
will be adapted later.

Although such two-dimensional fixed points exist for all
sets of T, R, P, S, not all of them are always reachable from
the initial conditions. We further study the stability of the
fixed point by performing linear stability analysis around it.
Here, we recall that there are only two constraints on the four-
dimensional dynamics. Thus, two of four eigenvalues always
are zero, and the stability is neutral in two-dimensional space.

Now, we examine the stability by the other two eigenval-
ues, as seen in Fig. 4(a). The figure shows that in the case
of T − R − P + S � 0, none of these novel fixed points has
linear stability. Thus, only the symmetric states, pure DD and
CC, are achieved by learning dynamics.

In contrast, in the case of T − R − P + S > 0, the two-
dimensional part of the fixed points satisfies linear stabil-
ity. For almost all of these points, x∗

e �= y∗
e holds. Because

x∗
e �= y∗

e is equivalent to the payoff inequality (u∗
e �= v∗

e ), we
refer to such states as exploitative relationships in which
one player receives more benefit than the other. Such stable
two-dimensional exploitation also appears even if the update
speeds of the strategies are changed (see the Supplemental
Material [22] for the detailed results).

B. Characterization of the exploitative relationship

We now characterize the exploitative state by comparing
the payoffs for T − R − P + S > 0. Figure 4(b) shows both
players’ payoffs at the stable fixed points. As the represen-
tative state, we especially focus on the most exploitative
relationship from 1 to 2 (see yellow dot in Fig. 4), where both

y∗
e − x∗

e and u∗
e − v∗

e are maximal. The state is given by

x∗
e = P − S

R + P − 2S
, y∗

e = T − P

2T − R − P
,

u∗
e = R + (T − R)(R − S)(T − R − P + S)

(R + P − 2S)(2T − R − P)
,

v∗
e = P + (T − P)(P − S)(T − R − P + S)

(R + P − 2S)(2T − R − P)
. (18)

If T − R − P + S > 0, both u∗
e > R and v∗

e > P hold. These
equations show that the exploitative relationship is favorable
for different reasons between the exploiting and exploited
players. First, u∗

e > R means that the exploiting player 1
obtains a higher payoff than that in the case with pure CC. The
player 1 could be motivated to defect more, which, however,
would increase the probability of player 2’s defect and the
chance of DD. Hence, player 1 will not increase the proba-
bility of defect further. On the other hand, player 2 receives a
higher payoff than under the pure DD, because v∗

e > P. Then
player 2’s motivation to defect more is suppressed to avoid
DD, so that the player 2 accepts exploitation over mutual
defection.

Next, we see how the above exploitative relationship is
established. By substituting Eq. (18) for Eq. (17), we get both
the players’ strategies as

x∗
C = (P − S)(2T − R − P)

(R + P − 2S)(T − P)
,

x∗
D = 0,

y∗
C = 1,

y∗
D = 1 − (R + P − 2S)(T − R)

(R − S)(2T − R − P)
. (19)
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Here, recall that TFT strategy always cooperates (defects) to
the other’s cooperation (defection). In comparison to TFT, the
exploited player 2’s strategy is generous (y∗

C = 1 but y∗
D > 0)

and can be termed as generous TFT (we use this term by
extending its original definition in Ref. [18]). On the other
hand, the exploiting player 1’s strategy is narrower-minded
than TFT (x∗

D = 0 but x∗
C < 1), say, narrow-minded TFT. It

should be noted that the exploitation is stabilized by both the
players. The generous and narrow-minded strategies are sta-
bilized by each other. The exploiting (exploited) player with
narrow-minded TFT (generous TFT) demands (accepts) the
other’s cooperation (defection) and thus promotes the other
to be generous (narrow-minded). This result is unexpected
from previous studies in which both players’ TFT lead to the
cooperative relationship. In addition, it should be noted here
that this exploitative relationship is completely different from
that by one-way optimization in Press and Dyson’s study,
because the present exploitation is achieved as a result of both
players’ optimization.

The condition T − R − P + S > 0 can be intuitively in-
terpreted from the perspectives of both the exploiting and
exploited players. From the perspective of exploiting player,
the condition written as T − R > P − S implies that a player’s
change of action from C to D is more beneficial when the other
is C than D. In other words, the exploiting player is more
motivated to defect than the exploited player is. In contrast,
from the perspective of the exploited player, the condition
written as R − T < S − P means that a player’s change of
action from D to C is more beneficial when the other is D than
C. In other words, the exploited player is more motivated to
cooperate than the exploiting player is. Thus, the exploitative
relationship is stabilized by both the players; the exploiting
(exploited) one’s motivation to defect (cooperate) is more.
This condition T − R − P + S > 0 is known as “submodular
PD” in economics [24], so that we use this term for this
condition. In addition, the same condition is also observed in a
biological study [25]. However, why and how such a condition
leads to the exploitation is first noted here.

IV. TRANSIENT DYNAMICS TO THE
LEARNING EQUILIBRIUM

In Sec. III, we analyzed the fixed points and the linear sta-
bility in their neighborhoods. However, this analysis is limited
to only a small partition (i.e., the neighborhood of a two-
dimensional space at most) of the whole four-dimensional
phase space given by (xC, xD, yC, yD). We now study the
transient dynamics to reach the learning equilibrium from
arbitrary initial conditions of the two players (xo

C, xo
D, yo

C, yo
D).

A. Characterization of transient dynamics

Although the attractors consist of the pure DD, CC, and
various degrees of exploitative state with two dimensionality,
the transient dynamics are categorized into the following
several cases.

Case (1): Direct convergence to a cooperative relationship.
As easily guessed, a large xC and a small xD encourage the
other player to cooperate by punishing the other’s defection.
Thus, as Fig. 5(a) shows, when both players have sufficiently

FIG. 5. Trajectories of strategies during the learning dynamics
with a payoff matrix of (T, R, P, S) = (5, 3.25, 1, 0). In all figures,
(xo

C, xo
D, yo

C ) = (0.9, 0.1, 0.9) are fixed, with (a) yo
D = 0.1, (b) yo

D =
0.25, (c) yo

D = 0.65, and (d) yo
D = 0.7. Thus, player 1’s strategy is

fixed close to TFT, but player 2’s strategy departs from TFT, ranging
from (a) (closest) to (d) (farthest). Blue, green, red, and magenta
solid lines indicate xC , xD, yC , and yD, respectively. Yellow and cyan
broken lines indicate xe and ye, respectively. Note that only player 1’s
trajectory is plotted in panel (a) because each of yC, yD, ye is equal to
xC, xD, xe. (a) Trajectories of case (1). The player’s probabilities of
cooperation increase throughout the dynamics and converge to the
pure CC. (b) Trajectories of case (2). Both players first move toward
the pure CC. At time 10, however, player 1 takes advantage of player
2’s generous strategy (i.e., too much unconditional cooperation) and
increases his or her probability of defection. Against player 1’s
behavior, player 2 does not increase punishment to maintain the
previous high probability of cooperation, which further increases
player 1’s defection probability. The finite degree of exploitation
from player 1 to player 2 is thus fixed. (c) Trajectories of case (3).
The initial asymmetry is larger than that in panel (b). Around time 5,
the same exploitation as in panel (b) emerges. From time 5 to time
10, however, player 2 increases his or her punishment of player 1
decreasing yD. From time 10, both players punish each other and
finally reach the pure CC. (d) Trajectories of case (4). Until time
5, the exploitation of player 2 by player 1 emerges, and from time
5 to time 10, player 2 increases his or her punishment of player 1.
From time 10 to time 20, however, player 2’s excessive, one-sided
punishment demands player 1’s unconditional cooperation, which
results in the reverse exploitative relationship from that in case (b).

strong punishments, they evolve toward a cooperative rela-
tionship and converge to pure CC.

Here, we emphasize that the extreme limit of the punish-
ment strategy is given by xC = 1 and xD = 0, which is the TFT
strategy. In general, strategy (x′

D, x′
C ) is closer to TFT than

strategy (xC, xD) is when both of x′
C � xC and x′

D � xD are
satisfied. When only one of the inequalities holds, however,
the strategy that is closer to TFT is not defined.

Case (2): Exploitative relationship as a failure to reach
cooperation. Figure 5(b) shows an example of trajectory that
reaches an asymmetric relationship in which one player ex-
ploits the other. Initially, one player is closer to TFT than
the other is. Both players pursue a cooperative relationship
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FIG. 6. The degree of (a) exploitation (y∗
e − x∗

e ) and (b) cooper-
ation (x∗

e + y∗
e )/2 in the final state of learning dynamics is plotted

by a color, against the initial condition (xo
D, xo

C ) for (T, R, P, S) =
(5, 4.5, 1, 0). The horizontal (vertical) axis indicates xo

D (xo
C), and

the player 2’s strategy is fixed at yo
C = 0.8, yo

D = 0.2. In this case,
only pure CC and DD strategies are stable fixed points for learning
dynamics. The basin to the pure CC (DD) strategy is plotted by white
(black) points in the right figure.

by punishing each other [as in case (1)] in the beginning,
but the latter player becomes too cooperative to punish the
other. Thus, the former player switches to defection, and the
latter player’s strategy conversely increases the probability of
cooperation regardless of the former player’s defection. Thus,
an exploitative relationship is achieved.

Case (3): Cooperative relationship recovered from ex-
ploitation. As seen in Fig. 5(c), the initial difference in the
strategies is larger than that in case (2). The player closer to
TFT initially starts to exploit the other [as in case (2)]. This
exploitation, however, is too strong to become stable, and the
latter player increases punishment, leading to the cooperative
relationship found in case (1).

Case (4): Reversed exploitative relationship. An exploita-
tive relationship is constructed between asymmetric players
as in case (2), but now the relationship is reversed. Instead,
the player who is initially farther from TFT exploits the

closer player, as seen in Fig. 5(d). The degree of punishment
oscillates over time, and the player who is more cooperative
switches. If the difference in initial strategies increases fur-
ther, the oscillation lasts longer, and which player exploits
the other follows a complicated switching pattern. Finally, a
reverse exploitative relationship is achieved.

B. Basin structure for exploitative state

In the above, we have shown transient trajectories reaching
final cooperative or exploitative states. Now, we study the
dependence of the final state after learning on the initial
conditions.

First, if PD is not submodular, only the pure DD and
CC strategies are stable. In these cases, if the initial state
(xo

C, xo
D, yo

C, yo
D) reaches the pure CC, any initial condition

closer to TFT (i.e., with either xo′
C > xo

C or xo′
D < xo

D) also
reaches the pure CC, as shown in Fig. 6. Thus, the basin
structure, how each initial state reaches a final state, is simple.

On the other hand, when PD is submodular, the basin
structure is complicated, as seen in Fig. 7, in which pure
CC and DD strategies and various degrees of exploitative
relationships are achieved. Slight differences in initial states
lead to changes in the final state, especially near the boundary
of the basin to the pure DD.

From Fig. 7(a), we observe successive changes of cases
(1)–(4) as well as further oscillation of punishments, plotted
against the change in the difference between both players’
initial strategies. In addition, note that the payoff (and action)
at the basin boundary between the pure CC and exploitation
[i.e., case (1) and (2)] is discontinuous. The collapse of
cooperation results in a finite (indeed, rather large) degree
of asymmetry in the payoffs. This discontinuous transition is
due to positive feedback loop between generous and narrow-
minded strategies. Once the cooperative relationship is col-
lapsed, the generous player becomes more generous (i.e.,
decreases the probability of defect) to maintain cooperation.

FIG. 7. Panel (a) shows both players’ payoffs u∗
e (blue) and v∗

e (red) when xo
D = 0.1 in R = 3.25. (#) indicates the trajectory case classified

in Sec. IV A. Degrees of (b) exploitation of player 2 by player 1 (:= y∗
e − x∗

e ) and (c) cooperation (:= (x∗
e + y∗

e )/2) are plotted against the
initial values of (xo

D, yo
D ). The horizontal (vertical) axis commonly indicates yo

D (xo
D), and both xo

C and yo
C are fixed to 0.999. In both figures,

(T, P, S) = (5, 1, 0) is fixed, and R equals 2.5, 2.75, 3.0, and 3.25 from left to right.
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On the other hand, the narrow-minded player becomes more
narrow-minded (i.e., increases the probability of defect)
against the generous other.

Furthermore, Figs. 7(b) and 7(c) show how the basin
structure changes depending on the payoff matrix. When the
benefit of reciprocal cooperation is minimal for the PD [R =
(T + S)/2], the region of cooperation is almost nonexistent
even from the initial conditions with xo

D ∼ yo
D. However small

the difference between both players’ initial strategies is, a
finite amount of exploitation is finally achieved (in some cases
with the reversal of the initial difference). In other words,
symmetry breaking between both the strategies occurs as a
result of amplification of any tiny difference in the initial
strategies. As R is increased, however, cooperative relation-
ship (pure CC) is finally established if the difference in the
initial strategies is small [as seen in the enhancement of the
cooperation region near the diagonal line in Fig. 7(b)]. A
certain amount of difference between the initial strategies
is necessary to reach the exploitative relationship, and the
spontaneous symmetry breaking does not occur strictly.

V. SUMMARY AND DISCUSSION

In this study, we formulated learning dynamics in which
two players mutually update their probabilistic conditional
strategies through a repeated game. This learning process is
decomposed into frequency-dependent selection (i.e., the term
xCxC) and adaptive learning (i.e., the term ∂ue/∂xC).

We analyzed the fixed-point attractors of a dynamical
system of strategies. Interestingly, in addition to pure DD and
CC strategies, two-dimensional neutral fixed points with an
exploitative relationship can be stably reached if PD is sub-
modular. Even though the two players have the same learning
dynamics and intend to optimize their payoffs, an asymmetric
relationship can be achieved under certain conditions. Ac-
cordingly, when we observed exploitative relationship, it is
difficult to reason why one side is exploited by the other.

Our finding is that the exploitative relationship is stabilized
by both the exploiting and exploited players. The exploiting
player receives a higher payoff than the other player does and
often receives a higher payoff than that under the pure CC.
The exploited player receives a lower payoff than the other
player does but secures at least the minimax payoff, which
is obtained under the pure DD. In addition, this exploitative
relationship is structured by asymmetric punishments against
the other player’s defection. Both players punish each other,
but the exploiting (exploited) player defects (cooperates) more
than the other does.

We then analyze the transient dynamics for reaching the
exploitative state. For submodular PD, the feedback of pun-
ishment leads to the temporal oscillation of final state from
cooperation to exploitation, cooperation, exploitation by the
other player, and so forth, depending on how close the initial
strategies are to TFT. The basin structure is complicated, and
slight differences in the initial strategies can lead to the drastic
changes in the final state.

Complicated strategies with memories over many previous
actions are sometimes studied by using multiagent learning
models, such as the coupled neural networks. As a result of
reciprocal learning, an emergence of exploitative relationship

FIG. 8. The equilibrium states for the learning dynamics in the
case of (T, R, P, S) = (5, 4, 0, 1).

[26] and the endogenous acquisition of punishment [27] are
observed at some stage in the iterated PD. However, whether
the state is stable or transient is not explored. To analyze
such state is rather difficult, because the dynamics are non-
deterministic and extremely high-dimensional, as is generally
seen in machine learning studies. In contrast, our model
is deterministic and low dimensional, so that the stationary
exploitative state is clearly analyzed, which will also provide a
basis to study the behavior of complicated multiagent systems.

There is a recent report of exploitation by symmetry
breaking in a game between players on two two-dimensional
lattices [28]. Each player’s strategy is updated by Monte Carlo
simulation within each lattice, whereas the payoff is given by
the game between the same positions of two lattices. Thus,
the exploitation, the difference between the fraction of coop-
erators in the two lattices, can be allowed as each player does
not have any motivation to increase the average payoff lattice.
Further, the population dynamics are nondeterministic and
high dimensional, which make the analysis for exploitation
harder. Note that the condition for the payoff matrix to achieve
exploitation is restricted and totally different from ours. In our
deterministic game, there exist only two players who are moti-
vated to increase their own payoff over the other’s. Under this
natural, simple setup, we have demonstrated the emergence of
exploitation and uncovered the analytic condition for it.

We can straightforwardly adopt our learning model to
games with general payoff matrix. Then, equilibria with dif-
ferent degrees of asymmetry between the two players coex-
ist as in the PD game. For instance, the equilibria for the
snowdrift (chicken) game in which T > R > S > P holds are
shown in Fig. 8, as in Fig. 3 for the PD. Note, however,
that in this snowdrift game, there already exists asymmetric
Nash equilibrium as pure CD and DC. Thus, the emergence
of various asymmetric equilibria by our cognitive learning
dynamics is not so striking.

Note that the PD game is the classic paradigm for the
study of cooperation and defection. Thus, the results of
this study have general implications for the issues of co-
operation, exploitation, and defection. Here, it is interesting
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to note that the emergence of exploitation depends on the
payoff matrix (T, R, P, S). We have shown that submodu-
lar PD [which includes the standard case adopted in most
previous studies, i.e., the matrix (5,3,1,0)] generally justifies
exploitation from both the exploiting and exploited player’s
perspectives.

It is often thought that exploitative relationships result from
differences in players’ abilities or environmental conditions.
Whether and how players with the same learning abilities
evolve toward the “symmetry breaking” associated with ex-
ploitation remains unknown. We have shown that exploitation
can emerge even between players with same learning rule and
the same payoff based on differences in their initial strategies.
Furthermore, the complicated basin structure that we observe

implies that slight difference in the initial strategies can lead
to an unexpected exploitation relationship with regard to
which player exploits the other. This result provides a novel
perspective on the origins of exploitation and complex societal
relationships.
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