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In quantum information, lifting is a systematic procedure that can be used to derive—when provided with
a seed Bell inequality—other Bell inequalities applicable in more complicated Bell scenarios. It is known that
the procedure of lifting introduced by Pironio [J. Math. Phys. 46, 062112 (2005)] preserves the facet-defining
property of a Bell inequality. Lifted Bell inequalities therefore represent a broad class of Bell inequalities that
can be found in all Bell scenarios. Here, we show that the maximal value of any lifted Bell inequality is
preserved for both the set of nonsignaling correlations and quantum correlations. Despite the degeneracy in
the maximizers of such inequalities, we show that the ability to self-test a quantum state is preserved under
these lifting operations. In addition, except for outcome lifting, local measurements that are self-testable using
the original Bell inequality—despite the degeneracy—can also be self-tested using any lifted Bell inequality
derived therefrom. While it is not possible to self-test all the positive-operator-valued measure elements using
an outcome-lifted Bell inequality, we show that partial, but robust self-testing statements on the underlying
measurements can nonetheless be made from the quantum violation of these lifted inequalities. We also highlight
the implication of our observations on the usefulness of using lifted Bell-like inequalities as a device-independent
witnesses for entanglement depth. The impact of the aforementioned degeneracy on the geometry of the quantum
set of correlations is briefly discussed.
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I. INTRODUCTION

Inspired by the thought-provoking paper of Einstein,
Podolsky, and Rosen [1], Bell derived [2]—based on well-
accepted classical intuitions—an inequality constraining the
correlations between local measurement outcomes on two
distant systems. He further showed that the so-called Bell
inequality can be violated by quantum theory using local but
incompatible measurements on entangled states. Since then,
various Bell inequalities, such as the one due to Clauser,
Horne, Shimony and Holt (CHSH) [3], have been derived to
investigate the intriguing nature of quantum theory and also
the information-processing power enabled by these nonclassi-
cal, Bell-nonlocal [4] correlations.

For example, Ekert [5] showed in 1991 that the quantum vi-
olation of Bell inequalities offers an unprecedented level of se-
curity for quantum key distribution protocols. Independently,
Mayers and Yao [6,7] showed that certain extremal quan-
tum correlation enables the possibility to self-test quantum
devices. These discoveries prompted the paradigm of device-
independent quantum information [4,8] in which the physical

*ycliang@mail.ncku.edu.tw

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

properties of quantum devices are certified without making
any assumption on the internal working of the devices, but
rather through the observation of a Bell-nonlocal correlation.

Interestingly, an observation of the maximal quantum vio-
lation of certain Bell inequalities, such as the CHSH inequal-
ity, is already sufficient to self-test the underlying quantum
state and the measurements that give rise to the observed
violation [9]. To date, numerous Bell inequalities have been
derived (see, e.g., [4,10–32] and references therein). However,
beyond the CHSH Bell inequality, only a handful of them
[25,28,31,33–39] have been identified as relevant for the pur-
pose of self-testing (see [40] for a recent review on the topic
of self-testing). Is it possible to make some general statements
regarding the self-testing property of Bell inequalities defined
for an arbitrary Bell scenario?

To answer the above question, we consider, in this work,
Bell inequalities that may be obtained from the procedure of
Pironio’s lifting [41] (see Fig. 1). Importantly, such inequali-
ties exist in all Bell scenarios beyond the simplest one for two
parties, two settings, and two outcomes. If a Bell inequality is
facet defining [16], the same holds for its liftings [41]. What
about their quantum violation? In [42], it was shown that in
addition to the bound satisfied by Bell-local correlations, both
the maximal quantum value and the maximal nonsignaling
[43] value of Bell inequalities are preserved for party lifting.
In this work, we give an alternative proof of this fact and
show, in addition, that both the maximal quantum value and
the maximal nonsignaling value of a Bell inequality are also
preserved for other types of Pironio’s lifting.
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FIG. 1. Summary of the three distinct types of liftings [41] con-
sidered in this work. Upon the application of lifting, a Bell inequality
becomes applicable in a more complicated Bell scenario, such as
one with more measurement settings, or one with more measurement
outcomes for at least one of the settings, or one with more parties. Of
course, concatenation of distinct types of liftings are also possible.

As a corollary of our results, we further show that the
self-testing properties of a Bell inequality is largely preserved
through the procedure of lifting. In other words, if a Bell
inequality can be used to self-test some quantum state |ψ〉,
so can its liftings. Moreover, except for the case of outcome
lifting, the possibility to self-test the underlying positive-
operator-valued measure (POVM) using a Bell inequality
remains intact upon the application of Pironio’s lifting. As
we illustrate in this work, the maximizers of lifted Bell
inequalities are not unique. There is thus no hope (see, e.g.,
[44]) of providing a complete self-testing of the employed
quantum devices using a lifted Bell inequality. Nonetheless,
we provide numerical evidence suggesting that lifted Bell
inequalities provide the same level of robustness for self-
testing the relevant parts of the devices.

The rest of this paper is organized as follows. In Sec. II,
we introduce basic notions of a Bell scenario and recall
the definitions of self-testing. After that, we investigate and
compare the maximal violation of lifted Bell inequalities
against that of the original Bell inequalities, assuming quan-
tum, or general nonsignaling, correlations [43]. In the same
section, we also discuss the self-testing property of lifted
Bell inequalities, and the usefulness of party-lifted Bell-like
inequalities as device-independent witnesses for entanglement
depth [26]. In Sec. IV, we present some concluding remarks
and possibilities for future research. Examples illustrating the
nonuniqueness of the maximizers of lifted Bell inequalities,
as well as their implications on the geometry of the quantum
set of correlations are provided in the Appendixes.

II. PRELIMINARIES

A. Bell scenario

Consider a Bell scenario involving n spatially separated
parties labeled by i ∈ {1, 2, . . . , n} and let the ith party per-
form a measurement labeled by ji,with outcomes labeled
by ki. In such a setup, we may appreciate the strength
of correlation between the observed measurement outcomes
via a collection of joint conditional probabilities. Follow-
ing the literature (see, e.g., [4]), we represent these con-
ditional probabilities—dubbed a correlation—of observing
the outcome combination �k = (k1k2 . . . kn) conditioned on

 
 

 
 

  

FIG. 2. In a Bell test, the raw data collected can be used to
estimate the underlying conditional probability distribution P(�k| �j),
which manifests the extent to which the measurement outcomes are
correlated (see, however, Ref. [45] for subtleties involved in such
an estimation). If this correlation is strong enough, it may be used
for device-independent characterizations, i.e., the task of deducing,
directly from �P = {P(�k| �j)} and Born’s rule, certain properties of the
shared state ρ and the local POVM {M (i)

ki | ji
}. The strongest form of

such characterizations is known as self-testing, which is to deduce—
modulo unimportant local degrees of freedom—exactly what ρ and
{M (i)

ki | ji
} are.

performing the measurements �j = ( j1 j2 . . . jn) by the vector
�P := {P(�k| �j)} (see Fig. 2).

In addition to the normalization condition and the positivity
constraint P(�k| �j) � 0 for all �k, �j, each correlation is required
to satisfy the nonsignaling constraints [43] (see also [46])∑

ki

P(k1 . . . ki . . . kn| j1 . . . ji . . . jn)

=
∑

ki

P(k1 . . . ki . . . kn| j1 . . . j′i . . . jn) (1)

for all i, j1, . . . ji−1, ji, j′i, ji+1 . . . jn, and k� (with � �= i). In
any given Bell scenario, the set of correlations satisfying these
constraints forms the so-called nonsignaling polytope N [43].

A correlation is called Bell local [4] if it can be explained
by a local-hidden-variable model [2],

P(k1 . . . kn| j1 . . . jn) =
∑

λ

pλP(k1| j1, λ) . . . P(kn| jn, λ)

for all k1 . . . kn, j1 . . . jn, where λ is the hidden variable which
occurs with probability pλ,

∑
λ pλ = 1 and P(ki| ji, λ) is the

probability of obtaining the measurement outcome ki given
the setting ji and the hidden variable λ. As with the nonsignal-
ing polytope N , the set of Bell-local correlations forms a
polytope (often called a local polytope L), which is a subset
of N .

A correlation which cannot be explained by a local-hidden-
variable model is said to be Bell nonlocal and must necessarily
violate a Bell inequality [2]—a constraint satisfied by all �P ∈
L. A linear Bell inequality has the generic form

In( �P) := �B · �P =
∑

k1···kn, j1··· jn

B�k,�jP(�k| �j) L
� βL, (2)

where �B := {B�k,�j} denotes the vector of Bell coefficients, and
�B · �P and βL are, respectively, the Bell expression and the
local bound of a Bell inequality.
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FIG. 3. Schematic illustrating the space of all correlations �P, as
well as the inclusion relations between the set of Bell-local correla-
tions L (innermost, green boundary), the set of quantum correlations
Q (red boundary), and the set of nonsignaling correlations N (outer-
most, blue boundary). Note that a positivity facet (which dictates that
a legitimate probability is non-negative) represents a boundary that is
(partially) shared by all three sets while a nontrivial (facet-defining)
Bell inequality allows one to distinguish a non-Bell-local correlation,
such as �P′, from those �P ∈ L. Note that to perform self-testing, such
a �P′ must lie on the boundary of Q (see [44]).

A correlation �P is called quantum if the joint probabilities
can be written as

P(k1 . . . kn| j1 . . . jn) = tr
( ⊗n

i=1 M (i)
ki| ji

ρ12...n
)
, (3)

where ρ12...n is an n-partite density matrix and {M (i)
ki| ji

}ki is the
POVM describing the jith measurement of the i party. By
definition, POVM elements satisfy the constraints of being
positive semidefinite, M (i)

ki| ji
� 0 for all ki and ji, as well as

the normalization requirement
∑

ki
M (i)

ki| ji
= 1 for all ji. Thus,

a correlation is quantum if and only if the joint probabilities of
such a correlation can be realized experimentally by perform-
ing local measurements on an n-partite quantum system. The
set of quantum correlations Q forms a convex set satisfying
L ⊂ Q ⊂ N (see Fig. 3). It is, however, not a polytope [11]
(see also [44]). When necessary, we will use Qn to denote
the set of quantum correlations arising in an n-partite Bell
scenario.

B. Self-testing

Certain nonlocal correlations �P ∈ Q have the appealing
feature of being able to reveal (essentially unambiguously) the
quantum strategy, i.e., the underlying state and/or the POVM
leading to these correlations [7,9,11,40]. Following [7], we
say that such a �P ∈ Q self-tests the underlying quantum
strategy. To this end, it is worth noting that all pure bipartite
entangled states can be self-tested [47].

To facilitate subsequent discussions, we recall from [44]
the formal definition of self-testing in a bipartite Bell scenario
(see also [40]). Specifically, consider two spatially separated
parties Alice and Bob who each performs measurements
labeled by x, y and, respectively, observes the outcomes a, b.

We say that a bipartite correlation �P := {P(ab|xy)} satisfying

P(ab|xy) = tr
[
M (1)

a|x ⊗ M (2)
b|y ρ12

]
(4)

for all a, b, x, and y self-tests the reference (entangled) state
|ψ̃12〉 if there exists a local isometry � = �1 ⊗ �2 such that

�ρ12 �† = |ψ̃12〉〈ψ̃12| ⊗ ρaux (5)

where ρ12 is the measured quantum state [acting on HA ⊗
HB], ρaux is an auxiliary state acting on HA′ ⊗ HB′ , and
HA′ and HB′ are the Hilbert spaces associated with the
other degrees of freedom of Alice and Bob’s subsystem
respectively [48].

Often, a �P ∈ Q that self-tests some reference quantum
state can also be used to certify the measurements as well.
In such cases, we say that a bipartite correlation �P obtained
from Eq. (4) self-tests the reference quantum state |ψ̃12〉 and
the reference POVM {M̃ (1)

a|x }a, {M̃ (2)
b|y }b if there exists a local

isometry � = �1 ⊗ �2 such that Eq. (5) holds and

�
[
M (1)

a|x ⊗ M (2)
b|y ρ12

]
�† = [

M̃ (1)
a|x ⊗ M̃ (2)

b|y |ψ̃12〉〈ψ̃12|
] ⊗ ρaux.

(6)

for all a, b, x, and y. By summing over a, b, and using the
normalization of POVM, one recovers Eq. (5) from Eq. (6).

Interestingly, there are Bell inequalities whose maximal
quantum violation alone is sufficient to self-test the quantum
state (and the POVM) [28,34,36,37,49–52]. Since then, iden-
tifying Bell inequalities which can be used for the task of
self-testing has received considerable attention. To this end,
note that if the maximal quantum violation of a Bell inequal-
ity self-tests some quantum state as well as the underlying
measurements, then this maximal quantum violation must be
achieved by a unique �P ∈ Q [44].

More formally, consider a bipartite Bell inequality,

I2( �P) :=
∑

a,b,x,y

BabxyP(ab|xy)
L
� βL, (7)

with a quantum bound (maximal quantum violation):

βQ = max
�P∈Q

I2( �P) > βL. (8)

We say that an observation of the quantum violation I2( �P) =
βQ self-tests the reference (entangled) state |ψ̃12〉 and the
reference POVM {M̃ (1)

a|x }a, {M̃ (2)
b|y }b if there exists a local isom-

etry � = �1 ⊗ �2 such that Eq. (6) holds for all �P ∈ Q [cf.
Eq. (4)] satisfying I2( �P) = βQ.

III. MAXIMAL VIOLATION OF LIFTED BELL
INEQUALITIES AND ITS IMPLICATIONS

In this section, we show that both the maximal quantum
violation and the nonsignaling violation of a lifted Bell in-
equality must be the same as that of the Bell inequality from
which the lifting is applied. We then discuss the implication of
these observations in the context of self-testing (Fig. 2), on the
geometry of the quantum set of correlations (Fig. 3), as well
as on the device-independent certification of entanglement
depth. For ease of presentation, our discussion will often be
carried out assuming a bipartite Bell scenario (for the original
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Bell inequality). However, it should be obvious from the
presentation that our results also hold for any Bell scenario
with more parties, and also for a Bell inequality that is not
necessarily facet defining.

A. More inputs

Let us begin with the simplest kind of lifting, namely,
one that allows additional measurement settings. Applying
Pironio’s input lifting [41] to a Bell inequality means to
consider the very same Bell inequality in a Bell scenario with
more measurement settings for at least one of the parties. At
first glance, it may seem rather unusual to make use of only
the data collected for a subset of the input combinations, but
in certain cases (see, e.g., [53]), the consideration of all input-
lifted facets is already sufficient to identify the non-Bell-local
nature of the observed correlations.

Since an input-lifted Bell inequality is exactly the same
as the original Bell inequality, its maximal quantum and
nonsignaling violation is obviously the same as that of the
original Bell inequality. Similarly, it is evident that if the
maximal quantum violation of the original Bell inequality
self-tests some reference quantum state |ψ〉 and POVMs
{M (1)

a|x }a,x, {M (2)
b|y }b,y,..., so does the maximal quantum violation

of the input-lifted Bell inequality.
However, since no constraint is imposed on the additional

inputs that do not appear in the Bell expression, it is clear that
even if we impose the constraint that the maximal quantum
violation of an input-lifted Bell inequality is attained, these
other local POVMs can be completely arbitrary. Thus, the
subset of quantum correlation attaining the maximal quantum
violation of any input-lifted Bell inequality is not unique,
and has a degeneracy that increases with the number of these
“free” inputs. In other words, the set of quantum maximizers
of any input-lifted Bell inequality define a flat region of the
boundary of the quantum set of correlations, cf. [44]. In
particular, it could lead to completely flat boundaries of Q on
specific two-dimensional slices in the correlation space (see
Fig. 4). For some explicit examples illustrating the aforemen-
tioned nonuniqueness, see Appendix A.

B. More outcomes

Instead of the trivial input lifting, one may also lift a Bell
inequality to a scenario with more measurement outcomes.
Specifically, consider a bipartite Bell scenario where the y′th
measurement of Bob has v � 2 possible outcomes. The sim-
plest outcome lifting à la Pironio [41] then consists of two
steps: (1) choose an outcome, say, b = b′ from Bob’s y′th
measurement, and (2) replaces in the sum of Eq. (7) all terms
of the form P(ab′|xy′) by P(ab′|xy′) + P(au|xy′).

The resulting outcome-lifted Bell inequality reads as

ILO
2 =

∑
a,b,x,y �=y′

BabxyP(ab|xy) +
∑

a,x,b�=b′,u

Babxy′P(ab|xy′)

+
∑
a,x

Bab′xy′ [P(ab′|xy′) + P(au|xy′)]
L
� βL, (9)

where the local bound βL is provably the same [41] as that
of the original Bell inequality, Eq. (7). It is worth noting that

FIG. 4. A two-dimensional slice in the input-lifted space of
correlations spanned by P̃LO

Q1
, P̃LO

Q2
[see Eq. (A5)] and the uniform

distribution P̃0. From the innermost to the outermost, we have,
respectively, the set of Bell-local correlations L (green), the set
of quantum correlations Q (red, dashed boundary), and the set of
nonsignaling correlations N (mauve). To illustrate the degeneracy in
the maximally violating correlations, we have chosen the input-lifted
Bell inequality of Eq. (A3) and the marginal correlator for y = 2, i.e.,
EB

2 = P̃(b = 0|y = 2) − P̃(b = 1|y = 2) as, respectively, the vertical
and horizontal axis of this plot. As opposed to the two-dimensional
slices shown in [44], the set of quantum correlations Q appears to be
a rectangle on this slice.

outcome-lifted Bell inequalities arise naturally in the study of
detection loopholes in Bell experiments; see, e.g., [30,54].

1. Preservation of quantum and nonsignaling violation

As with input lifting, we now proceed to demonstrate the
invariance of maximal Bell violation with outcome lifting.

Proposition 1. Lifting of outcomes preserves the quantum
bound and the nonsignaling bound of any Bell inequality, i.e.,
βLO
Q = βQ and βLO

N = βN , where βQ (βLO
Q ) and βN (βLO

N ) are,
respectively, the quantum and the nonsignaling bounds of the
original (outcome-lifted) Bell inequality.

Proof. From Eq. (9), one clearly sees that the b′th outcome
and the uth outcome of Bob’s y′th measurement are treated
on equal footing. So, we may as well consider Bob’s y′th
measurement as an effective v-outcome measurement by con-
sidering its b′th outcome and its uth outcome together as one
outcome. Hence, if we define

P̃(ab|xy) = P(ab|xy), y �= y′,

P̃(ab|xy′) = P(ab|xy′), b �∈ {b′, u},
P̃(ab′|xy′) = P(ab′|xy′) + P(au|xy′)

(10)

and substitute it back into Eq. (9), we recover the Bell
expression of the original Bell inequality [left-hand side of
Eq. (7)] by identifying P̃(ab|xy) in ILO

2 as P(ab|xy) in I2.
Moreover, if �P defined for this more-outcome Bell scenario
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is quantum (nonsignaling), the resulting correlation obtained
with the coarse-graining procedure of Eq. (10) is still quantum
(nonsignaling). A proof of this for quantum correlations is
provided in Appendix B (see, e.g., [55] for the case of
nonsignaling correlation).

This implies that for any violation of the outcome-lifted
Bell inequality (9) by a quantum (or a nonsignaling) cor-
relation, there always exists another quantum (respectively,
a nonsignaling) correlation that gives the same amount of
violation for the original Bell inequality (7). In particular,
the maximal quantum and nonsignaling violation of these
inequalities must satisfy

βN � βLO
N βQ � βLO

Q . (11)

On the other hand, instead of grouping the outcomes in
the outcome-lifted Bell scenario, one could also start from the
original Bell scenario and (arbitrarily) split the b′th outcome
of Bob’s y′th measurement into two outcomes labeled by b =
b′ and b = u. Hence, if we define P̂(ab′|xy′), P̂(au|xy′) in the
outcome-lifted Bell scenario such that

P̂(ab|xy) = P(ab|xy), y �= y′ or y = y′, b �= b′, u,

0 � P̂(ab′|xy′), P̂(au|xy′) � 1,

P̂(ab′|xy′) + P̂(au|xy′) = P(ab′|xy′) (12)

and substitute it into Eq. (7), we recover the outcome-
lifted Bell expression [Eq. (9)] by identifying P̂(ab′|xy′) and
P̂(au|xy′), respectively, as P(ab′|xy′) and P(au|xy′) in ILO

2 , cf
Eq. (9).

Moreover, the correlation obtained by locally splitting the
outcomes, as required in Eq. (12), is realizable quantum
mechanically (see Appendix B) or in general nonsignaling
theory (see [55]) if the original correlations are, respectively,
quantum and nonsignaling. Hence, for any violation of the
original Bell inequality [Eq. (7)] by a quantum (nonsignaling)
correlation, there always exists a quantum (nonsignaling) cor-
relation giving the same amount of violation for the outcome-
lifted Bell inequality (9), i.e.,

βQ � βLO
Q ; βN � βLO

N . (13)

Combining Eqs. (11) and (13), it then follows that the maxi-
mal quantum and nonsignaling violation of any Bell inequal-
ity is preserved through the procedure of outcome-lifting, i.e.,

βQ = βLO
Q ; βN = βLO

N . (14)

This completes the proof when only one of the outcomes (b =
u) of one of the measurements (y = y′) of one of the parties
(Bob) is lifted. However, since more complicated outcome
lifting can be achieved by concatenating the simplest outcome
lifting presented above, the proof for the general scenarios can
also be obtained by concatenating the proof given above, thus
completing the proof for the general scenario. �

2. Implications on self-testing

As an implication of the above proposition, we obtain the
following result in the context of quantum theory.

Corollary 1. If the maximal quantum violation of a
Bell inequality self-tests a quantum state |ψ̃〉, then any

Bell inequality obtained therefrom by outcome lifting also
self-tests |ψ̃〉.

Proof. For definiteness, we prove this for the specific
case of n = 2; the general proof is completely analogous.
To this end, let ρ∗

12 denote an optimal quantum state that
maximally violates the outcome-lifted Bell inequality (9)
[which has (v + 1) outcomes for Bob’s y′th measurement]
with appropriate choice of POVMs, {M (1)

a|x }a,x, {M (2)
b|y }b,y. As

shown in Appendix B, this quantum state ρ∗
12 can also be used

to realize an effective v-outcome distribution for Bob’s y′th
measurement by combining Bob’s relevant POVM elements
for this measurement into a single POVM element, thereby
implementing the local coarse graining given in Eq. (10) to
give the maximal quantum violation of the original Bell in-
equality, Eq. (7). Suppose that the maximal quantum violation
of inequality (9) does not self-test the reference state |ψ̃12〉,
i.e., there does not exist any local isometry � = �1 ⊗ �2

such that

�ρ∗
12�

† = |ψ̃12〉〈ψ̃12| ⊗ ρaux (15)

for some ρaux. Then, we see that the maximal quantum viola-
tion of inequality (7) (attainable using ρ∗

12) also cannot self-
test the reference state |ψ̃12〉. The desired conclusion follows
by taking the contrapositive of the above implication. �

A few remarks are now in order. As with any other
Bell inequality, in examining the quantum violation of an
outcome-lifted Bell inequality, one may consider arbitrary
local POVMs having the right number of outcomes (acting
on some given Hilbert space). A priori, they do not have to be
related to the optimal POVM of the original Bell inequality.
However, from the proof of Proposition 1, one notices that
POVMs arising from splitting the outcomes of the original
optimal POVM do play an important role in attaining the max-
imal quantum violation of the outcome-lifted Bell inequality.

The arbitrariness in this splitting, nonetheless, implies
that �P ∈ Q maximally violating an outcome-lifted Bell
inequality is not unique (see Appendix A 2 for some explicit
examples). Since this invalidates a necessary requirement
to self-test both the state and all the local POVMs (see
Proposition C.1. of Ref. [44]), we must thus conclude—given
that such an inequality preserves the ability to self-test
the underlying state—that its maximal violation cannot be
used to completely self-test the underlying measurements.
Using the swap method of [56], we nevertheless show in
Appendix C that the quantum violation of an outcome-lifted
Bell inequality may still provide robust self-testing of some
of the underlying POVM elements, as well as the nature of
the merged POVM elements.

C. More parties

Finally, let us consider the party lifting of [41]. Again,
for simplicity, we provide hereafter explicit constructions and
proofs only for the bipartite scenario, with the multipartite
generalizations proceeding analogously. To this end, it is
expedient to write a generic bipartite Bell inequality such that

I2 :=
∑

a,b,x,y

BabxyP(ab|xy)
L
� 0, (16)
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i.e., with its local bound set to zero.1 For any fixed but arbi-
trary input-output pair c′, z′ of the additional party (Charlie),
applying the party lifting of [41] to inequality (16) gives rise
to the tripartite Bell inequality:

ILP
2 :=

∑
a,b,x,y

BabxyP(abc′|xyz′)
L
� 0. (17)

It is worth noting that such Bell inequalities have found appli-
cations in the foundations of quantum theory [57,58], as well
as in the systematic generation [59] of device-independent
witnesses for entanglement depth [26].

1. Preservation of quantum and nonsignaling violation

That the maximal quantum and nonsignaling violation
remain unchanged under Pironio’s party-lifting operation [41]
follows directly from the results shown in Sec. 2.4 of [42].
For the convenience of subsequent discussions, however, we
provide below an alternative proof of this observation.

Observation 1. Lifting of parties preserves the quantum
bound and the nonsignaling bound of any Bell inequality, i.e.,
βLP
Q = βQ and βLP

N = βN , where βQ (βLP
Q ) and βN (βLP

N ) are,
respectively, the quantum and the nonsignaling bounds of the
original (party-lifted) Bell inequality.

Proof. For a tripartite Bell scenario relevant to inequality
(17), the marginal probability of Charlie getting the outcome
c′ conditioned on him performing the measurement labeled by
z′ is

P(c′|z′) =
∑
a,b

P(abc′|xyz′). (18)

Since the party-lifted inequality of Eq. (17) is saturated with
the choice of P(c′|z′) = 0, thereby making P(abc′|xyz′) = 0
for all a, b, x, y, the observation holds trivially if inequality
(17) cannot be violated by general nonsignaling correlations.

Conversely, if inequality (17) can be violated by some
quantum or general nonsignaling correlation, the correspond-
ing P(c′|z′) must be nonvanishing. Hence we thus assume that
P(c′|z′) > 0. To this end, note that

Pc′|z′ (ab|xy) := P(abc′|xyz′)/P(c′|z′) (19)

gives the probabilities of Alice and Bob obtaining the out-
comes a and b conditioned on her (him) choosing measure-
ment x (y), Charlie measuring z′, and obtaining the outcome
c′. Note that the vector of probabilities �Pc′|z′ := {Pc′|z′ (ab|xy)}
is a legitimate correlation in the (original) Bell scenario cor-
responding to inequality (16).

To prove the observation, we now focus on the case of
finding the quantum bound, i.e., the maximum value of the
left-hand side of Eq. (17) for quantum correlations—the proof
for the nonsignaling case is completely analogous. To this
end, note that the quantum bound of inequality (17)—given
the above remarks—satisfies

βLP
Q = max

{P(abc′|xyz′ )}∈Q3

∑
a,b,x,y

BabxyP(abc′|xyz′)

= max
{P(abc′|xyz′ )}∈Q3

∑
a,b,x,y

BabxyPc′|z′ (ab|xy)P(c′|z′)

1This can always be achieved by (repeatedly) applying the identity
of the form given in Eq. (1) to both sides of Eq. (7).

� max
�Pc′ |z′ ∈Q2

∑
a,b,x,y

BabxyPc′|z′ (ab|xy) max P(c′|z′)

= max
�Pc′ |z′ ∈Q2

∑
a,b,x,y

BabxyPc′|z′ (ab|xy) = βQ, (20)

where the first inequality follows from the fact that an inde-
pendent maximization over �Pc′|z′ ∈ Q2 and P(c′|z′) is, in prin-
ciple, less constraining than a maximization over all tripartite
quantum distributions {P(abc′|xyz′)}, the second-last equality
follows from the fact that P(c′|z′) � 1 for legitimate marginal
probability distributions, and the last equality follows from the
fact that any bipartite quantum correlation can be seen as the
marginalization of a tripartite one.

To complete the proof, note that the inequality βLP
Q � βQ

can indeed be saturated if the three parties share a state of the
form |ψ123〉 = |ψ∗

12〉 ⊗ |ψ3〉 (with |ψ3〉 being some arbitrary
pure state that is in the possession of the third party) while
employing the local measurements:

M (1)
a|x = M (1∗)

a|x , M (2)
b|y = M (2∗)

b|y , M (3)
c|z′ = 1δc,c′ , (21)

where |ψ∗
12〉 , {M (1∗)

a|x }a,x, {M (2∗)
b|y }b,y constitute a maximizer for

the (original) Bell inequality of Eq. (16), i.e.,

βQ = max
�P∈Q2

∑
a,b,x,y

BabxyP(ab|xy)

=
∑

a,b,x,y

BabxyP∗(ab|xy)

=
∑

a,b,x,y

Babxy 〈ψ∗
12| M (1∗)

a|x ⊗ M (2∗)
b|y |ψ∗

12〉 .

(22)

�

2. Implications on self-testing

As an implication of the above observation, we obtain the
following result in the context of quantum theory.

Corollary 2. If a Bell inequality self-tests |ψ̃〉 and some
reference POVMs {M̃ (1)

a|x }a,x, {M̃ (2)
b|y }b,y etc., then the maximal

quantum violation of any Bell inequality obtained therefrom
via party lifting also self-tests the same state and the same
local POVMs for an appropriate subset of parties.

Proof. In the following, we use inequality (17) to illustrate
how the proof works in the tripartite case. Note from Eq. (20)
that when the party-lifted Bell inequality of Eq. (17) is vio-
lated to its quantum maximum βQ, the marginal distribution of
Charlie necessarily satisfies P(c′|z′) = 1. It then follows from
Eq. (19) that

P(abc′|xyz′) = Pc′|z′ (ab|xy)P(c′|z′), ∀ a, b, x, y. (23)

Furthermore, from Eq. (20), this tripartite distribution gives
the quantum bound of inequality (17) only if the marginal
distributions Pc′|z′ (ab|xy) = P(ab|xy) of Eq. (23) violate the
original Bell inequality of Eq. (16) to its quantum bound.
Therefore, if the original Bell inequality self-tests the two-
partite entangled state |ψ̃12〉, then for any tripartite density
matrix ρ123 leading to the quantum maximum of inequality
Eq. (17), there must exist a local isometry � = �1 ⊗ �2
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such that

� tr3 (ρ123)�† = |ψ̃〉〈ψ̃ | ⊗ ρaux,

�
[
M (1)

a|x ⊗ M (2)
b|y tr3 (ρ123)

]
�†

= (
M̃ (1)

a|x ⊗ M̃ (2)
b|y |ψ̃〉〈ψ̃ | ) ⊗ ρaux, (24)

where ρaux is some auxiliary density matrix acting on other
degrees of freedom of Alice and Bob’s subsystem. In other
words, if the quantum maximum of the original Bell in-
equality can be used to self-test |ψ̃〉 and reference POVMs
{M̃ (1)

a|x }a,x, {M̃ (2)
b|y }b,y, so does the quantum maximum of the

party-lifted Bell inequality. �

3. Implications on device-independent certification
of entanglement depth

In Theorem 2 of [59], it was shown that if∑
k1...kn, j1... jn

B�k,�jP(�k| �j)
Rn,�

� 0 (25)

is satisfied by an n-partite resource R (quantum or nonsignal-
ing) that has a group size of �, its lifting to (n + h) parties also
holds for the same kind of resource of group size �:∑

k1···kn, j1··· jn

B�k,�jP(�k, �o| �j, �s)
Rn+h,�

� 0, (26)

where �o (�s) is any fixed, but arbitrary string of outputs (inputs)
for the h additional parties. For the case of � = n, the above
result reduces to observation 1 discussed in Sec. III C 1.

When the considered resource is restricted to shared quan-
tum correlations and if � < n, inequalities (25) and (26)
are instances of so-called device-independent witnesses for
entanglement depth [26], i.e., Bell-like inequalities capable of
certifying—directly from the observed correlation—a lower
bound on the entanglement depth [60] of the measured sys-
tem. More specifically, if the observed quantum value of the
left-hand side of Eqs. (25) or (26) is greater than 0, then one
can certify that the locally measured quantum state must have
an entanglement depth of at least � + 1.

Although the above result of [59] can be applied to an
arbitrary number of (n + h) parties, observation 1 implies that
if the seed inequality is that applicable to an n-partite Bell
scenario, the extended scenario can never be used to certify an
entanglement depth larger than n. This follows from the fact
that the maximal quantum value of these party-lifted Bell-like
inequalities is the same as the original Bell-like inequality [cf.
Eq. (25)], and is already attainable using a quantum state of
entanglement depth n.

IV. CONCLUDING REMARKS

Lifting, as introduced by Pironio [41], is a procedure that
allows one to systematically construct Bell inequalities for all
Bell scenarios starting from a Bell inequality applicable to a
simpler scenario. It is known that Pironio’s lifting preserves
the facet-defining property of Bell inequalities, and thus lifted
Bell inequalities (in particular, those lifted from the CHSH
Bell inequality) can be found in all nontrivial Bell scenarios.
In this work, we show that lifting leaves both the maximal

quantum value and the maximal nonsignaling value of Bell
inequalities unchanged.

Naturally, one may ask whether the quantum state and local
measurements maximally violating a lifted Bell inequality
are related to that of the original Bell inequality. Indeed, we
show that Pironio’s lifting also preserves the self-testability
of a quantum state. Hence, the quantum state maximally
violating a lifted Bell inequality is—modulo irrelevant lo-
cal degrees of freedom—the same as that of the original
inequality. Likewise, the self-testability of given local mea-
surements is preserved using any but the outcome-lifting
procedure.

The maximizers of lifted Bell inequalities are, as we show,
generally not unique. Consequently, it is impossible to use
the observed quantum value of such an inequality to self-test
both the underlying state and all the local measurements: in
the case of an input-lifted Bell inequality, no conclusions can
be drawn regarding the additional measurements that do not
appear in the inequality; in the case of a party-lifted Bell
inequality, nothing can be said about the measurements of the
additional party; in the case of an output-lifted Bell inequality,
the self-testing of all the local POVM elements is impossible,
but the self-testing of their combined effect seems possible. In
fact, our numerical results (see Appendix C) suggest that such
a self-testing is just as robust as the original Bell inequality.
Thus, Bell inequalities lifted from CHSH serve as generic
examples whose maximal quantum violation can be used to
self-test a state, but not the underlying measurements in its
entirety.

Notice also that the nonuniqueness mentioned above evi-
dently becomes more and more pronounced as the number of
“irrelevant” degrees of freedom increases, for example, by re-
peatedly applying lifting to a given Bell inequality. Since only
correlation �P belonging to the boundary of Q could violate
a linear Bell inequality maximally, as the complexity of the
Bell scenario (say, in terms of the number of measurements,
outcomes, or parties) increases, it is conceivable that one can
always find a flat boundary of Q (corresponding to those of
the lifted Bell inequality) with increasing dimension. Proving
this statement rigorously and finding the exact scaling of the
dimension of these flat boundaries would be an interesting
direction to pursue for future research.

Besides, it will be interesting to see—in comparison with
the original Bell inequality—whether the robustness in self-
testing that we have observed for a particular version of the
outcome-lifted CHSH Bell inequality is generic. From our
example for the outcome-lifted CHSH inequality, it becomes
clear that self-testing of the combined POVM elements is
(sometimes) possible even if the self-testing of all individ-
ual POVM elements is not. This possibility opens another
direction of research in the context of self-testing. In addition,
our results also prompted the following question: does there
exist a physical situation (say, the observation of the maximal
quantum value of some Bell inequality) where the underlying
measurements can be self-tested, but not the underlying state?
Since the self-testing of measurements is seemingly more
demanding than that for a quantum state, it is conceivable
that no such examples can be constructed. Proving that this
is indeed the case, however, clearly lies beyond the scope of
the present paper.
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Note added. While completing this manuscript, we became
aware of the work of [61] which also discusses, among others,
extensively the properties of liftings, as well as the work of
[62], which exhibits examples of quantum correlations that
can only be used to self-test the measured quantum state but
not the underlying measurements.
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APPENDIX A: EXAMPLES OF �P ∈ Q VIOLATING LIFTED
BELL INEQUALITIES MAXIMALLY

To illustrate the nonunique nature of the maximizers of
lifted Bell inequalities, consider the CHSH Bell inequality [3],∑

x,y,a,b=0,1

(−1)xy+a+bP(ab|xy)
L
� 2, (A1)

as our seed inequality. Since this is a Bell inequality defined in
the simplest Bell scenario (with two binary output per party),
its liftings can be found in all nontrivial Bell scenarios.

The quantum bound and nonsignaling bound of the above
Bell inequality are given, respectively, by βQ = 2

√
2 and

βN = 4. It is known [9] that the maximal quantum violation
of the CHSH inequality can be used to self-test (up to local
isometry) the two-qubit maximally entangled state |φ+〉 =
(|00〉 + |11〉)/

√
2 and the Pauli observables {σz, σx} on one

side and the Pauli observables {(σx + σz )/
√

2, (σx − σz )/
√

2}
on the other. Thus, the correlation that gives the quantum
maximum of the inequality (A1) is unique and is given by

PQ(ab|xy) = 1

4
+ (−1)a+b+xy

√
2

8
, a, b, x, y ∈ {0, 1},

(A2)
where the +1 outcome of the observables is identified with
the zeroth outcome in the conditional outcome probability
distributions.

1. Lifting of inputs

For input lifting, consider now a bipartite Bell scenario
where Bob has instead three binary inputs (y = 0, 1, 2). In this
new Bell scenario, the following Bell inequality:

ILI-CHSH
2 :=

∑
x,y,a,b=0,1

(−1)xy+a+bP̃(ab|xy)
L
� 2, (A3)

with {P̃(ab|xy)}a,b,x=0,1,y=0,1,2, can be obtained by applying
input lifting to inequality (A1).

To illustrate the nonuniqueness of its maximizers, one may
employ, e.g., either of the two trivial measurements for the
third measurement (y = 2):

M (2)
b|2 = 1δb,0 or M (2)

b|2 = 1δb,1. (A4)

Correspondingly, one obtains, in addition to [cf. Eq. (A2)]

P̃LI
Q1

(ab|x, y) = P̃LI
Q2

(ab|x, y) = PQ(a, b|x, y) (A5a)

for a, b, x, y = 0, 1, the distributions

P̃LI
Q1

(ab|xy) = 1
2δb,0 and P̃LI

Q2
(ab|x, y) = 1

2δb,1, (A5b)

for a, b, x = 0, 1 but y = 2.2

It is then easily verified that both these correlations violate
inequality (A3) to its quantum maximum of 2

√
2. In fact,

since the Bell expression of Eq. (A3) is linear in P̃, it follows
that an arbitrary convex combination of P̃LI

Q1
and P̃LI

Q2
,

P̃(ab|xy) = pP̃LI
Q1

(ab|xy) + (1 − p)P̃LI
Q2

(ab|xy), (A6)

where 0 � p � 1, must also give the maximal quantum value
of Bell inequality (A3). Moreover, from the convexity of the
set of quantum correlations Q, we know that an arbitrary
convex combination of the two correlations given above is
also quantum realizable. Geometrically, this means that the
set of P̃ ∈ Q defined by Eq. (A6) forms a one-dimensional
flat region of the quantum boundary. In Fig. 4, we show a
two-dimensional slice on the space of correlations spanned by
P̃LO

Q1
, P̃LO

Q2
, and the uniform distribution P̃0. Note that on this

peculiar slice, even Q appears to be a polytope.

2. Lifting of outcomes

For output lifting, consider a bipartite Bell scenario
where Bob’s measurements have instead three outcomes (b =
0, 1, 2). In this Bell scenario, the following Bell inequality:

ILO-CHSH
2 :=

∑
x,y,a=0,1

∑
b=0,1,2

(−1)xy+a+bP(ab|xy)
L
� 2, (A7)

can be obtained by applying outcome lifting to the b = 0
outcome of Bob’s measurements in inequality (A1). Here,
b = 2 is the new outcome.

Indeed, it is readily seen that the two correlations,

PLO
Q1

(ab|xy) =
[

1

4
+ (−1)a+b+xy

√
2

8

]
(1 − δb,2), (A8)

PLO
Q2

(ab|xy) =
[

1

4
+ (−1)a+b+xy

√
2

8

]
(1 − δb,0), (A9)

as well as

PLO
Q3

(ab|xy) = PLO
Q1

(ab|xy)δy,0 + PLO
Q2

(ab|xy)δy,1,

PLO
Q4

(ab|xy) = PLO
Q1

(ab|xy)δy,1 + PLO
Q2

(ab|xy)δy,0,
(A10)

all give rise to the quantum maximum of 2
√

2 for the Bell
inequality of Eq. (A7).

To see that they are indeed quantum realizable, we note
that the correlation given in Eq. (A8) can be produced by em-
ploying the quantum strategy used to produce the correlation
given in Eq. (A2). By construction, Bob’s measurement only
produces two outcomes labeled by b = 0 and b = 1, and thus

2More abstractly, these correlations can also be obtained from
Eq. (A2) by applying input operations as given by Eq. (10) in [55].
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the b = 2 outcome never appears, as required in Eq. (A8). To
obtain the correlation given in Eq. (A9), one may start from
the correlation of Eq. (A8) and apply the classical relabeling
of b = 0 ↔ b = 2.

Similarly, the two correlations of Eq. (A10) can be realized
by first implementing the quantum strategy that realizes �PLO

Q1
,

followed by applying the classical relabeling of b = 0 ↔ b =
2 depending on whether y = 0 or y = 1. 3 Since { �PLO

Qi
}4

i=1
forms a linearly independent set, and an arbitrary convex
combination of them also gives the quantum bound, we thus
see that the quantum face4 of the outcome-lifted inequality of
(A7) is (at least) three dimensional.

3. Lifting of party

Geometrically, party lifting also introduces degeneracy in
the maximizers of a Bell inequality. For example, a possible
party lifting of the CHSH Bell inequality of Eq. (A1) to the
three-party, two-input, two-output Bell scenario reads as∑

x,y,a,b=0,1

{[
(−1)xy+a+b − 1

2

]
P(ab0|xy0)

} L
� 0. (A11)

As mentioned in the proof of Corollary 2, maximizers of
this Bell inequality must be such that the bipartite marginal
distribution P(ab|xy) violates CHSH Bell inequality maxi-
mally while the marginal distribution for the third party must
satisfy P(0|0) = 1. However, these conditions do not impose
any constraint on the other marginal distribution P(c|z) for
z �= 0. In particular, both the choice of P(c|1) = δc,0 and
P(c|1) = δc,1 would fulfill the above requirement. As such,
although the quantum face of the CHSH Bell inequality is
a point in the correlation space, the quantum face of the
party-lifted Bell inequality of Eq. (A11) has become one
dimensional.

APPENDIX B: QUANTUM REALIZABILITY OF
DISTRIBUTIONS OBTAINED BY GROUPING AND

SPLITTING OUTCOMES

In this Appendix, we provide the details showing how one
can—while preserving between the quantum violation of a
Bell inequality and its outcome-lifted version—realize quan-
tum mechanically a fewer-outcome (more-outcome) correla-
tion if the original more-outcome (fewer-outcome) correlation
is quantum.

1. Grouping of outcomes

Suppose that the joint probabilities P(ab′|xy′) and
P(au|xy′) on the right-hand side of Eq. (10) are realized by
a quantum state ρ12 with the POVM {M (1)

a|x }a,x on Alice’s side

and {M (2)
b|y }b,y on Bob’s side; cf. Eq. (4). Then the joint proba-

bilities P̃(ab′|xy′) appearing on the left-hand-side of Eq. (10),
which corresponds to an effective v-outcome distribution, is

3This belongs to the class of outcome operation given by Eq. (9) in
[55].

4The set of quantum correlations that gives the quantum bound of
a Bell inequality is called the quantum face; see [44].

realizable by the same quantum state ρ12 with the same POVM
{M (1)

a|x }a,x on Alice’s side and the following POVM M̃ (2)
b|y on

Bob’s side:5

M̃ (2)
b|y = M (2)

b|y y �= y′,

M̃ (2)
b|y′ = M (2)

b|y′ b �∈ {b′, u},
M̃ (2)

b′ |y′ = M (2)
b′|y′ + M (2)

u|y′ .

(B1)

With this choice, it follows from

P̃(ab′|xy′) = tr
(
M (1)

a|x ⊗ M̃ (2)
b′ |y′ρ12

)
, (B2)

Eq. (B1), and

tr
(
M (1)

a|x ⊗ M̃ (2)
b′|y′ρ12

) = tr
(
M (1)

a|x ⊗ M (2)
b′ |y′ρ12

)
+ tr

(
M (1)

a|x ⊗ M (2)
u|y′ρ12

)
(B3)

that Eq. (10) is satisfied, and hence that the violation-
preserving fewer-outcome correlation is indeed attainable by
coarse graining, i.e., the grouping of outcomes.

2. Splitting of outcomes

On the other hand, if we instead start from the original
(fewer-outcome) Bell scenario, then the joint probabilities
appearing on the right-hand side of Eq. (12), which corre-
sponds to a v + 1-outcome distribution, can be realized by,
e.g., employing the same quantum state ρ12 with the same
POVM {M (1)

a|x }a,x on Alice’s side and the following POVM

M̃ (2)
b|y on Bob’s side:

M (2)
b|y = M̃ (2)

b|y y �= y′,

M (2)
b|y′ = M̃ (2)

b|y′ b �∈ {b′, u},
M (2)

b′ |y′ = pM̃ (2)
b′ |y′ , M (2)

u|y′ = (1 − p)M̃ (2)
b′ |y′ ,

(B4)

for arbitrary 0 � p � 1. The positivity of the left-hand side
of Eq. (B4) and their normalization are evident from their
definition. Moreover, using Eq. (B3) and

P̂(ab|xy) = tr
(
M (1)

a|x ⊗ M (2)
b′|y′ρ12

)
, (B5)

it is easy to see that Eq. (12) holds with the assignment given
in Eq. (B4). Hence, the POVM given by the left-hand side
of Eq. (B4) indeed realizes the required violation-preserving
more-outcome correlation by splitting the b′ outcome of Bob’s
y′th measurement.

APPENDIX C: ROBUST SELF-TESTING BASED ON THE
QUANTUM VIOLATION OF THE OUTCOME-LIFTED

CHSH INEQUALITY

We show in this Appendix that self-testing via the quantum
violation of the outcome-lifted inequality of Eq. (A7) is
robust. In this regard, note that the maximal quantum violation
of inequality (A7) can also be achieved by Alice and Bob

5That M̃ (2)
b|y satisfies both the positivity constraints and the normal-

ization constraints is evident from Eq. (B1).
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sharing the following two-qubit maximally entangled state:

|ψ̃〉 = cos
π

8

|00〉 − |11〉√
2

+ sin
π

8

|01〉 + |10〉√
2

, (C1)

while performing the optimal qubit measurements for Alice:

M̃ (1)
0|0 = 1

2 (1 + σz ), M̃ (1)
1|0 = 1

2 (1 − σz ),

M̃ (1)
0|1 = 1

2 (1 + σx ), M̃ (1)
1|1 = 1

2 (1 − σx ), (C2)

and for Bob:

M̃ (2)
0|0 = E0|0, M̃ (2)

1|0 = 1
2 (1 − σz ), M̃ (2)

2|0 = E2|0,

M̃ (2)
0|1 = E0|1, M̃ (2)

1|1 = 1
2 (1 − σx ), M̃ (2)

2|1 = E2|1, (C3)

where {Eb|y}b=0,2 are any valid POVM elements satisfying∑
b=0,2 Eb|y = 1 − M (2)

1|y for all y.
Notice that Eqs. (5) and (6) only hold for the case of perfect

self-testing of the reference state and reference measurements.
To demonstrate robust self-testing for the above reference
state |ψ̃〉 and reference measurements {M̃ (1)

a|x }a,x, {M̃ (2)
b|y }b,y, we

follow the approach of [56] to arrive at statements saying that
if the observed quantum violation of inequality (A7) is close
to its maximal value, then (1) the measured system contains
some degrees of freedom that have a high fidelity with respect
to the reference state |ψ̃〉, and (2) with high probability, the
uncharacterized measurement devices function like {M̃ (1)

a|x }a,x,

{M̃ (2)
b|y }b,y acting on the same degrees of freedom.

1. Robust self-testing of the reference state

To this end, we shall make use of the swap method
proposed in [56]. The key idea is to introduce local swap
operators �1,�2 so that the state acting on Alice’s and Bob’s
Hilbert space (of unknown dimension) gets swapped locally
with some auxiliary states of trusted Hilbert space dimension
(qubit in our case). To better understand how this works, let
us first consider an example with characterized devices before
proceeding to the case where the devices are uncharacterized.

For this purpose, let us concatenate the following
controlled-not (CNOT) gates,

U1 = 1 ⊗ |0〉〈0| + σx ⊗ |1〉〈1| ,
V1 = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx,

(C4)

to obtain the (two-qubit) swap gate �1 = U1V1U1 acting on
HA ⊗ HA′ (see Sec. II B). We may define a swap operator
�2 = U2V2U2 acting on Bob’s systems in exactly the same
way. Importantly, one notices from Eqs. (C2) and (C3) that it
is possible to express the individual unitaries in terms of the
POVM elements leading to the maximal quantum violation of
inequality (A7). For example, one may take

σz = 1 − 2M̃ (i)
1|0, σx = 1 − 2M̃ (i)

1|1 ∀ i = 1, 2. (C5)

Moreover, if we define the global swap gate by � = �1 ⊗
�2 and denote the state acting on HA ⊗ HB by ρ12, then the
“swapped” state is

ρSWAP := tr12[�(|0〉〈0| ⊗ ρ12 ⊗ |0〉〈0|)�†], (C6)

FIG. 5. Lower bounds on the fidelity as a function of the value
of the outcome-lifted CHSH inequality ILO-CHSH

2 . The results are
obtained by solving the semidefinite program described in Eq. (C8).

where tr12 represents a partial trace over the Hilbert space of
HA ⊗ HB. When � is exactly the swap gate defined above
via Eq. (C4), ρSWAP is exactly ρ12. Thus, the fidelity be-
tween ρSWAP and the reference state |ψ̃〉: F = 〈ψ̃ |ρSWAP|ψ̃〉
provides a figure of merit on the similarity between (some
relevant parts of) the shared state ρ12 and the reference
state |ψ̃〉.

To perform a device-independent characterization, the as-
sumption of M̃ (1)

1|x and M̃ (2)
1|y is relaxed to unknown projectors

M (1)
1|x and M (2)

1|y (acting on Hilbert space of arbitrary dimen-
sions), and the corresponding “CNOT” gates become

Ui = 1 ⊗ |0〉〈0| + (
1 − 2M (i)

1|1
) ⊗ |1〉〈1| ,

Vi = (
1 − M (i)

1|0
) ⊗ 1 + M (i)

1|0 ⊗ σx,
(C7)

for i = 1, 2. One can verify that the fidelity F = 〈ψ̃ |ρSWAP|ψ̃〉
is then a linear function of the moments such as 〈M (1)

a|x ⊗
M (2)

b|y 〉, 〈M (1)
a|x ⊗ M (2)

b|y M (2)
b′|y′ 〉, etc., where 〈·〉 := tr(·ρ12).

Thus, a lower bound on F for any observed value of Bell
inequality violation (without assuming the shared state or
the measurements performed) can be obtained by solving the
following semidefinite program:

min F,

such that �S � 0,

ILO-CHSH
2 = ILO-CHSH

2,obs ,

(C8)

where �S is any Navascués-Pironio-Acín-type [63] moment
matrix that contains all the moments appearing in F . In our
computation, we employed a moment matrix that is built from
a sequence of operators S that contain all operators from
level 1 + AB (or equivalently, level 1 from the hierarchy of
Ref. [64]) and some additional operators from level 3.

Our results (see Fig. 5) clearly show that the self-testing
property of ILO-CHSH

2 with respect to the reference maximally
entangled state |ψ̃〉 of Eq. (C1) is indeed robust. In other
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words, as long as the observed violation of ILO-CHSH
2 is greater

than ≈2.4, one can still obtain a nontrivial lower bound on the
fidelity (>1/2) with respect to |ψ̃〉. Moreover, a separate com-
putation using the original CHSH Bell inequality of Eq. (A1)
(and the same level of approximation of Q) gives—within the
numerical precision of the solver—the same curve, thereby
suggesting that the outcome-lifted Bell inequality of (A7)
offers the same level of robustness as compared with its seed
inequality.

2. Robust self-testing of Alice’s POVM

Even though it is impossible to completely self-test all
local measurements, robust self-testing of Alice’s POVM—
as one would intuitively expect—can still be achieved. In
particular, when the observed violation of ILO-CHSH

2 is close to
the quantum bound of 2

√
2, it must be the case that Alice’s

measurements (on the relevant degrees of freedom) indeed
behave like measurements in the σz and σx basis, respectively,
for x = 0, 1.

To that end, we again make use the swap method proposed
in Ref. [56]. The idea is that if these measurements behave
as expected, then their measurements on the auxiliary states
swapped into the uncharacterized device, i.e., �1(|ϕ〉)—with
|ϕ〉 being eigenstates of σz and σx—should produce outcomes
a with statistics {P(a|x, |ϕ〉)} satisfying

P(0|0, |0〉) = P(1|0, |1〉) = P(0|1, |+〉) = P(1|1, |−〉) = 1.

(C9)

Using the same swap operator defined via Eq. (C7), we get

P(a|x, |ϕ〉) = tr
{
M (1)

a|x [�1(ρ12 ⊗ |ϕ〉〈ϕ|)�†
1]

}
, (C10)

where we have, for simplicity, omitted the identity operator
acting on Bob’s system. Notice that the left-hand side of
Eq. (C10) is again some linear combination of moments.
Likewise for the following figure of merit [56]:

τ = 1
2 [P(0|0, |0〉) + P(1|0, |1〉)

+ P(0|1, |+〉) + P(1|1, |−〉)] − 1, (C11)

which takes value between −1 and +1. The maximum of
+1, in particular, happens only when Alice’s POVM M (1)

a|x
corresponds to measurements in σz and σx, respectively, for
x = 0, 1. τ therefore quantifies the extent to which the mea-
surement devices function like the reference measurements.
Given a violation of ILO-CHSH

2 , a lower bound on τ can thus be
obtained by solving the following semidefinite program:

min τ,

such that �S � 0,

ILO-CHSH
2 = ILO-CHSH

2,obs .

(C12)

The resulting lower bounds on τ are shown in Fig. 6. We see
that the value of 1 is obtained when the maximal quantum
value of ILO-CHSH

2 is observed, which means that the reference
measurements of Eq. (C2) are correctly certified in this case.
For nonmaximal values of ILO-CHSH

2 , we see that τ decreases
accordingly. Importantly, as pointed out in Ref. [56], the
procedure of sending the prepared eigenstates into the swap
gate is a virtual process that allows us to interpret the figure

FIG. 6. Lower bounds on the figure of merit defined in Eq. (C11)
as a function of the value of the outcome-lifted CHSH inequality
ILO-CHSH
2 . The bounds are obtained by solving the semidefinite pro-

gram described in Eq. (C12).

of merit operationally, but the result still holds without any
assumption on the devices of interest.

3. Partial but robust self-testing of Bob’s POVMs

Finally, we would like to show that the outcome-lifted
CHSH inequality of Eq. (A7) can also be used for a “partial”
self-testing of Bob’s optimal measurements. The steps are
the same as those described in the self-testing of Alice’s

FIG. 7. Lower bounds on the figures of merit defined in
Eqs. (C13) and (C14) as a function of the value of the outcome-lifted
CHSH inequality ILO-CHSH

2 . The bounds are obtained by solving the
semidefinite program described in Eq. (C12) with the appropriate
figure of merit. The two figures of merit, as explained in the text,
reflect different aspects of the self-testability of Bob’s measurements.
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measurements. That is, the eigenstates of σz and σx are sent to
the swap gate before Bob performs his measurements {M (2)

b|y }.
To this end, we define the analog of Eq. (C11) as

τ3 = 1
2 [P(0|0, |0〉) + P(1|0, |1〉) + P(2|0, |0〉)

+ P(0|1, |+〉) + P(1|1, |−〉) + P(2|1, |+〉)] − 1,

(C13)

and introduce a further figure of merit

τ1 = P(1|0, |0〉) + P(1|1, |+〉) − 1 (C14)

to self-test only the POVM element corresponding to Bob’s
outcome 1 for both measurements.

Thus, τ3 takes into account of Bob’s all measurements
outcomes while τ1 only involves the second measurement
outcome. All these figures of merit range from −1 to +1, and
+1 is recovered for (1) τ3 if Bob’s measurement device acts on
the swapped eigenstate according to Eq. (C3), (2) τ1 if Bob’s

measurement device acts on the swapped eigenstate in such
a way that the second POVM element for each measurement
functions according to Eq. (C3). In other words, the value of
τ1 measures the extent to which M (2)

1|y behaves according to that
prescribed in Eq. (C3), while the value of τ3 further indicates
if the combined effect of M (2)

0|y + M (2)
2|y also behaves according

to that prescribed in Eq. (C3).
By solving the semidefinite program of Eq. (C12) using the

appropriate objective functions, we obtained lower bounds on
each figure of merit as a function of the quantum violation
of ILO-CHSH

2 . As shown in Fig. 7, the bounds on τ3 and τ1

when ILO-CHSH
2 take their maximal value successfully self-

tests, respectively, the combined effect of M (2)
0|y + M (2)

2|y as well

as that of M (2)
1|y . In summary, for the outcome-lifted CHSH

inequality of Eq. (A7), where the first outcome is lifted in
each of Bob’s measurement, it is still possible to self-test
Alice’s optimal measurements and the overall behavior of
Bob’s measurements.
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