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We formulate a quantum theory of vorticity (hydro)dynamics on a general two-dimensional bosonic lattice.
In the classical limit of a bosonic condensate, it reduces to conserved plasma-like vortex-antivortex dynamics.
The nonlocal topological character of the vorticity flows is reflected in the bulk-edge correspondence dictated
by the Stokes theorem. This is exploited to establish physical boundary conditions that realize, in the coarse-
grained thermodynamic limit, an effective chemical-potential bias of vorticity. A Kubo formula is derived for the
vorticity conductivity, which could be measured in a suggested practical device, in terms of quantum vorticity-
flux correlators of the original lattice model. As an illustrative example, we discuss the superfluidity of vorticity,
exploiting the particle-vortex duality at a bosonic superfluid-insulator transition.

DOI: 10.1103/PhysRevResearch.1.033071

I. INTRODUCTION

It is now well appreciated that electrically insulating ma-
terials may exhibit a wealth of neutral transport phenomena.
The underlying conserved quantities may emerge out of cer-
tain symmetries associated with the microscopic spin [1] or
pseudospin (e.g., valley [2]) degrees of freedom or, alterna-
tively, topology of the collective dynamics [3]. The former
scenario, which has been most thoroughly exploited in the
field of spintronics [1], concerns the spin angular momentum
along a high-symmetry axis of the pertinent heterostructure.
As the full axial symmetry is inevitably broken in spin space,
at some level, the resultant spin hydrodynamics is always ap-
proximate, being useful only on some finite time and/or length
scales. The topological hydrodynamics, on the other hand,
is potentially more robust, as it is rooted in the topological
structure of the dynamical variables rather than any specific
structural symmetries [3].

At the heart of this are conservation laws constructed out of
a topological invariant of the dynamical field configurations,
such as the winding number of a one-dimensional XY model
[4] or a superfluid [5] or the skyrmion number [6] of a two-
dimensional Heisenberg model [7]. These topological invari-
ants are endowed by the homotopic properties of the smooth
field configurations of the bulk, following, for example, the
πn(Sd ) = Z group-theoretic structure of the nth homotopy on
a d-sphere, when n = d [8]. The integer on the right-hand
side here counts the conserved topological “charge” that can
be associated with the dynamical fields. Being conserved in
the bulk, this effective charge can, nonetheless, flow in and
out of the medium through its boundaries, which hints at
a possibility of its control: The (nonequilibrium) boundary
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conditions could be devised to bias injection of the topological
charge of certain sign and, reciprocally, detect its outflow
elsewhere [3].

This points to a conceptual possibility of assigning a bulk
conductivity to the topological charge fluctuations in the ma-
terial, which could potentially extend many of the useful and
intuitive notions associated with the charge conductivity to
broad classes of insulating materials. Both device possibilities
and novel transport probes of fundamental material properties
could then be expected to arise hand in hand. The outlook
may, however, be hindered by one key approximation un-
derlying such hydrodynamic constructions: The overarching
topological invariant is a property of a low-energy sector of
the theory, with pathological excursions between different
topological sectors possible in principle. In the case of the
winding dynamics, such excursions are known as phase slips,
which are central to understanding low-dimensional super-
fluidity and superconductivity [5]. Skyrmions, likewise, can
be created and annihilated by local fluctuations [9]. Such
detrimental phase-slip-like events, which ultimately relax any
topological configuration towards the global equilibrium, can
originate either at the atomistic level, where the coarse-
grained treatment of the smooth field theory breaks down, or
more macroscopically, where the dynamical variables deviate
significantly from their presumed low-energy manifold. Even
when such processes are rare, in the limit when they are
exponentially suppressed by a large energy barrier, their ex-
istence poses a technical challenge in formulating a transport
theory. After all, there is no strict continuity equation for the
topological charge at the microscopic quantum level, unless
we formally separate and eliminate the phase-slip events.
Depending on the exact model, parameters, and ambient tem-
perature, furthermore, there may be a plethora of scenarios for
the phase-slip dynamics [5], which could diminish the utility
of the topological conservation law.

In this paper, we formulate a topological hydrodynam-
ics that is based on a robust continuity equation immune
to all these issues. Its formal distinguishing feature is in
the conserved quantity that is related to the field homotopy
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defined on the boundary rather than the bulk, which, never-
theless, determines a conserved bulk quantity according to a
Stokes theorem [10]. We demonstrate this general idea by the
ground-up construction of a quantum vorticity hydrodynamics
in 2 + 1 dimensions, offering links to quantum spintronics
[3], particle-vortex dualities in many-body systems [11], and
quantum turbulence [12].

The paper is structured as follows: In Sec. II, we
briefly review a vorticity conservation law emerging in two-
dimensional superfluids, which reduces to the simple vortex-
antivortex counting in the appropriate strongly ordered limit.
In Sec. III, a corresponding quantum theory is constructed
on a generic bosonic lattice, which mimics the aspects of
the classical vorticity dynamics. The conservation law is
now formulated, for an arbitrary Hamiltonian, at the level
of the microscopic Heisenberg equation of motion. In this
section, we also discuss boundary conditions for injecting and
detecting the vorticity flows, formulate a field-theoretic Kubo
formula for calculating the associated conductivity, and apply
it to some illustrative examples. A summary and outlook are
offered in Sec. IV.

II. CLASSICAL VORTICITY DYNAMICS

A conventional superfluid condensate can be described
by a complex-valued order parameter φ. The corresponding
scalar field φ = √

neiϕ ∈ C (where n � 0 is the condensate
density and ϕ ∈ R is its phase) residing in 2 + 1 dimensions,
φ(r, t ), realizes an R2 → C mapping, at any given time
t . These field textures are devoid of point defects, as the
fundamental homotopy group of the complex plane is trivial,
π1(C) = 1. Such two-dimensional textures are, furthermore,
all topologically equivalent, having fixed the boundary profile
of φ on a simply connected patch of R2, which is reflected
in the fact that π2(C) = 1. Despite this, a smooth vector
field defines a topological hydrodynamics [3] governed by the
continuity equation ∂μ jμ = 0 (with the Einstein summation
implied over the Greek letters: μ = 0, 1, 2 ↔ t, x, y), where

jμ = εμνξ ∂νφ
∗∂ξφ

2π i
. (1)

Here, εμνξ is the Levi-Civita symbol. For a rigid texture
sliding at a velocity v, j = ρv, where ρ ≡ j0 and j = ( jx, jy).
For a sharp vortex in an ordered medium with the free energy
minimized by a finite n, ρ ≈ nδ(r − r0), where r0 is the
vortex-core position where n vanishes. Fixing a finite mag-
nitude of the scalar field, the homotopy group would in this
case become π1(S1) = Z, counting essentially the number of
vortices in the system.

The conserved quantity can be recast as a fictitious flux (z
is the z axis unit vector):

ρ = z · ∇φ∗ × ∇φ

2π i
= z · ∇ × A

2π
, (2)

associated with the gauge field

A = −iφ∗∇φ . (3)

Applying Green’s theorem, we then see that the conserved
topological charge within a patch S ,

Q ≡
∫
S

d2r ρ =
∮

∂S

dr · A
2π

=
∮

∂S

dϕ

2π
n, (4)

is associated with the phase winding around its boundary ∂S .
This reveals the geometrical meaning of the conservation law:
The charge Q in the bulk can change only in response to a
vorticity flow through the boundary.

As an alternative to Eq. (1), it might be tempting to write
the current density associated with field dynamics as

j = z × ∂t A
2π

, (5)

from which ∂tρ + ∇ · j = 0 immediately follows. This cur-
rent, however, differs from the more physical definition (1)
by a nonlocal (divergenceless) shift, which would spoil our
energetic and Kubo considerations below.

Note that a similar conservation law, with the current
(5), applies to any other density ρ that can be written as
Eq. (2) in terms of some field A(φ). Our choice of Eq. (3)
for this field merely results in the physical interpretation of
the conservation law in terms of the vorticity (4) dynamics.
This is particularly relevant for ordered condensates, where
the vortices become quantized in terms of the elementary
charges Q = ±1, interacting via a two-dimensional (long-
range) electrostatic coupling [13].

Let us consider some other simple examples of conserved
hydrodynamics associated with different choices for the field
A(φ), which defines the topological charge (2). First, we note
that there is a gauge freedom in defining A(φ): A(φ) →
A(φ) + ∇ f (φ), in terms of an arbitrary function f (φ), which
leaves ρ unchanged. This is why the first-order (derivative)
fields like A = ∇n are physically inconsequential. Indeed,
the corresponding conserved quantity Q = ∮

dn = 0, for a
smooth field φ(r). Perhaps the simplest nontrivial example
is given by A = 2π (Re φ, Im φ), which results in Q = ∮

dr ·
A/2π . The largest possible charge Q within a given simply
connected region (of radius ∼R), for a fixed n, corresponds to
placing a single vortex in the interior, which gives Q/

√
n →

2πR, the circumference of the region. The corresponding
density ρ/

√
n ∼ 2/R vanishes in the thermodynamic limit of

R → ∞. We, therefore, conclude that the vorticity density
generated by the gauge field (3) gives the simplest topological
charge that can result in a physically meaningful extensive
hydrodynamics.

III. QUANTUM VORTICITY DYNAMICS

To construct a simple quantum theory, which reproduces
the above classical hydrodynamics of vorticity in the limit
of h̄ → 0, let us consider a square lattice model sketched in
Fig. 1. We label each vertex of the lattice by two integer
indices: ı (along the x axis) and j (along the y axis). The
same indices are used to label the square plaquettes, according
to their lower left corner, as well as the vertical links going
upward and the horizontal links to the right of the site ıj .
Each site contains a bosonic field � obeying the standard
commutation algebra [�,�†] = 1 (different sites commute).
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FIG. 1. A quantum bosonic lattice described by an arbitrary
Hamiltonian H . �ıj is the bosonic field operator at site ıj , with index
ı (j ) running along the x (y) axis. ı̃ = ı + 1 and j̃ = j + 1. ρıj is the
conserved topological charge per plaquette ıj , jx

ıj ( jy
ıj ) is the flux

per vertical (horizontal) link ıj , which together satisfy the quantum
continuity equation (11).

We associate a charge density

ρıj ≡ Ax
ıj − Ax

ıj̃ + Ay
ı̃j − Ay

ıj

2πa
(6)

to each plaquette, where a is the lattice spacing. Here, ı̃ ≡
ı + 1 and j̃ ≡ j + 1, and

Ax
ıj = (�†

ı̃j + �†
ıj )(�ı̃j − �ıj )

4ai
+ H.c. = �†

ıj�ı̃j

2ai
+ H.c.,

Ay
ıj = (�†

ıj̃ + �†
ıj )(�ıj̃ − �ıj )

4ai
+ H.c. = �†

ıj�ıj̃

2ai
+ H.c.,

(7)

which we assign formally to the corresponding horizontal and
vertical sides of the plaquette, respectively. These definitions
mimic Eqs. (2) and (3), respectively, and should reproduce
them by coarse graining the field configurations in the classi-
cal limit.

According to these conventions,

ρıj = (�†
ı̃j − �

†
ıj̃ )(�ı̃ j̃ − �ıj )

4πa2i
+ H.c. (8)

We also see [from Eq. (6)] that

Q =
∑
ıj

ρıj (9)

vanishes in the bulk and reduces to the boundary terms, which
we can interpret as the quantum version of the net vorticity
(4). This suggests a conservation law with the boundary fluxes
corresponding to the vorticity flow. Indeed, according to the
Heisenberg equation of motion (for Hamiltonian H),

∂tρıj = i

h̄
[H, ρıj ] (10)

can be seen to satisfy the continuity equation:

∂tρıj + jx
ı̃j − jx

ıj + jy
ıj̃ − jy

ıj

a
= 0. (11)

Here, the fluxes are obtained by discretizing and quantizing
the definition (1):

jx
ıj = (�†

ıj̃ − �†
ıj )∂t (�ıj̃ + �ıj )

4πai
+ H.c., (12)

and similarly for the other components. The time derivative
should always be understood to denote the Heisenberg com-
mutator:

∂tO ≡ i

h̄
[H,O], (13)

for any (time-independent) operator O.
It is useful to emphasize that this conservation law is

not rooted in any specific symmetry of the system. Indeed,
the form of the Hamiltonian H still remains arbitrary. The
continuity is rather dictated by the topology associated with
the vorticity (hydro)dynamics in the interior of the system.
Specifically, for a fixed field profile on the boundary, an
arbitrary smooth field in the bulk yields the same net vorticity,
irrespective of the details of the dynamics.

While the definitions (7) for the quantum field A(�) are
motivated by the classical limit (3), which describes vorticity,
any field A(�) entering Eq. (6) would in principle define a
conserved dynamics. This is fully analogous to the arbitrary
gauge field A(φ) parametrizing classical hydrodynamics asso-
ciated with Eqs. (2) and (5), as discussed above. The specific
choice (7) is motivated by the classical correspondence to a
physically meaningful extensive hydrodynamics in bosonic
condensates.

A. Boundary conditions

The boundary conditions for a nonequilibrium injection
of vorticity can be constructed based on energetics and gen-
eral symmetry principles [4,7,14]. In essence, the boundary-
induced work can shift the energy barrier for a spontaneous
injection of vorticity, in proportion to the applied bias. This
bias can be established, for example, by a current applied in a
metal contact tangentially to the interface [4,7,15] or a driven
spin dynamics in an adjacent magnetic insulator [14]. Let us
follow the latter scenario, supposing the magnetic order n in
the insulator couples to vorticity dynamics near the interface
via a spin-orbit interaction. The relevant coarse-grained work
δW associated with a vorticity transfer δQ across the interface
then has an adiabatic contribution (at low frequencies) of the
form [14]

δW = gz · n × ṅ δQ. (14)

g here is a phenomenological interfacial parameter for the cou-
pling, z is the normal to the (xy) plane of our bosonic film, and
n is taken to be the directional (unit-vector) order parameter
of a ferromagnetic insulator. For n steadily precessing around
the z axis at frequency ν, the effective bias becomes

μ ≡ δW

δQ
= gν�, (15)

where � is the solid angle subtended by n.
This μ can be interpreted as establishing a local chem-

ical potential for the vorticity, supposing that the effective
impedance for the vorticity transport is dominated by the bulk
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FIG. 2. Vorticity injection into a bosonic film. Coherently-
precessing magnetic dynamics nL (nR) at the left (right) side realizes
a vorticity reservoir with a conjugate chemical potential μL (μR).
This effectively acts as a battery for the injection of the topological
charge Q. A positive chemical potential leads to a build-up of a
positive vorticity charge at the interface. If μL = μR = μ (which
could be accomplished by attaching the same magnet symmetrically
to both sides), an equilibrium state with the vortex chemical potential
μ is established in the steady state, which has a vanishing vortex flux.
If μL �= μR, a dc vortex flux (driven by thermal and/or quantum
fluctuations) is expected towards the lower chemical-potential side
[10].

region. Physically, Eq. (14) describes the interfacial conver-
sion of a pumped spin current (along the z axis), ∝ z · n × ṅ
[16] into the vorticity. We have explicitly derived the form of
g, for a model of a ferromagnet/superconductor interface, in
Ref. [14]. The spin-to-vorticity interconversion described by
Eq. (14), however, can be expected to be general, as the z com-
ponent of spin and local vorticity transform similarly under
the relevant structural (as well as time-reversal) symmetries.

The natural chemical potential of vorticity in an equilib-
rium system (i.e., in the absence of magnetic dynamics ṅ) is
μ → 0, as the topological charge can freely go in and out
of the vacuum. A circuit describing the out-of-equilibrium
injection of vorticity into the bosonic medium by magnetic
dynamics is sketched in Fig. 2. Particularly noteworthy is
the case of μL = μR = μ in the figure, which corresponds to
lifting the equilibrium chemical potential for the topological
charge by the amount of μ. This geometry is analogous to a
rotating superfluid (where the precessing order parameter is
replaced by the rotating container) and the frequency glitches
in neutron-star pulsars (which have superfluid interiors sur-
rounded by a rotating crust) [17].

B. Kubo formula

We are now ready to define the bulk impedance for the
topological flow (1), as an intrinsic property of the bosonic
system. Starting with a continuity equation for the coarse-
grained quantum dynamics in the bulk, we have

∂tρ + ∇ · j = 0, (16)

where the conserved density and current are obtained from
Eqs. (8) and (12). We recall that the time derivatives are
obtained in the Heisenberg picture. If we perturb the system
by a scalar potential φ(r, t ) that couples to the topological

charge, the Hamiltonian becomes

H → H +
∫

d2r φ(r, t )ρ(r). (17)

Note that the topological density (8) is even under time rever-
sal, while the flux (12) is odd, so it vanishes in equilibrium,
when φ ≡ 0. For a finite time-dependent potential φ, on the
other hand, the linear response is given by

ji(r, t ) =
∫

d2r′dt ′χi(r − r′, t − t ′)φ(r′, t ′), (18)

where

χi(r − r′, t − t ′) ≡ −iθ (t − t ′)[ ji(r, t ), ρ(r′, t ′)], (19)

according to the Kubo formula (with the equilibrium expecta-
tion value implicit on the right-hand side).

To invoke the continuity equation, we differentiate the
response function in time:

∂tχi(r − r′, t − t ′) = iθ (t − t ′)[ ji(r, t ), ∂t ′ρ(r′, t ′)]

− iδ(t − t ′)[ ji(r), ρ(r′)]

= −iθ (t − t ′)[ ji(r, t ),∇′ · j(r′, t ′)]

+ δ(t − t ′)∇′ · pi(r − r′), (20)

where the auxiliary curl-free function pi(r − r′) is formally
defined by inverting

∇′ · pi(r − r′) = −i[ ji(r), ρ(r′)]. (21)

We will see that it describes the response that is analogous
to the paramagnetic component (∝ i�/mω) of the electrical
conductivity (for electrons of mass m and density �). Fourier
transforming in time, j(ω) = ∫

dteiωt j(t ) etc., we finally get
(summing over repeated indices)

ji(r, ω) = i

ω

∫
d2r′ χi j (r − r′, ω)ε j (r′, ω). (22)

Here,

χi j (r − r′, t − t ′) ≡ −iθ (t − t ′)[ ji(r, t ), j j (r′, t ′)]

+ δ(t − t ′)pi j (r − r′) (23)

is the current-current correlator (pi j ≡ p( j)
i ) and

ε ≡ −∇φ (24)

is the effective electric field. This gives for the conductivity
tensor relating j(k, ω) to ε(k, ω):

σi j (k, ω) = i

ω
χi j (k, ω), (25)

having also Fourier transformed in real space,
∫

d2r e−ik·r.
For the geometry sketched in Fig. 2,

ε = gν
�L − �R

L
x, (26)

supposing that the length of the topological transport channel
L is long enough, so that the bulk dominates over the interfa-
cial impedances [3]. We take g and ν to be the same at the
two interfaces. Note that the conductivity should generally
depend on the topological chemical potential μ, which can
be controlled by the average dynamic bias, �L + �R. We thus
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conclude that the sum �L + �R effectively gates the bosonic
vorticity conduit, while the difference �L − �R establishes
a topological flux through it. As the conductivity tensor σ̂

can be exponentially sensitive to μ at low temperatures, this
suggests a potential transistor functionality.

C. Electrical transconductance

Having established the vorticity response to the magnetic
dynamics in the structure like that sketched in Fig. 2, we can
now consider its nonlocal feedback on the magnetic dynamics.
To that end, we invoke the Onsager reciprocity, in order to
establish the torque induced by the vorticity flow through the
interfaces [14]:

τ = gn × z × n j = θ n × z × n, (27)

where j is the vorticity flux impinging on the magnetic insu-
lator. This is known as the (anti)damping-like torque, which
plays an important role in spin-torque-induced magnetic dy-
namics [18]. In particular, at a critical value of its magnitude θ ,
the ferromagnet can undergo an instability driving it into co-
herent self-oscillations. The magnitude of such a torque acting
on the right magnet due to a coherent resonant dynamics (at
frequency ν) induced in the left magnet is given by

θ = gj = g2ν�

L
σxx (28)

We recall that g is a phenomenological parameter of the
interface, whose existence is dictated by structural symmetries
and whose magnitude depends on the details of the interfacial
coupling (including corrections due to quantum fluctuations).
The longitudinal conductivity σxx reflects the intrinsic vortic-
ity transport across the bosonic lattice.

In the particle-superfluid limit, when the vorticity is carried
by the plasma of solitonic defects with quantized topological
charge ±1 and mobility M, the corresponding conductivity
is simply σxx = 2ρM, where ρ is the density of the unbound
vortex-antivortex pairs (well above the Kosterlitz-Thouless
transition) [10]. The associated diffusion coefficient is given
by D = kBT M, according to the Einstein-Smoluchowski re-
lation. For large vortices, the mobility may be limited by
the dissipation associated with the normal-fluid component
(which is perturbed by the vortex motion). Reference [14]
offers some quantitative estimates of the torques induced
by vortex motion in high-temperature superconducting films,
suggesting its practical relevance.

D. Superfluidity of vorticity

Exploiting the particle-vortex duality [11], we consider a
situation when a strong interparticle repulsion prevents the
ordinary mass flow at low temperatures. In this case, an insu-
lating state for the particle dynamics may exhibit superfluidity
for the topological charge (i.e., vorticity). To this end, we
pursue an effective description with the Hamiltonian density

H = ρ2

2χ
+ A(∇ψ )2

2
, (29)

expressed in terms of the coarse-grained (condensed) vorticity
density ρ and its condensate phase ψ . χ is the thermodynamic

compressibility of vorticity and A is the phase stiffness. This
form of the Hamiltonian, along with the conjugacy relation
[ψ (r), ρ(r′)] = iδ(r − r′), reflects an emergent gauge struc-
ture associated with the global conservation of vorticity.

The associated flux can be read out from the Hamilton
equation for the density dynamics:

h̄∂tρ = −∂ψH = A∇2ψ ⇒ j = −A∇ψ/h̄. (30)

Phase dynamics is described by the Josephson relation:

h̄∂tψ = ∂ρH = ρ/χ. (31)

The mean-field current self-correlator can be found as the cur-
rent response to perturbation H → H + s · j, which modifies
the equation of motion as

h̄∂tρ = A∇2ψ − A∇ · s/h̄ . (32)

The long-wavelength response thus vanishes, as ∇ · s = 0.
We are therefore left with evaluating the “paramagnetic”

contribution, which follows from Eq. (21). The associated
current-density correlator

[j(r), ρ(r′)] = −iA∇δ(r − r′)/h̄ (33)

gives

pi j = Aδ(r − r′)δi j/h̄, (34)

resulting in the diagonal dynamic (long-wavelength) conduc-
tivity

σ (ω) = iA
h̄ω

. (35)

Regularizing this result at zero frequency, ω → ω + i0+, we
get Reσ = (πA/h̄)δ(ω). As expected, the static conductivity
diverges in the low-frequency limit. In this case, the superfluid
bulk has no impedance and the vorticity conductance of the
entire structure needs to be determined by carefully consid-
ering the interfacial injection physics, which is akin to the
Andreev conductance of normal|superconducting interfaces
[19]. The bare conductivity derived here, furthermore, needs
to be complemented with a self-consistent treatment of the
screening fields, which is beyond our immediate scope.

IV. SUMMARY AND OUTLOOK

Motivated by the conceptual attraction of solid-state trans-
port phenomena emerging out of real-space topological in-
variants [3], we set out to construct a field-theoretic Kubo
formalism for evaluating the associated transport coefficients.
Two basic issues arise in this regard: (1) The underlying
topological invariants typically appear at the level of a coarse-
grained classical description that is, furthermore, projected
onto a low-energy manifold, in the spirit of the Landau
order-parameter formulation; and (2) related to this, there are
generally dynamical processes that allow for rapid transitions
(“phase slips”) between different topological sectors of the
theory, which may be driven by classical and/or quantum
fluctuations.

In this paper, we showed that a topological conservation
law may also arise at the most microscopic quantum level,
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without a need for any higher-level Landau-type coarse grain-
ing. The conservation law here is distinct from the more con-
ventional examples of the topological hydrodynamics [3], due
to the existence of the bulk-edge correspondence (such as the
bulk vorticity vs edge winding) rooted in a variant of a Stokes
theorem. The nonlocal topological character of the ensuing
extensive bulk hydrodynamics engenders a robust continuity
equation that is immune to any local fluctuations. Arbitrary
global (thermal and quantum) fluctuations, furthermore, are
fully accounted for by the topological charge fluxes across
the boundaries, which, in turn, offer means for injecting and
detecting the bulk hydrodynamics.

A general approach for constructing a practical device, in
which the transport coefficients associated with this topolog-
ical hydrodynamics may be measured, can be implemented
based on the energetics and thermodynamic reciprocities of
the nonequilibrium response. This allows us to formulate a
Kubo linear-response approach both for calculating and for
measuring the topological charge conductivity. As has been
recently illustrated by measuring the electrical transconduc-

tance induced by winding dynamics of a magnetic Néel order
[20], these ideas may broaden the scope of transport-based
investigations of fundamental correlations and ordering in
quantum materials. We propose, in particular, to utilize a
topological transport probe to test the purported particle-
vortex duality of the vortex-superfluid (i.e., particle-insulator)
side of the superfluid-insulator quantum phase transition (cf.
Sec. III D). In the future works, it can also be interesting to
investigate quantum many-body aspects of vortex formation
and dynamics [21] in relation to the transconductance signals
discussed in Sec. III C.
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