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A many-particle system must possess long-range interactions in order to be hyperuniform at thermal
equilibrium. Hydrodynamic arguments and numerical simulations show, nevertheless, that a three-dimensional
elastic-line array with short-ranged repulsive interactions, such as vortex matter in a type-II superconductor,
forms at equilibrium a class-II hyperuniform two-dimensional point pattern for any constant-z cross section. In
this case, density fluctuations vanish isotropically as ~¢* at small wave vectors ¢, with « = 1. This prediction
includes the solid and liquid vortex phases in the ideal clean case and the liquid in presence of weak uncorrelated
disorder. We also show that the three-dimensional Bragg glass phase is marginally hyperuniform, while the
Bose glass and the liquid phase with correlated disorder are expected to be nonhyperuniform at equilibrium.
Furthermore, we compare these predictions with experimental results on the large-wavelength vortex density
fluctuations of magnetically decorated vortex structures nucleated in pristine, electron-irradiated, and heavy-ion-
irradiated superconducting Bi, Sr,CaCu,Og, s samples in the mixed state. For most cases, we find hyperuniform
two-dimensional point patterns at the superconductor surface with an effective exponent a.;s &~ 1. We interpret
these results in terms of a large-scale memory of the high-temperature line-liquid phase retained in the glassy
dynamics when field cooling the vortex structures into the solid phase. We also discuss the crossovers expected
from the dispersivity of the elastic constants at intermediate length-scales, and the lack of hyperuniformity in the
x -y plane for lengths g~! larger than the sample thickness due to finite-size effects in the z direction. We argue

these predictions may be observable and propose further imaging experiments to test them independently.
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I. INTRODUCTION

Hyperuniform point patterns, defined by a complete sup-
pression of density fluctuations in the large-wavelength limit
[1], have attracted great interest in recent years. Such behavior
can spontaneously emerge, following either equilibrium or
nonequilibrium protocols, in disordered ground states, glass
formation, jamming, Coulomb systems, spin systems, pho-
tonic and electronic band structure, localization of waves and
excitations, self-organization, fluid dynamics, number theory,
stochastic point processes, integral and stochastic geometry,
photoreceptor cells, and even the immune system [1-3]. Hy-
peruniform systems are proposed to be distinguishable states
of matter characterized by special properties [2]. Besides,
these properties can be technologically exploited directly, or
indirectly, by coupling a given system with a hyperuniform
pattern. The fabrication of such patterns, either in a controlled
or a self-assembled way, is hence also of interest from an
applied point of view [3].

Point patterns formed by vortex matter nucleated in type-II
superconductors have been a paradigmatic soft condensed-
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matter system for studying basic questions on statistical
physics, such as the statics and dynamics of elastic manifolds
in random media and glassy phases in general. This system
has also been a playground to understand the rich interplay
among elasticity, quenched disorder, thermal fluctuations,
driving forces, anisotropic effects, and finite-size effects, ei-
ther at equilibrium or out of it [4]. Since the mean vortex
density can be easily controlled by changing the applied field
H, vortex matter systems are particularly suitable for studying
ordering and density fluctuations at microscopic scales, in
different equilibrium or nonequilibrium liquid, solid, or glassy
phases. However, the occurrence of hyperuniformity in vortex
matter has not been experimentally addressed yet.

Recent theoretical studies on the effect of hyperuniform
pinning arrays [5,6] on vortex matter report an isotropic
enhancement of the critical currents in comparison with a
nonhyperuniform distribution of point pins. The work of
Ref. [5] also predicts that vortex matter may exhibit disor-
dered hyperuniformity in the presence of hyperuniform or
random pinning arrays. In particular, hyperuniform vortex
configurations are proposed for rigid vortices repelling with
short-range interactions in the presence of a Poisson distri-
bution of point pins, in a narrow region between the Bragg
glass and the vortex liquid phases. This last result is in
contrast with the behavior expected for the same rigid vortex
system at thermal equilibrium in the absence of disorder.
Indeed, the fluctuation-compressibility theorem forbids hype-
runiformity [2] in a system with a nondivergent compression
modulus for nearly uniform deformations. On the other hand,
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hyperuniformity is expected for clean thin-film supercon-
ductors with the penetration length much larger than the
sample thickness and logarithmic vortex-vortex repulsion.
Reference [5] shows that this expectation is satisfied also in
the presence of Poisson-distributed point pins.

Interestingly, as we show in this work, three-dimensional
systems made of many nonrigid interacting lines directed
along the z direction are generically expected to follow a
hyperuniform point pattern for any constant-z cross section
of the embedding space. This behavior arises mainly from
the constraint that elastic lines cannot start or terminate in-
side the medium and can be understood considering general
hydrodynamic arguments valid in the solid and liquid phases,
even including weak pinning in the liquid [7,8]. These argu-
ments show that even though interactions between lines are
short ranged in all directions, the effective two-dimensional
bulk modulus of the (compressible) three-dimensional sys-
tem smoothly diverges in the large-wavelength limit. Hence,
at thermal equilibrium, density fluctuations smoothly vanish
and the configurations are hyperuniform for any particular
constant-z slice. We show that by adding heuristic arguments
these assertions can be extended to predict the density fluctu-
ations in the Bragg glass, Bose glass, and liquid vortex phases
with correlated disorder generated by columnar defects (CD).
We find that disorder modifies in a nontrivial way the large-
wavelength density fluctuations of the ideal clean system. In
the former case, hyperuniformity becomes marginal, while in
the correlated disorder case hyperuniformity is destroyed in
the glassy and liquid equilibrium phases. These hydrodynamic
predictions are different from the strong type of hyperuni-
formity numerically predicted in Ref. [5] for logarithmic and
short-range interactions in a three-dimensional system of rigid
vortices in presence of quenched disorder.

Motivated by the above predictions and open questions,
we experimentally study large-wavelength vortex density
fluctuations in magnetically decorated vortex structures over
extended fields of view (thousands of vortices) in pristine,
electron-irradiated, and heavy-ion-irradiated (namely with
CD) Bi,Sr,CaCu;0s4s superconducting samples. In the ob-
servable spatial range, we systematically find, for all sam-
ples and vortex densities probed, an effective hyperuniform
behavior close to the one predicted for the line liquid in
equilibrium under weak disorder. We argue that this result
can be explained considering that larger wavelength density
fluctuations have also a slower dynamics and are thus effec-
tively arrested by a realistic field-cooling process with finite-
temperature sweep rate. We also show that dispersivity of the
elastic constants is experimentally relevant, as well as finite-
size effects in the direction of the applied field, which should
ultimately kill the predicted asymptotic hyperuniformity at
in-plane scales of the order of the superconductor thickness.

The paper is organized as follows. In Sec. Il A, we define
the main observables that we will use to study hyperunifor-
mity in magnetically decorated vortex structures. In Sec. 11 B,
we review the hydrodynamic arguments supporting the emer-
gence of hyperuniformity at any z-constant slice of a three-
dimensional system of repelling elastic lines for different
phases. In Sec. III, we study the large-wavelength density fluc-
tuations in magnetically decorated vortex structures nucleated
in Bi;Sr,CaCu;0s., 5 samples with different types of disorder.

FIG. 1. Simulation snapshot of an array of fluctuating directed
elastic lines (green) modeling vortices in a type-II superconductor
with the magnetic field applied in the z direction. Two constant-z
cross sections are highlighted, the top and an inner layer of the
sample. The hydrodynamics of the elastic lines predicts a class-II
hyperuniform two-dimensional point pattern at each constant-z cross
section (full circles), in spite of repulsion between lines being short-
ranged. The pattern frozen at the top layer can be accessed experi-
mentally via bitter magnetic decoration experiments (see Sec. III).

In Sec. IV, we discuss the theoretical interpretation of these
results and report predictions expected for vortex matter in ad
hoc experiments that might shed more light on this issue.

II. DENSITY FLUCTUATIONS:
PHENOMENOLOGICAL THEORY

In this section, we describe the physical magnitudes that
we study and the predictions obtained for the different vortex
phases using a hydrodynamic approach, scaling arguments
and numerical simulations of simple models.

A. Cross-section hyperuniformity

We will be interested in the two-dimensional large-
wavelength density fluctuations at a constant-z cross section
of a three-dimensional array of vortex lines nucleated in a
real sample of thickness L. The average magnetic induction
at equilibrium, B = BZ, determines the number of vortices
per unit area in any slice, ng = B/®y, with &y = 2.07 x
107 G cm? the flux quantum. We model this system of in-
dividual vortex lines by considering directed elastic lines.
We will also assume, as an approximation, that vortex lines
do not present overhangs or pinch-off loops and that at a
given instant the nth line can be appropriately described by
a parameterized position r,(z) = [x,(2), y.(z)] (see Fig. 1 for
a schematic representation).

The structure factor of a given frozen two-dimensional
point pattern with N >> 1 points at a constant-z cross section
is defined as
2

S(q,z) =N"" — Nég,0 (D

N
2 : e—iq.r,,(z)
n=1

with q = (gx, g,). For thick systems in the z direction, L —
00, and the bulk value of S(q, z) is expected to be independent
of z, namely S(q, z) = S(q) [9].

A constant-z cross-section pattern is considered hyperuni-
form if its two-dimensional large-wavelength (small-wave-
vector) density fluctuations are suppressed:

lim S(q) = 0. 2
q—>0
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We will be particularly interested in the common cases where
the structure factor vanishes isotropically as a power law near
the reciprocal space origin,

S@) ~ 4%, (g—0), 3

with @ > 0 being a characteristic exponent. In the asymp-
totic limit N > 1, this property can be translated to the
variance of the number N(R) of particles observed inside an
hyper-spherical window with radius R, a,%,(R) = (N%(R)) —
(N(R))2. In the latter, {---) denotes average over randomly
distributed windows and the expression is valid in the large-R
limit. The variance is predicted to scale as [1]

RA-1 a>1,
ol(R)~{R"'"InR, a=1 R— o0), &)
Ré— O<a<l.

For instance, a Poisson distribution of points is not hyperuni-
form since the number variance is extensive with the window
volume, i.e., o7 ~ RY. A hyperuniform system is considered
to be class I if o > 1, class Il if « = 1, and class IIT if 0 <
a < 1. A large and diverse list of physical and mathematical
systems for each class is given in Ref. [2].

B. Hydrodynamic arguments

The equilibrium hydrodynamics of three-dimensional flux-
line liquids have been thoroughly discussed in the past [7,8].
In this section, we first briefly review the basic physics and
also add some new predictions regarding large-wavelength
isotropic density fluctuations in the Bragg glass, the Bose
glass (samples with correlated disorder), and liquid phases.
This theoretical framework is relevant for our discussion
of hyperuniformity at constant-z cross sections since the
two-dimensional structure factor describing large-scale den-
sity fluctuations can be obtained from the three-dimensional
one by simple integration over the z-direction wave vectors.
This yields, at equilibrium, an effective (single-layer) two-
dimensional compression modulus [10].

If the penetration depth of a superconductor is much
smaller than the thickness of the sample, A,, < L (see Fig. 1),
vortex lines repel each other with a roughly exponential
dependence on distance for scales of order A, or larger. We
neglect the contribution of long-range surface forces between
vortex tips in a finite sample [10]. In the absence of anisotropy
in the x-y plane, and for the intermediate vortex densities we
are interested in, these interactions tend to form a triangular
Abrikosov lattice well characterized by dispersive and axi-
ally symmetric elastic modulii of tilt c44(g, q.), compression
c11(q, q;), and shear cg6(q, g.). With increasing temperature,
this solid phase melts into a liquid phase of fluctuating lines
with ce6(q, g;) = 0. However, in the liquid, c;;(g, ¢;) and
c44(q, q;) remain finite and can be reinterpreted as the elastic
modulii of a viscoelastic liquid of an axially symmetric phase
of elastic lines. The three-dimensional elastic modulii depend
on material parameters and may be complicated functions of
field and temperature due to the several microscopic length-
scales that come into play [11], as discussed in Sec. IV. For
the following discussion, it is only relevant to consider that
c11(q, q;) and c44(q, q.) remain finite and axially symmetric in

the ¢ — 0, g, — 0 limit of quasiuniform compressions and
tilting deformations.

The starting point for the elastic line hydrodynamics of line
liquids is the Landau free-energy functional,

_L 2 2.7 ’
F=_—|dvrdz|dr |dz
2ng

X [caa(r —x', 2 — 2t(r, 2) - t(r', 2)

+c1(r — 1,z —2)én(r, 2)8n(r’, 2)]
+ f Pr / d2Vp(r, 2)8n(r, 2), 5)

where r = (x,y), ca(r —1',z—2), and ¢ 1(r — 1",z —7)
are the nonlocal tilt and compression modulii [12] with
Fourier transforms c11(q, q,) and c44(q, g;),

N
sn(r,z) =Y 8lr —r;(2)] — no 6)
j=1
are the two-dimensional vortex density fluctuations at layer z
around its mean value ng, and

N

dr;
(r 2) =) Z20lr —r,(2)] )
j=1

is the two-dimensional tangent field density for a collection of
N > 1 vortex-lines positioned at r;(z) at a given constant-z
cross section. We assume a slab geometry with a thickness
L in the z direction and an area A in the x-y plane such that
ng = N/A = B/® (see Fig. 1). The last term in F describes
the coupling of the vortex density with the pinning potential
Vp(r, z), which can have different correlations. In this paper,
we will be interested in the cases of uncorrelated (strictly
speaking short-range correlated) isotropic point disorder and
the long-range correlated disorder associated to CD.

Density fluctuations around the average can be measured
in the reciprocal space by dn(q, z) = n(q, z) — nopAdq,0, where
q and ¢, are the wave vectors in the in-plane directions
and in the average-z direction of the lines. Fluctuations are
conveniently quantified by the full three-dimensional structure
factor

noS*(q, ¢;) = (18n(q, ¢.)1?), ®)

where — and (- - - ) denote averages over disorder and thermal
fluctuations, respectively. These averages can be calculated, at
equilibrium, from Eq. (5) with the constraint

aon+V,  t=0 9)

imposing the continuity of vortex lines [7].

It is usually agreed [7,13,14] that the elastic modulii of
the liquid phase c¢j; and c44 should be similar to those of the
solid or glassy phase, an assumption we will follow in general.
We will also neglect the small renormalization of the modulii
in the presence of uncorrelated disorder [15]. However, for
correlated disorder generated by CD, cy4 is drastically renor-
malized and diverges at the Bose glass transition due to the
broken statistical symmetries. Moreover, also cj; is expected
to get strongly renormalized and to diverge in the so-called
Mott glass phase for the field such that the number of vortices
equals that of CD (matching field). To be aware of these
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important differences between these two types of disorder,
we will denote the elastic constants in the case of correlated
disorder as ¢44 and ¢y;.

Density fluctuations are essentially controlled by com-
pression modes [14]. Therefore, although the free energy of
Eq. (5) is presented for the liquid phase (cg¢ = 0), in the
ideal clean case (Vp = 0) this expression can be applied to
compute the density fluctuations of the solid phases as well.
In real cases with disorder, for the solid phases the situation
is more subtle since the coupling to the pinning potential
strongly depends on the periodicity of the vortex structure
ap. This implies that the cgg, not included in the description
of Eq. (5), does play a role. Nevertheless, within the elastic
approximation, hydrodynamic density fluctuations in the solid
phase with disorder can be directly related to the prediction
made for the displacement field (see discussion in Sec. I B 3).

The density fluctuations at a constant-z cross section S(q)
of Eq. (1) can be written as

noS(q) = (I8n(q, 2)I*) (10)

assuming a bulk system with statistical invariance along the
z direction. S(q) can thus be computed from $*¢(q, ¢.) by
integration over ¢, (see Appendix A)

21 /s
S(q) o / dq, $*(q, q), (11)
0

where s sets an ultraviolet cutoff coming from the discretiza-
tion in the z direction or, more physically, from the supercon-
ducting layer spacing [10].

1. Liquid and solid phases without disorder

We start by reviewing the ideal case without disorder at
thermal equilibrium, Vp = 0 in Eq. (5). In the absence of
anisotropies in the x-y plane, we expect to have roughly
the same three-dimensional structure factor for the liquid,
Sﬁg(q, q.), and the solid Abrikosov lattice, S:c‘fl (q, g), vortex
phases at small enough wave vectors,

nokgT g*

, (12)
g*c11(q, 42) + ¢2caa(q. q2)

Sie(q. q:) ~ S¥(q. q2) =

In this expression obtained from Eq. (5) [7,10,14,16], kg is
the Boltzmann constant and 7 is the bath temperature. We are
again assuming that the elastic constants in the vortex liquid
can be well approximated by those of the solid phase at the hy-
drodynamic scales (gag < 1). Equation (12) can be obtained
by relating the spontaneous density fluctuations measured
by Sﬁg (g, q.) with the associated linear response function

nog*lg*c11(q. q.) + 61126‘44(6], g-)]7"! via the static fluctuation-
dissipation theorem. Therefore, the most important difference
between the response of the two phases, a finite ce6(q, g;)
in the solid phase, does not play any role here. We also
note that at small wave vectors compared to the wave vector
associated to the Bragg peaks, go = 27 /ay, the solid phase
has isotropic density fluctuations since the broken rotational
and translational symmetries of this phase are irrelevant.
Neglecting for the moment the dispersivity along the z
direction (see Sec. IV for a specific discussion for our experi-
mental case) and approximating c;; and ca4 by their values at

q. = 0, we obtain by following Ref. [10]
nokBT
q
LY, C44(q7 O)Cll(qa 0)

for a constant-z cross section of the liquid and solid vortex
phases in a clean sample (i.e., Vp = 0). If we assume constant
c11(q, 0) and c44(q, 0) as ¢ — 0, we find that

Siiq(q) ~ Sso1(g) o< q. (14)

Therefore, according to the classification of Ref. [2], in the
ideal clean case the point pattern at any constant-z cross
section is a class-II hyperuniform system (o = 1) for the
liquid and solid Abrikosov lattice phases. Some examples
of systems belonging to this hyperuniform universality class
are quasicrystals, classical disordered ground states, zeros
of the Riemann ¢ function, eigenvalues of random matrices,
fermionic point processes, superfluid helium, maximally ran-
dom jammed packings, perturbed lattices, perfect glasses, and
density fluctuations in the early Universe [2].

Siiq(q) = Sso1(q) = 13)

2. Weak uncorrelated disorder: Liquid phase

The presence of disorder introduces corrections to the
prediction of Eq. (13). Weak bulk point disorder, charac-
terized by the correlator Vp(r, 2)Vp(r', 7)) = AS(r' — r)é(z —
7'), produces an additive correction to the vortex liquid three-
dimensional structure factor [Eq. (12)] such that

SSltil-llq (qﬂ qZ )

noq> 2

0 3d

=noA + Siiq(q. ¢)  (15)
[qzcn(q, 0) + gZcaa(q. 0)] e

with A measuring the strength of the bulk disorder and
where we have again approximated the non-negligible elastic
constants of the liquid by those of the Abrikosov lattice. This
calculation neglects the dispersivity of the elastic constants
along the z direction by taking their values for g, = 0. The
correction to the two-dimensional structure factor is thus
obtained by integrating over g,

3
ngA

Spin—liq(q) =
V(g 0)ci (g, 0)

If we again assume that c¢;;(g, 0) and c44(q, 0) tend to con-
stants as ¢ — 0, we get

Spin—liq(Q) X g, (1 7)

as also found for the clean case. Note, however, that the
prefactor is different: Only when ngA/cii(q, 0) < kgT will
the system cross over to the line liquid in clean samples.

This case of @« =1 or class-II hyperuniformity is dif-
ferent to the o = 2 class-I hyperuniformity that is found,
for instance, for pancake vortices interacting logarithmically
in a thin-film superconductor or the two-dimensional one-
component plasma system. The two-dimensional density fluc-
tuations of a vortex structure in a constant-z cross section
of a thick superconductor, described by Eq. (17), are in-
stead equivalent to the ones expected for an effective two-
dimensional particle system interacting with the long-range
Coulomb ~1/r repulsion. Such case is indeed known to

q+ Siq(q).  (16)
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have a two-dimensional compression modulus diverging as
~1/q, which complies with the fluctuation-compressibility
theorem. Hyperuniformity in the liquid phase is rather robust
since it arises from the continuity of flux lines; see Eq. (9).
This constraint implies that we need to deform vortex lines
along the z direction in order to compress point vortices at
a given cross section, inducing a divergent effective two-
dimensional compression modulus at equilibrium. It is thus an
interesting example of hyperuniformity emerging in the three-
dimensional density-contour levels of an extended system
composed by objects with short-range repulsive interactions.

Summarizing, for constant-z cross sections, the vortex
liquid phase is expected to be an o« = 1 class-II hyperuniform
system, either in the absence or presence of weak uncorrelated
disorder.

3. The Bragg glass phase

As mentioned, the Abrikosov lattice at thermal equilib-
rium is predicted to be a class-II hyperuniform system at
constant-z cross sections. Disorder-driven corrections to the
two-dimensional structure factor in the solid or glassy phases
are subtle and must be considered. For weak uncorrelated
disorder, the corrections in the solid phases are quite different
than in the liquid. This is due to the strong relevance of
periodicity in the coupling of the vortex density with disorder
[4,17]. Fortunately enough, if disorder is weak and the tem-
perature low, the elastic theory can be applied and the vortex
structure can be described by a hydrodynamic two-component
displacement field u,(r) measuring the distance of a vortex
with respect to the corresponding perfect lattice position, such
that uy (R;, 2) = u; o(2) is the displacement of the ith vortex
line at the slice z. In the case of weak uncorrelated disorder,
the Bragg glass phase with quasi-long-range positional order
is predicted [4,17,18]. The periodic coarse-grained vortex
density describing the topologically ordered phase can be
expressed as

n(r,z) = ng(1 — dp.u(r,z) + --+), (18)

where the “...” denote rapidly oscillating terms that do
not contribute to the hydrodynamic density modes we are
interested in. The hydrodynamic three-dimensional structure
factor is

13

$34(q, q2) ~ nog*lu (g, g)P), (19)

where u;(q, q.) is the component of the displacement field in
the direction parallel to q. This expression is rather general;
see Ref. [19]. If we consider the Abrikosov lattice correspond-
ing to the clean system below the melting temperature, the
thermal roughening of such displacement component is

kgT
g*c11(q, ¢2) + ¢?caa(q. q2)

(lur(q, g)I?) ~ (20)

The structure factor of the lattice is thus essentially the same
as for the liquid,

nokBTq2
g*c11(q, q2) + q?caa(q, q2)

since the structure factor in both phases is controlled by
the longitudinal modes only. At finite temperatures, the

Se(q: 4:) & ~ Si(q,q.), (21)

Abrikosov lattice at constant-z hence displays the same o = 1
hyperuniformity as the liquid,

Sso1(q) x ¢, 22)

as already discussed in the previous section.

Weak disorder destroys the perfect long-range positional
order but not the topological order, and a particular quasi-
long-range order emerges. In this Bragg glass phase [4,17],
the displacement field grows as a power law at intermediate
distances, and logarithmically at large distances, in contrast
with the temperature-dependent saturation of displacements
found in the Abrikosov lattice (associated to the Debye-Waller
factor). The disorder-induced roughening of the displacement
field is expected to be isotropic in the x-y plane at large-
distances with its corresponding structure factor, see Eq. (19),
to reduce to the clean thermal case of Eq. (12) on vanishing
disorder. Heuristically, we can thus approximate the thermal-
and disorder-induced displacements as

d+2¢

(lur(q. g)1?) ~ [dc11(q. 42) + Goeas(q. ¢)]” 2. (23)

with d = 3 being the space dimension and ¢ being a char-
acteristic exponent. Note that we have used the same cy4
and c;; as for the clean case, assuming no disorder-induced
renormalization. In the presence of thermal noise, we have
¢ =1—4d/2, thus reducing to Eq. (12). When ¢ > 0, this
exponent is the so-called roughness exponent of the lattice,
such that the mean square displacement grows as

(uz) ~ f dqdq. ¢"*(u(q, ¢)I*) ~R* (24

with R being the observation scale or system linear size in
the x-y plane. For ¢ = 0, the lattice is logarithmically rough
(u?) ~ log R, while for ¢ < 0 it has a macroscopically flat
displacement field.

By integrating over ¢, and assuming consistently that
the elastic constants c¢;; and c4y tend to finite values
at small ¢g,, we obtain the constant-z cross-section two-
dimensional structure factor of the pinned solid, Spin-so1(q) ~

G2 [gqc 712, and thus for d = 3

g

caa(q, 0)c* (g, 0)

(25)

Spin-sol(q) ~ \/

Therefore, under these assumptions, the elastic system is hy-
peruniform only if ¢ < O (displacement field macroscopically
flat) while for ¢ = 0 is marginally hyperuniform, i.e., « = 0.
This is particularly important for the Bragg glass and for sys-
tems with quasi-long-range order (such as two-dimensional
crystals with short-range interactions), since { — 0 asymp-
totically. This so-called random-periodic regime (RP) of the
Bragg glass phase exists for gR, < 1, where R, is the scale at
which the displacement field has fluctuations of order ay. For
R. < R < R,, where R, is the Larkin radius on the x-y plane,
there is a crossover to the so-called random-manifold regime
(RM), where ¢ = {rm =~ 0.2. For scales shorter than R, the
system crossovers to the Larkin regime, where { = ¢, = (4 —
d)/2 = 1/2. In none of these regimes will the Bragg glass
phase present suppressed density fluctuations.
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In summary, any arbitrarily weak disorder kills the class-II
hyperuniformity of the Abrikosov lattice, and the Bragg glass
phase is expected to be marginally hyperuniform at constant-z
cross sections. Rather surprisingly, from the given arguments,
the Bragg glass is expected to jump from marginal to a class-
II hyperuniformity at melting, adding a new signature to this
first-order phase transition [4,17].

4. CD correlated disorder: Liquid and Bose glass

The case of the correlated disorder generated by randomly
distributed CD, such that Vp(r, 2)Vp(r', 7)) = A18(r' —r), is
special since the long-range correlation along z favors the
localization of vortex lines into CD. A Bose glass transition
is expected by lowering the temperature from the liquid phase
[13], with the concomitant divergence of ¢44 approaching the
transition temperature, while ¢;; remains finite. There is an
exception for the putative Mott glass phase at the matching
field B = By = ncqPo, where ¢ is also expected to diverge.
The predicted three-dimensional structure factor for the vortex
liquid in the presence of CD disorder is

I’lokBTq2

q*¢11(q, ) + 4;¢44(q, q2)
3
n,
A
¢11(g,0)
where ¢;; and ¢44 are the compression and tilt modulii in
the presence of correlated CD disorder and A| measures the
strength of the columnar disorder. Integrating over ¢,, we
obtain the two-dimensional structure factor

nokgT n

3d ~
Scol—liq(q’ q:) ~

8(qz), (26)

Scoltiq(9) ~ —= = g+ Mg (27
T Va9 020 (. 0) &l1(q. 0)
This expression yields a crossover wave vector
2 ~
nOA1 Ca4
=\ (28)
qcp CuksT ¥ 1

such that for scales ¢ < gcp, the density fluctuations in the
liquid are dominated by the pinning introduced by CD [second
term in Eq. (27)], while for ¢ > gcp they are similar to those
found in the liquid phase without correlated CD disorder [first
term in Eq. (27)].

On approaching the Bose glass transition on cooling, 44
increases rapidly and diverges at the transition, concomitantly
with gcp — 00. We hence expect

3

) ~ A _o 2
Scol-so1 () "2 (4. 0) (29)
in the Bose glass phase where the localized vortex lines repel
each other with short-range interactions. The compression
modulus remains finite at the transition [13] and therefore a
nonhyperuniform system is expected at equilibrium.

Summarizing, correlated disorder generated by CD de-
stroys hyperuniformity at constant-z cross sections, both in
the Bose glass and in the liquid phases. However, since on
increasing temperature gcp vanishes, a crossover to a nearly
class-II hyperuniform liquid can occur within the liquid phase.
This crossover can also occur on decreasing the magnitude

and/or density of correlated disorder A;.

5. Finite-size effects

In the previous subsections, we assumed infinite samples
and showed that the ideal clean liquid and solid phases, as
well as the liquid phase with weak disorder, are class-II
hyperuniform systems. In samples with thickness L, finite
effects in the z direction will affect hyperuniform behavior
inducing a crossover at a characteristic gpg(L). Indeed, by a
simple dimensional analysis of the three-dimensional struc-
ture factors in these hyperuniform cases [Eqs. (12) and (15)],

we get
cau(qrs, 2w /L) 2
Grs ~ M__ (30)
cu(grs, 2w /L) L

Physically, grs is the characteristic wave vector at which the
correlation length of vortices in the z direction becomes of
order L [10]. In order to illustrate this, for simplicity we
perform the calculation from Eq. (12) for the clean system.
By Fourier inverting in the z direction,

I’l()kBT

_ MORBY —la-al/s@) (3D
cn(q, 0)&(q)

S,z — ) =

with

£1(q) = ¢ 'Vewu(q, 2 /L) /en(q, 2 /L), (32)

Therefore, Eq. (30) is equivalent to the physical condition
&1(grs) = L. For q < gFrg, the three-dimensional system es-
sentially behaves as a two-dimensional system of rigid lines
with the structure factor obtained by setting z; = 7, and
§ =L,

I’l()kBT
c11(g, 0L

Provided L > A, at the crossover, rigid vortices repel with a
short-range interaction, yielding [14,15]

S(q) = (33)

2722, B2

=260—— "5 34
CII(Q) 601 + )“?‘qu q)% ( )

with €y = (®o/4mwAep)? being the line tension. Therefore,
since the length scale in the x-y plane probed is ¢~' > Au,
we have S(q) — const as ¢ — 0. In other words, finite-
size effects kill the class-II hyperuniformity of the three-
dimensional vortex liquid or solid phases in clean samples
at thermal equilibrium. Although this result was obtained
for a particular case, this finite-size effect is expected to be
present in all vortex phases, even with disorder. Indeed, the
existence of grs(L) comes from first, a dimensional analysis
of the competition between tilting and compression elastic
responses, and second, from the nondispersive behavior of the
three-dimensional elastic constants.

6. Two-dimensional systems

It is interesting to discuss Eq. (33) in the limit of very thin
superconductors such that L < A4p. In this limit, the effective
penetration length becomes A = 212, /L. If the observation
length scale in the x-y plane is gA > 1, two different power-
law behaviors can be expected. At very small length scales,

033057-6



HYPERUNIFORM VORTEX PATTERNS AT THE SURFACE ...

PHYSICAL REVIEW RESEARCH 1, 033057 (2019)

TABLE I. Analytical predictions for the type of hyperuniformity
for different three-dimensional vortex-line phases at constant-z cross
sections in the thermodynamic limit.

Phases Hyperuniformity

Yes: class [l = 1
Yes: class [l = 1

Liquid without disorder
Liquid with weak uncorrelated disorder

Liquid with correlated disorder by CDs No
Abrikosov crystal Yes: class Il o = 1
Bragg glass Marginal: « =0
Bose glass No

Mott glass Yes: unknown class

gA > 1, interactions are logarithmic and

(@) =2 2 12 (35)
— Den o
c11q qu %

in Eq. (33), so the system at equilibrium is class-I hyperuni-
form with o = 2,

S(q) = ¢ (36)

for log(1/x) interactions. Recent simulations with this type
of interaction show that the value o = 2 is robust under the
presence of quenched uncorrelated disorder [5].

For larger length scales, gA > 1, the interaction becomes
Coulomb-like and

2 [ B \?
cri(q) = 260A—(—> 37

Dy
yielding, at equilibrium, a class-II hyperuniform vortex pat-
tern with @ = 1 and thus

S(@) —¢q (38)

for 1/x interactions. Interestingly, this is the constant-z cross-
section behavior predicted for the three-dimensional line ar-
ray. In other words, the effective two-dimensional interaction
at a constant-z cross section, mediated by the short-range
three-dimensional interaction between vortex lines, mimics
Coulomb interactions (as in Wigner crystals). This is analo-
gous to the long-range elasticity of the triple contact line of
a liquid meniscus, the so-called “fringe elasticity of the line
of contact,” reflecting the energetics of deformations of the
liquid-gas interface [20,21]. Although we are assuming clean
systems, since for the two-dimensional elastic lattice in the
presence of weak disorder ¢ is not renormalized [15,22], we
can expect the result « = 1 to hold even in the presence of
weak uncorrelated pinning. This would be the case in the solid
as well as in the liquid two-dimensional vortex structure, as a
result of their similar uniaxial compression properties at small
wave vectors.

7. Summary of analytical predictions

In Table I, we summarize our predictions regarding the
type of hyperuniformity of different vortex phases at constant-
z cross sections of a three-dimensional superconductor (disre-
garding the finite-size effects discussed above). Liquid vortex
phases are expected to be class-II hyperuniform for weak

uncorrelated pinning, while correlated disorder destroys hy-
peruniformity. As discussed, a crossover of the liquid with
CD correlated disorder toward an apparent class-II hyperuni-
formity at large temperatures or weak disorder is possible.
At low temperatures, only the Abrikosov lattice with ther-
mal fluctuations is class-II hyperuniform. The Bragg glass
phase, expected for weak uncorrelated disorder, is marginally
hyperuniform due to the disorder-induced roughening of the
displacements field, while the Bose glass phase is not hype-
runiform due to the enhanced correlations along the z axis.
The putative Mott glass phase is expected to be hyperuniform
due to the divergence of both the tilt and the compression
modulii. To the best of our knowledge, the way ¢&;; diverges
with ¢ has not been reported for the Mott glass, and hence
we cannot guess its hyperuniformity class yet. All these
predictions assume three-dimensional vortex line phases and
nondispersive elastic constants in the low-g limit and neglect
finite-size effects.

C. Numerical simulations

The hydrodynamic predictions presented in the previous
sections are based on a coarse-grained continuous model and
the assumption of thermal equilibrium. In order to test these
analytical predictions and to match two different levels of
description of the problem, we have performed molecular
dynamic simulations of a simple microscopic model. This
helps us to understand finite-size and discretization effects
in the z direction, as well as the effect of the particular
shape of the vortex-vortex interaction potential, without re-
lying on the approximated elastic modulii of the continuum
description.

We model vortices as elastic lines discretized in the z
direction, such that r;(z) = (x;(z), yi(z)) describe their two-
dimensional coordinates at the layer z, withz =0, ..., N, —
1, and N, the total number of layers. Periodic boundary
conditions are considered in all directions. The total energy of
the elastic lines array is E[{r;(z)}] = E| + Eiy such that each
line has an elastic tension energy given by Hooke coupling
with strength %,

N,

=2

i=1 z

1

Iri(z + 1) — 1i(2)I? (39)

Il
(=}
NI»

and the repulsive interaction energy between vortex lines is
modeled as

Fum Y Y

(|rJ(Z) rz(Z)|) (40)
i#j z=0 “b
with Ky(x) being the zero-order modified Bessel function of
the second kind. Equation (40) is derived from the London
model, while Eq. (39) with k « €y is a harmonic local ap-
proximation for the single-vortex elastic tension. In layered
superconductors such as the one experimentally studied here,
the elastic tension energy arises from the attractive elec-
tromagnetic and Josephson couplings between pancakes of
different superconducting layers. We consider an overdamped
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log S(q)

log S(q)

FIG. 2. Typical structure factors for a liquid and a solid at
equilibrium at finite 7 for an ideal clean superconductor, as obtained
from molecular dynamics simulations of an elastic-line array with
short-ranged elasticity and repulsive short-ranged interactions. Axial
symmetry in both phases is observed in the large-wavelength (low-g)
limit.

Langevin dynamics at a temperature 7

OF
nori(z) = T +&(ri(z), 1), 41
r;i(z)

(E(r;, E(X), 1) = 2nkpT 8;;8(t — 1), (42)

where 71 is the Bardeen-Stephen friction. At long enough
times, this system equilibrates in the canonical ensemble at
temperature 7. In order to approach experimental conditions,
we have simulated a range of a; close to the typically accessed
in magnetic decorations.

Figure 2 shows typical two-dimensional structure factors
S(q) averaged over the N, layers. The liquid and solid without
disorder in thermal equilibrium both have an isotropic struc-
ture factor at low wave vectors, although at large wave vectors
the solid displays the peaks corresponding to the triangular
Abrikosov lattice. This isotropy at low ¢ is consistent with
the hydrodynamic assumption made in Sec. II B considering
axially symmetric elastic constants. Thus, for the g-range
we work with the angular average of the structure factor,
S(q) = @r)~' [T dWS(gcos(W), gsin(W)), with W being
the azimuthal angle, in order to examine large length-scale
density fluctuations.

The inserts of Fig. 3 show S(gq) for a line liquid above
the melting temperature and for an ordered line solid, both
at equilibrium and without disorder. The figure shows re-
sults for different lattice spacings ag/Aq = 1, 3,4, where
A :Na(z)ﬁ/Z is the area of the computational box, and
different number of layers N, = 16, 36, 50 in the z direction.

S(q)
100 N. af)/)‘ub
Il 6 e« 1
Il 6 * 3
07" 50 A 4
/,‘
&
2 g L1027 -
L e P i
— q An.h /, 5: p
= lean liquid -~ LEET
>~ . [ clean liqui , L
0 10t} e £
=== ~q/grs
10()_‘ ™ P e N(Q/(IFS)Z
(b) C e M 20/ Aab
10-‘1 i Il 6 o |1
" 4100 B 36 * 3
5
= 10° 1102 L
~ :"_.4 JRe
& 2 1<'| o 1(f° 1fl -~
\10 L 10 ) 0 e
q/\n.h /’ -
= ’ : . :
ot Abrikosov lattice .7 ;
10 4 0
2 c 3
4
’ —-= ~q/qrs
=
100 i == milg/ags)

10° 101 102
q/qrs

FIG. 3. Normalized two-dimensional structure factor obtained
from molecular dynamics simulations of a three-dimensional elastic-
line array in the ideal clean case, for various lattice spacings ag
and number of layers N,. We use a finite-size crossover scale grs
ap/N, and a normalization S(grs) «x Taj/N,. (a) Liquid phase at
equilibrium and (b) solid Abrikosov phase. Both phases display the
same finite-size crossover at grs. For ¢ < grg, the system effectively
becomes a nonhyperuniform two-dimensional system, while for g >
qrs it shows a fair S(g) ~ ¢ hyperuniform behavior at low g. Upward
corrections at large wave vectors, g, = 1, can be explained by
the dispersivity of the compression modulus emerging from the
particular interaction potential. Lines are a guide to the eye for
S(q) ~ g% with « = 2 (dashed line) and o = 1 (dash-dotted line).
The insert shows non-normalized data.

There are clear finite-size effects, i.e., N, dependence, in the
z direction, and they are amplified when a( increases. We
find that these size effects can be quantified by appropri-
ately normalizing the inset curves into a master curve: We
consider a characteristic finite-size crossover scale gpg such
that S(q)/S(grs) ~ G(q/qrs), with G(x) ~ 1 forx < 1anda
unique G(x) for x > 1. For the range of ay analyzed, we find
a good collapse in the low-g region using the crossover wave
vector grs = ap/N; and S(grs) & Taj/L, both for the liquid
and solid phases. Therefore, the saturation of S(g) for g < grs
is actually a finite-size effect, and it should disappear in the
thermodynamic N, — oo limit. The dependence of grs with
N, o L confirms the size effects predicted in Sec. II B 5. In
addition, the shape of the master curve for g > grg, G(x) ~ x,
confirms an « =~ 1 typical of class-II hyperuniformity [see
Eq. (13)].
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The evolution of gps with ag is less universal than the
dependence with NV, since it relies on the precise functionality
of the elastic modulii c44 and c; that depend on the type of
intervortex interaction and the field regime explored in the
simulations. However, if we use the rigid vortex compres-
sion modulus of Eq. (34), c11(q, ¢; = 0) o< B?/(1 + ¢*22,),
the single-vortex tilt modulus c44 o< €y ~ Bzag (a constant in
this particular model), and approximate Eq. (30) as gps &
caa/c11(0,0)/L, we get grs < ap/L. Also, from Eq. (33)
we get S(qgrs) ~ nokpT /c11L Ta%/Nz. Both results are in
agreement with the outcome of simulations shown in Fig. 3
confirming that the c;; for rigid vortices is adequate for
describing the S(g) saturation for ¢ < grs.

For g > grs, the master curve presents deviations from
S(q) ~ g for g > qps, crossing over to a more rapid in-
crease of S(g) with g. This behavior can be also qualita-
tively explained in terms of the hydrodynamic prediction
of Eq. (13) if we consider that S(g) « g/+/casc11(g, 0) ~
gv'1+ kiqu ~q(l+ qzkib/Z + - -+). Therefore, this micro-
scopic model confirms the existence of finite-size effects and
the class-II hyperuniformity of the liquid and solid vortex-
line phases in ideal clean samples. We also explain the up-
ward deviations from the o = 1 behavior observed at g >
qrs controlled by the dispersive behavior of c;;, emerging
when gA., ~ 1. As discussed later, dispersive effects may
be important for the range of parameters given by the mag-
netic decoration experiments in the layered superconductor
Bi,Sr,CaCu;0s.5. The study presented in this section bridges
the hydrodynamic scale with the molecular dynamics scale,
using a simple elastic-line array model.

II1. DENSITY FLUCTUATIONS:
EXPERIMENTAL RESULTS

In order to test the previous theoretical predictions, we have
performed magnetic decorations in various superconducting
samples, giving us direct access to two-dimensional point
patterns at the top surface. This layer is the particular z = L
cross section where surface interactions may play an impor-
tant role. However, it has been argued that the structure at the
surface is representative of that at the bulk of the sample for
the typical in-plane length scales probed by decorations ~a
[10]. An alternative experimental method to the one described
here would be to study small-angle neutron scattering data,
yielding directly the structure factor. We followed this path,
but the experimental parameters in our measurements were
set to maximize the scattered signal, and we found that in
this case the experimental resolution at low ¢ is not good
enough as to ascertain whether hyperuniformity is present in
the vortex system. Future small-angle neutron experiments
optimizing the experimental configuration as to improve the
resolution for the low g range will certainly shed more light
on this issue.

The choice of the extremely layered Bi,Sr,CaCu,Ogys
system is based on the easiness to obtain freshly cleaved sur-
faces to perform several decoration experiments in the same
crystal and on the availability of samples with different types
of disorder (pinning potentials). We studied vortex lattices
nucleated on a large set of single-crystals with the natural
disorder coming from crystalline defects (pristine samples),

and with additional disorder introduced by irradiation with
electron and heavy ions. Electron-irradiated samples present
a dense pointlike disorder whereas heavy ion-irradiated ones
present a Poisson-like distribution of CD, columns of crys-
tallographic defects aligned along the z direction. Electron
irradiation was performed with 2.3-MeV accelerated electrons
in a van de Graaff accelerator coupled to a closed-cycle
hydrogen liquifier at the Ecole Polytechnique of Palaiseau,
France [23]. This process is performed at low temperatures
(20K) as to guarantee the stability of Frenkel pairs created in
the irradiation process. The data presented here correspond
to a sample irradiated with an electron density of 1.7 X
10" e/cm? [23]. The irradiation of samples with energetic
(=1GeV) heavy ions of Xe and Pb resulted in samples
with CD correlated disorder characterized by the matching
field Bg. The studied samples have a low density of CD:
Bg =30 and 60 G for the Xe-irradiated samples and By =
45 and 100G for the Pb-irradiated ones. The whole set of
studied samples are single crystals with typical dimensions
of 1 x 1 mm? in-plane area and thickness ranging from 300
to 600 pum. The size-effect mentioned in previous sections
comes from the finite thickness of the sample. Details on
the vortex phase diagrams for these samples can be found in
Ref. [24].

We image individual vortex positions in a typical field
of view of thousands of vortices by performing magnetic
decoration experiments at 4.2 K after field cooling at different
applied fields in the range 5 < H < 1500e. Vortices are
decorated with Fe particles attracted by the local field gradient
generated around the vortex cores [25], observed as black
dots in the inverted scanning-electron-microscopy images of
Fig. 4. Further details in the field-cooling decoration protocol
followed in this case can be found in Ref. [25]. For every
studied sample, several (=10) magnetic decoration experi-
ments were performed in freshly cleaved surfaces, eventually
at different applied fields. We studied ~30 pristine, 1 electron-
irradiated, and 10 heavy-ion irradiated single crystals.

Figure 4 show examples of magnetic decoration images at
various applied fields in the three types of studied samples.
Figures 4(a) and 4(b) correspond to snapshots of vortex
positions taken at a field well within the quasicrystalline
Bragg glass phase for pristine and electron-irradiated samples.
For these two types of samples, at fields larger than 15 G,
the vortex structure is single crystalline, presents quasi-long-
range positional order, and has very few topological defects
associated with non-sixfold-coordinated vortices. This is ob-
served in the Delaunay triangulations superimposed to the
pictures with blue lines joining first neighbors. Topological
defects are highlighted with red dots. For both images, only
~2% of vortices are involved in defects, mainly edge dis-
locations. For fields smaller than 15 G, the structure breaks
into small crystallites for pristine [25] as well as electron-
irradiated samples. This polycrystalline structure results from
vortex-vortex interaction weakening and disorder becoming
more relevant on the viscous freezing dynamics [25]. Fur-
ther details on the field evolution of the structural properties
(images, density of defects, S(g), displacement correlator,
and correlation lengths) of the Bragg glass phase in pristine
and electron-irradiated samples can be found in our previous
work [24].
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FIG. 4. Magnetic decoration images of the vortex structure
(black dots) nucleated in Bi,Sr,CaCu,0Os,s samples with different
types of disorder: (a) pristine sample with point pins; (b) electron-
irradiated sample with extra point pins; (c) heavy-ion-irradiated
sample with a low density of columnar defects (B = 30G, Xe-
irradiated). The magnetic induction B controlling vortex density is
indicated in every panel. In all cases, the white bar corresponds to
5 pm. Each decoration image has overimposed Delaunay triangu-
lations joining near-neighbor vortices with blue lines. Non-sixfold-
coordinated vortices are highlighted in red.

The structural properties of the vortex matter nucleated in
samples with CD are qualitatively different than for the case
of point disorder: small misaligned crystallites with less than
20 vortices are observed at densities up to 100 G, see Fig. 4,

and for fields smaller than ~15 G the structure is amorphous.
In the latter case, the density of topological defects can be
as high as 50%, whereas at high fields the amount of non-
sixfold-coordinated vortices is always larger than 40%. The
nucleation of these structures with at best 10 lattice spacing
short-range positional order comes from the strong effect of
pinning introduced by CD that are randomly distributed in
the sample [26]. Nevertheless, the positional correlation of
these vortex structures is not that of a random distribution
of points mimicking the Poisson-like distribution of CD: The
pair correlation function of the vortex structure presents one
very good defined principal peak at r = ap and secondary
weak peaks in some cases.

The decorated structures were frozen, at length scales of
order ay, at temperatures at which the pinning generated by
disorder sets in [27,28]. This freezing temperature is some
Kelvins below the temperature at which magnetic response
becomes irreversible [29]. This length scale is shorter than
the relevant for the hyperuniformity analysis. Because of their
different relaxation rates, density modes corresponding to
length scales larger than ay are expected to freeze at higher
temperatures than the modes with ¢ = 2 /ay. We will further
discuss this issue later.

The images of Fig. 4 are just some examples, but typically
we study panoramic images of the vortex structure with no
less than 1500 and up to 15 000 vortices. We digitalize
vortex positions in these large fields of view and then we
calculate the structure factor S(g) and the number variance
oi. As the field of view becomes larger, the value of ¢ =

«/q)% + q§ decreases, so that we can access to calculate the
two-dimensional structure factor at the top surface. Figure 5
shows the corresponding two-dimensional structure factors
S(qyx, gy) for the examples of vortex structures shown in Fig. 4.
The S(qx, g,) values are angularly averaged as to obtain the
S(q) data shown in Fig. 6. We find that S(g) is independent of
the image resolutions considered in our experimental data and
grid spacings considered for the calculation of S(g).

We would like to point out some important technical
difficulties that are quite specific to the study of the low-g
density modes. On one hand, the borders and shape of our
field of view hinders the study of the structure factor in the
relevant low-g range due to the annoying windowing effect. In
rectangular fields of view, the artifact shows up as an excess
in S(gx, qy) localized in a “+”-shaped region centered at
qx = qy = 0. This artifact, associated to the Fourier transform
of the field of view, is oriented along the principal directions
of the rectangle and has an oscillatory decay on increasing
q. This border effect is avoided in simulations with in-plane
periodic boundary conditions. To get rid of this spurious
effect, for the smallest ¢ we perform a partial average over
the azimuthal angle W values outside the “+”-shaped region,
instead of averaging over all W. This is possible due to the
high angular localization of the artifact. Nevertheless, since
the cross has a finite width, at the end we are forced to
consider a safety minimal wave-vector quin > 27 /Wy, With
Wiov being a characteristic linear size of the field of view.
On the other hand, as we do not have an ensemble of many
magnetically decorated vortex configurations at exactly the
same position of the samples to average over, inevitably, as
the ¢ is lower, the statistical fluctuations in S(g) are bigger.
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FIG. 5. Two-dimensional structure factors S(qgy, ¢,) for the ex-
amples of vortex structures shown in Fig. 4. The intensity is shown
in a logarithmic scale and the color level is the same for the three
images; see color bar at the bottom. The gray crosses indicate the ¢
window affected by spurious effects arising from the field-of-view
edges. Data in these crosses are not considered for the calculation of
the angularly averaged structure factor S(g).

Henceforth, in practice, although our images span distances as
large as Wyoy ~ 50ay, we end up analyzing density fluctuations
with ¢ > quin 2 q0/6 = 1/6(27 /ay).

Typical results for S(g) are shown in Fig. 6 (top panels)
for the pristine [Fig. 6(a)], electron-irradiated [Fig. 6(b)],
and heavy-ion-irradiated [Fig. 6(c)] samples. The dashed and
dash-dotted lines are guides to the eye, showing ¢* and ¢
evolutions, respectively. For the lowest g/qo, the behavior
is consistent with hyperuniformity with « = 1 for the three
samples. Indeed, red lines in the figure shows a fit to the
data yielding o ~ 1. Another way to analyze the density
fluctuations is to study the distance evolution of the vortex-
number variance o,% [defined in Eq. (4)]. To this end, we
considered circular regions with radius R and centers located
at random within the panoramic image of the vortex structure.
We pay attention to the circles not crossing or touching the
edge of the field of view. We make statistics on the number
of vortices contained over a large amount of circles of size R
and the number variance o7 (R) is then computed. Figure 6
(bottom panels) shows the results of the R evolution of 01\2,
corresponding exactly to the structures considered in the top
panels. We observe a rough agreement with S(g), in the
sense that a class II hyperuniform scaling o ~ R/ay fairly
describes the data (see the dash-dotted line). Indeed, the red
lines in Figs. 6(d)-6(f) correspond to functions ~R2O [see
Eq. (4)] with the o, obtained from the fits of the S(g) ~ g%
data of the top panels.

In order to perform a comprehensive study of the oc-
currence of hyperuniformity in vortex matter with differ-
ent types of disorder and for different vortex densities, we
have systematically fitted S(g) ~ g% for all our studied
samples and vortex densities (magnetic field). The effec-
tive power-law exponent o.s is obtained by fitting in the
range q/qo € [1/2, 1/6]. The effective exponents as a func-
tion of field for every type of disorder are shown in the
three panels of Fig. 7, compiling data from over roughly
40 statistically independent cases (see Appendix C for the
experimental error bar estimate). Although S(g) and 01\2,
qualitatively agree, we have found that a systematic fit of
aer using the expected scaling of o2 is empirically more
difficult due to the strong nonasymptotic corrections to the
number variance [2]. As we can observe, ae ~ 1 £0.3 is
rather robust for all the studied cases, independently of the
type of disorder, correlated or uncorrelated, present in the
samples.

IV. DISCUSSION AND PERSPECTIVES

A strict hyperuniformity analysis requires data in an
asymptotic regime which is rather difficult to reach and as-
sure experimentally. Nevertheless, our experimental results
in an extensive data set display a clear suppression of the
amplitude of the density fluctuations with S(g) ~ 10~2 for
the lowest g accessed [to be compared with S(g) = 1 for the
Poisson or ideal gas particle distribution]. Hence, the vortex
structures frozen during the decoration field-cooling proto-
col are nearly hyperuniform two-dimensional point patterns
at the superconductor surface. Furthermore, these structures
display S(g) ~ g*" with aer ~ 1£0.3 in the low-g range
accessed in our experiments. This agrees with the equilibrium
hydrodynamic predictions for the large-scale fluctuations of
the liquid phase with weak uncorrelated disorder, as well as
for the solid and liquid vortex phases in the ideal clean case.
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FIG. 6. Angular average of the structure factor for the magnetically decorated vortex structure at the surface of (a) pristine, (b) electron-
irradiated, and (c) Xe-irradiated (CD correlated disorder) Bi,Sr,CaCu,0Os.s samples. The vortex density in every case is indicated. Data are
shown as a function of g/qy with gy = 2 /a, the Bragg wave vector. The red line is the best power-law fit S(g) ~ g&; for the low wave-vector
range do/6 < ¢/qo < ap/2. Number variance o as a function of R/ay corresponding to the the same samples of the top panel: (d) pristine,
(e) electron-irradiated, and (f) Xe-irradiated samples. The red line shows functions ~R?>~%f with the ay obtained from fitting the S(g) data of
the top panels. The dashed line with slope & = 2 and the dash-dotted line with slope @ = 1 are guides to the eye.

However, this exponent contrasts with the predictions for the
Bragg glass phase (o« = 0) and for the liquid and Bose glass
phases with CD [S(qg) — const as ¢ — 0]. We will argue that
these discrepancies can be explained by considering the un-
avoidable relevance of memory effects during the decoration
field-cooling protocol that affect the observed vortex struc-
tures at different length scales. These nonequilibrium effects
are ignored in the hydrodynamic description of Sec. II. We
will also argue that dispersion effects and finite-size effects
are experimentally relevant for a systematic study of density
fluctuations in vortex matter.

The two-dimensional point pattern obtained at the surface
of the sample after a field-cooling magnetic decoration down
to 4.2 K corresponds to an out-of-equilibrium structure. This
is due to the strong dependence of the relaxation rate of the
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vortex structure with the wavelength of the density modes.
In field-cooling experiments with a fixed cooling rate, large
length-scale density fluctuations have a slower relaxation rate
than small length-scale ones, and then the former fall out of
equilibrium at larger temperatures. This out-of-equilibrium
effect is expected to be enhanced by disorder that dramatically
slows down the thermally activated dynamics. In other words,
a magnetic decoration image of the vortex structure at low
temperatures is not just a snapshot but also a photograph
with memory of its field cooling history. Then, the freezing
temperature of the vortex structure is not a unique magni-
tude but rather depends on the length scale of the density
fluctuations, Tiree; = Tireez(¢)- In a field-cooling experiment,
at T ~ Tiee,(q) the density fluctuations of mode g have a
relaxation rate of the order of the experimental cooling rate.
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FIG. 7. Effective exponents obtained fitting the structure factor as S(g) ~ g* for the magnetically decorated vortex structures in
(a) pristine, (b) electron-irradiated, and (c) heavy-ion irradiated samples as a function of vortex densities B.

033057-12



HYPERUNIFORM VORTEX PATTERNS AT THE SURFACE ...

PHYSICAL REVIEW RESEARCH 1, 033057 (2019)

Namely, at T < Tjee,(g) all modes with wavelength <1/q are
out of equilibrium.

In particular, the local ordering at the scale ap, observed
in samples with weak uncorrelated disorder, indicates that
Tireez(q ~ ag 1) < T, with T, being the melting temperature
of the Bragg glass phase. Density fluctuations associated to
larger wavelengths are then expected to fall out of equilibrium
at much higher temperatures, Tee,(q < @, Y~ T,,. These
slow modes with ¢ — 0 retain memory of the liquid phase.
This can explain our experimental observation of a near
class-II hyperuniform vortex structure in pristine and electron-
irradiated samples (predicted in the equilibrium hydrody-
namic approximation for the liquid phase with weak disorder).
This argument can be further justified in the framework of dis-
ordered elastic systems without topological defects. Indeed,
even a simple elastic string relaxing in a random medium
after a temperature quench displays a logarithmically grow-
ing correlation length [14,30] separating equilibrated from
nonequilibrated length scales. Glassy vortex dynamics thus
prevents the system from reaching the marginal hyperunifor-
mity predicted for the Bragg glass phase at equilibrium. This
argument also explains why it has been in general difficult
to observe the different crossover regimes predicted for the
Bragg glass in magnetic decoration experiments. Indeed, dec-
oration experiments have been so far capable of only revealing
the random manifold but not the random-periodic regime of
lattice roughness in samples with weak uncorrelated disorder
[29,31].

The above out-of-equilibrium qualitative explanation is
more subtle to apply for the samples with CDs correlated
disorder since in this case the line liquid as well as the
Bose glass are expected to be nonhyperuniform at equilibrium
in an hydrodynamic approximation. How is it possible to
obtain aess ~ 1 from the memory of a liquid with correlated
disorder? A possible answer can come from the crossover of
density fluctuations at gcp from a class-II hyperuniform liquid
to a nonhyperuniform liquid on decreasing g. Observing the
equilibrium structure at ¢ — O implies measuring at very
large length scales ~1/gcp that might be hard to access exper-
imentally in finite fields of view. To evaluate this hypothesis,
we need to compute

_ (URHE) [

p —, 43)
Cr1ksTireez(gep) ¥ Cit

qco

where we have wused in Eq. (28) that A; =
(Ugb}/d*)[1 + OB} /d?)] is the disorder correlator strength
for CD with radius by and mean separation d >> by. It is
difficult to make a quantitative assessment of gcp due to the
many microscopic parameters involved. However, correlated
disorder by CD is expected to slow down the dynamics with
respect to the weak disorder case and then to increase e, (q)
for all g. Since gcp X 1/Tieez(gep), then gep can become
too small to be experimentally accessed for our typical fields
of view. Thus, the observed structures effectively display
a class-II hyperuniformity due to the memory of the liquid
phase, with the first term of Eq. (27) dominating for ¢ > gcp
at very high temperatures. A systematic study is desirable
to check this hypothesis, for instance, comparing different
densities of CD. In particular, increasing A; will produce an

enhancement of gcp, and then the predicted saturation of S(q)
due to the dominance of the correlated disorder term might be
observable in the same field of view.

Another effect that we have so far not considered in the dis-
cussion is the anisotropy-enhanced dispersivity of the elastic
constants for the lowest wave-vectors accessed in our fields-
of-view. This is particularly important in layered materials as
Bi,Sr,CaCu;0s. 5 since dispersivity can induce, as discussed,
a crossover from class-II hyperuniformity to a different be-
havior on increasing g. Since we access scales g - Ay <K 1,
in-plane dispersivity is not important. However, dispersion in
the z-direction is important when g - A, = I'g - A4 ~ 1. The
anisotropy parameter of our samples is I' &~ 170, and then the
condition g - A, ~ 1 can easily be reached in our experimental
fields-of-view since A¢(Tieer) = I'Aap(Thieez) =~ 70 wm. For an
anisotropic superconductor the compression modulus is [11]

_B 1+22(4* +42)
Cdm (1422,(4% + ¢2)) (1 + 2262 + 22,4%)
(44)

c11(q, q2)

while the tilt modulus reads

B2

1
ci(q, q;) = |:

=—|lTTa 3|t 45
41 1+)»%6]2+k5qu2] 14(qz) (45)

with ¢),(g;) the isolated-vortex contribution. This last term,
important at low fields, is dispersive in g, for small wave-
length fluctuations only, such that g,A,, ~ 1. This dispersiv-
ity is due to the electromagnetic coupling between pancake
vortices [14]. For the long wave-length fluctuations we are
interested in, we can take the constant non-dispersive limit for
the isolated vortex contribution,

2 2
o 2 <@> (46)
4 Aab

If we assume L — oo and integrate Eq. (12) over g, using
the expressions of Eqs. (44) and (45), we obtain the two-
dimensional structure factor S(g) including dispersion effects.
The result for our Bi;Sr,CaCu;0s,4s samples is shown in
Fig. 8, for different vortex densities in the case of an infinite
sample, see top panel.

The bottom panel of Fig. 8 shows S(g) for different sample
thicknesses at a fix vortex density ag/Aqp(Tfreez) = 2 corre-
sponding to a magnetic induction of ~40 G. We considered
Map(Treez) ~ 0.4 pm at the irreversibility temperature T (B ~
40 G). This is the temperature at which pinning sets in, and the
vortex structure is frozen at length scales of ag [29]. The gray
area indicates the g ;(Tiee, ) range used for fitting o in our
experimental S(q) data.

In the case of an infinite sample, S(g) presents a crossover,
from S(q) ~ q to S(gq) ~ ¢* at larger gA. This large-g devi-
ation from the asymptotic hyperuniform class-II behavior for
clean samples is due to the dispersivity in the elastic constants.
The g location of the crossover decreases with increasing
field. In particular, in the limit of high fields, where the iso-
lated vortex contribution ¢/, can be neglected, the crossover
scale tends to A.(Tfee,); see the top panel of Fig. 8. Then, in
order to ascertain whether a structure is hyperuniform, it is
crucial to obtain ass by fitting S(g) data in a g range located
below this dispersivity-induced crossover.
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FIG. 8. Constant-z cross-section structure factor S(g) for the
three-dimensional line liquid without disorder. Top panel: Infinitely
thick sample L/, 3> 1 for various ay/A, corresponding to dif-
ferent applied magnetic fields. At high fields, corresponding to the
smallest agA,, values, a crossover from the type Il hyperuniform scal-
ing S(q) ~ g to S(q) ~ ¢* is observed at gi. ~ 1 (dotted lines are a
guide to the eye for the two regimes). At low fields, the crossover
shows up at larger g. The largest value of ag/A,, = 2 (black curve)
roughly corresponds to the typical field of 40 G applied in magnetic
decorations for Bi,Sr,CaCu,Og, 5 With Agp(Tiee,) = 0.4 wm. Bottom
panel: Finite-thickness effect in the structure factor S(g) for various
L /A, ratios at a fixed field such that ay/A,, = 2. This effect produces
the saturation of S(g) in a region of small g whose extension depends
on L/X,. The case of L/A, = 1000 (black points) corresponds to
a Bi,Sr,CaCu, 0345 sample with a thickness of 400 um, a typical
value in real samples. The gray shaded area corresponds to the
gAqp range accessed experimentally for our typical field of view in
decorations (obtained considered again A (7jree,) = 0.4 wm). Finite-
size effects in S(g) are not dominant for the experimental window
accessed in our experiments in Bi,Sr,CaCu,0Og,s. However, disper-
sivity effects do play a role in our experimental window.

In addition, this fit cannot be performed in the low-g limit
where finite-size effects due to the finite sample thickness L
destroy hyperuniformity. The bottom panel of Fig. 8 shows

that this finite-size effect, observed as a saturation of S(g) at
low g values, extends over a larger g range on decreasing L.
This was already discussed in Sec. II B 5, though with neglect-
ing the dispersivity and strong anisotropy of the elastic con-
stants for vortex matter in Bi;Sr,CaCu,Og. 5. The figure high-
lights a black curve corresponding to the prediction for our
approximate experimental situation, namely vortex density
~40G and L ~ 400 um. In our experiments, the saturation
associated to the finite-size effect is well below the g range
taken into account in the o, fits (gray shaded area). There-
fore, our hyperuniformity study in vortex matter from mag-
netic decoration images is not affected by this finite-size ef-
fect. However, for our experimental length scales, the satura-
tion should be clearly visible for samples with L/A 4 (Tireez) =
10, namely for L ~ 4 um. This is a rather thin sample to
be obtained just by cleaving a thicker crystal. Magnetic dec-
oration data in 1-um-thick Bi,;Sr,CaCu,0g,s micron-sized
samples are available, but the field of view is of only a few
hundred of vortices, making it difficult to perform a careful
hyperuniformity analysis of such vortex nanocrystals [29,32].

Going back to the relevance of dispersivity effects for our
hyperuniformity analysis, the departure from the S(g) ~ g
behavior for our typical experimental situation (see the black
curve in Fig. 8) starts at the upper half of our experimen-
tal fitting window. Therefore, although the easily cleavable
Bi,;Sr,CaCu;,0g.45 system makes the experimental realization
of this magnetic decoration study possible, the hyperunifor-
mity analysis is muddied by the dispersivity effects inherent
to its extremely layered nature. Then the o.g values obtained
in our study might be slightly overestimated due to this effect.

In order to study up to what point our obtained g values
are overestimated due to out-of-equilibrium and/or dispersiv-
ity effects, further experiments should be performed. First,
out-of-equilibrium effects could be quantified by altering the
field-cooling process, either by significantly slowing down the
cooling rate or by adding an in-plane dithering field, allowing
the vortex system to more efficiently relax toward the free
energy minimum [33]. Second, dispersivity effects can be
reduced by choosing a less anisotropic host superconducting
material. In a more general perspective, complementary ex-
perimental studies of vortex density fluctuations by applying
other different techniques, such as neutron scattering, would
be of great interest. From the theoretical point of view, extend-
ing the hydrodynamic theory to the realistic nonequilibrium
situation of field-cooling experiments, as well as performing
nonequilibrium simulations under the same conditions, would
be very insightful.

In summary, we have shown that a directed
three-dimensional elastic line array with short-ranged
interactions in all directions can generate, at equilibrium,
a two-dimensional hyperuniform point pattern at their cross
sections. Strikingly, this means that, at thermal equilibrium,
every constant-z cross section becomes incompressible
in the limit ¢ — O in response to a weak external field
applied only in such cross section, while the response of the
three-dimensional system to an external field applied exerting
a uniform pressure in all layers is finite; i.e., it is compressible
in the ¢ — O limit. This can be understood considering
the fluctuation-dissipation theorem that implies that the
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considered responses are proportional to the vanishing
S(g) and the nonvanishing S3?(g, g. = 0) respectively (see
Appendix B). This interesting behavior can be explained
by the three-dimensional bulk energetics involved in the
compression of a single layer and ultimately in the continuity
of lines.

We have shown that disorder can play an important role in
modifying such hyperuniform behavior in several interesting
ways. In order to test the above physical picture, we have
chosen the case-study system of vortex structures in type-
II superconductors, a paradigmatic experimental realization
of the three-dimensional elastic line array. We have studied
this issue both theoretically via analytic calculations and
numerical simulations and experimentally in the anisotropic
vortex matter nucleated in Bi,Sr;CaCu,0Og,s samples with
correlated and uncorrelated disorder. By magnetically deco-
rating the frozen two-dimensional vortex point pattern at the
top surface of different superconducting samples, we find a
systematic suppression of vortex-density fluctuations at long
wavelengths. We have argued that this is roughly consistent
with the phenomenological hydrodynamic predictions if we
assume that the density modes of the observed configurations
keep memory of the liquid state at the largest length scales
probed by the structure factor. We have also discussed the
effect of nonasymptotic behaviors, such as the ones arising
from the dispersivity of elastic constants and non equilibrium
effects, and finite-size effects.

The spontaneously formed hyperuniform magnetic pat-
terns we find may be, for instance, used to affect the properties
of a second system which mainly couples to the surface
of the superconductor. This kind of surface interactions is
indeed possible, and the Fe clumps resulting from magnetic
decoration is just probably the simplest example of a system
affected by such a two-dimensional magnetic pattern. One
could imagine a different second system, for instance, a film
with particular physical properties (optical, mechanical, mag-
netic, or electrical) on top of the superconductor and affected
by the presence of the hyperuniform magnetic pattern. This
magnetic substrate may also affect transport properties of a
second system. If the second system is another superconduct-
ing system with vortices and an applied current, an enhanced
pinning effect, analogous to the one described in Ref. [5],
could be envisaged. Proposing concrete applications of our
results is highly speculative at this point and out of the scope
of our paper.

On the other hand, the kind of study we have done may
offer a different viewpoint for analyzing vortex phases and
their transitions, and also to characterizing the somewhat
unavoidable nonequilibrium relaxation effects in disordered
systems. This includes not only static vortex phases as the
ones we have analyzed in this work, but also dynamical vortex
phases such as current-driven lattices [4,15,34-37], where
genuine nonequilibrium stationary effects may add interesting
extra ingredients to the density fluctuations. In all cases, it
would be interesting to analyze whether new hyperuniform
patterns emerge, either at the level of the whole system or in
a subsystem (as the constant-z cross section we study here),
and to check if they share some of the interesting response
properties discussed in Ref. [2] for general hyperuniform
states of matter.
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APPENDIX A: STRUCTURE FACTORS

Here, we demonstrate the validity of Eq. (11), relating
the three-dimensional structure factor S3(q, ¢.) to the two-
dimensional structure factor of a single-layer S(q), and make
explicit their relation with different susceptibilities at equilib-
rium. Let us consider a layered medium of linear sizes L,,
Ly, L. = N,s containing N, vortices, with layer spacing s in
the z direction. The vortex density n(r, z) is considered a
continuous function of r = (x, y) and a discrete function of
z, such that r = (x,y) with 0 <x <Ly and 0 <y < L,, and
7=z, =ms,withm=0,...,N, — 1.

The two-dimensional structure factor of a single layer at a
given z can be written as

S(q,2) = i(ln(q,Z)lzh (AD)
no
where (---) denotes ensemble average, ny = A?/N, is the
average areal density, and n(q, z) is the Fourier transform of
the vortex density in the x and y coordinates,

/ dxe % n(x, 7).

n(q,z) = (A2)

L,L,
The discrete transform over the z coordinate yields

1 o
NI > / dxe X2y (x 7). (A3)
ety

When N, > 1, every layer in the bulk is expected to be
statistically equivalent, so we can write

n(q, q;) =

1 &
S(@,2) ~ - D 5(@ ) = S(@). (A4)
< p=1

Then, using Eq. (A1) we get
1 1
St@) = - ;un(q, D) = N Zm(q, n*(q, 2).

(A5)

Writing n(q, z) in terms of its inverse discrete Fourier trans-
form in the z variable, we can write

1 1 o
S@ = — Y (14, g)n"(Q, ¢)) o~ Y T
no Nz -

q:.4;

I :
= —(n(d, 4" Q. 4.
q:+4; o

1
=Y —(n@ g =) $¥@Qq)  (A6)
o
qz qz
In the continuum limit, we have the general relation
S(q) / dq.5*(q, q.) (A7)

mentioned in Eq. (11) in the main text.
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Marchetti and Nelson [10] have shown that border ef-
fects and physical surface interactions are not relevant for
the typical experimentally accessible range of g in magnetic
decorations, i.e., S(¢q,z = 0) ~ S(q). Therefore, decoration
patterns are expected to be representative of the behavior in
the bulk layers, with 0 < z < L,.

APPENDIX B: LINEAR RESPONSE

Let us consider a weak periodically modulated external
field ¢ (r, z) coupled to the density,

¢(r,z) = 5¢(q, g-) exp(—ilq.r +¢q:z]),  (BI)

L.L,N,

such that 6¢(q, g;) is small compared to kgT. The total
potential energy is then

1
¢ = Z/xydw’(r’ n(r,z) = LxLyNZSd)(q, g:)n(q, qz).

(B2)

This external field will induce a modulation of the local
density n(r, z). In the linear response regime, the equilibrium
fluctuation-dissipation theorem states that the local suscep-

tibility x(q, ¢;) = (n(q, g;))/3¢(q, q.) is proportional to the
spontaneous density fluctuations [38]

0 34
——S .4, B3
KT (g, g;) (B3)

x4, q:) =
with $%(q, ¢;) = (n(q, g:)n(—q, —q.))/ny being the three-
dimensional structure factor defined in Eq. (8).
If the external field is uniform in the z direction (but
oscillatory in the plane), the susceptibility

n

X4 q:=0) =~ °Ts3"<q, 4. =0) (B4)
B

measures, in the ¢ — 0 limit, the compressibility of the
vortex lattice to an isotropic pressure from the sides, in the
x-y direction. This quantity is analogous to the isothermal
compressibility 7 of fluids under hydrostatic pressure.

If instead of a uniform external field we apply the external
field only in a given z = 7o layer, ¢(r, z) = ¢(r)d, . If this
layer is statistically equivalent to any other layer, the corre-
sponding response x(q, zo) equals the superposition of all z
sum x (q, g;) over all g,

X@20) =Y x(q.4:) = —];—(;Sm). (BS)
9z

In the ¢ — O limit, this response function measures the
compressibility of a single representative layer to a localized
isotropic pressure in the x-y plane. This quantity is thus
analogous to the effective two-dimensional isothermal com-
pressibility k7 of the z = zp subsystem.

APPENDIX C: ERROR ESTIMATE FOR «.;:

As described in the main text, by fitting the experimental
data in a range [Guin, guax] With the model S(g) ~ ¢* we
obtain by a least squares procedure the aers shown in Fig. 7.
In order to estimate the error bar, Awess, we consider different
sources of uncertainty by using the simple ad hoc formula

AQess = /0F + (Othigh — ctiow)?/4 + 0, + Ghzigha (ChH
where the following are true:

@) aﬁzt is the least squares error of « in a fit of S(g) ~ Ag”*
in the range [Qmins Qmax]~

(ii) By defining gy = (Gnax + Gnin)/2, Ulow and atpigy are
the values of « fitted in the ranges [gmin, ga] and [gar, Gmax],
respectively, while o2, and thigh are their corresponding least
squares errors.

In this way, we incorporate, in a conservative way, uncer-
tainties associated to the fitting range extent [Gmin, ¢maxl, as
well as those given by the least squares fits in the whole range.
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