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Recently, it was realized that anomalies can be completely classified by topological orders, symmetry
protected topological orders, and symmetry enriched topological orders in one higher dimension. The anomalies
that people used to study are invertible anomalies that correspond to invertible topological orders and/or
symmetry protected topological orders in one higher dimension. In this paper, we introduce a notion of
noninvertible anomaly, which describes the boundary of generic topological order. It is characterized by two
features. First, a theory with noninvertible anomaly has a multicomponent partition function. Second, under
the mapping class group transformation of space-time, the vector of partition functions transform covariantly.
In fact, the anomalous partition functions transform in the same way as the degenerate ground states of the
corresponding topological order in one higher dimension. This general theory of noninvertible anomaly may
have wide applications. As an example, we show that the irreducible gapless boundary of 2+1D double-semion
topological order must have central charge c = c > 25

28 .
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I. INTRODUCTION

A classical field theory described by an action may have
a gauge symmetry if the action is gauge invariant. The
corresponding theory is called a classical gauge theory. A
gauge anomaly is an obstruction to quantize the classical
gauge theory, since the path integral measure may not be
gauge invariant [1,2]. Similarly, a classical action may have
a diffeomorphism invariance. Then a gravitational anomaly is
an obstruction to have a diffeomorphic invariant path integral
[3]. So the standard point of view of anomaly corresponds to
the obstruction to go from classical theory to quantum theory.
This kind of gauge anomaly and gravitational anomaly are
always invertible, i.e., can be canceled by another anoma-
lous theory. The examples include 1+1D U(1)-gauged chiral
fermion theory

S =
∫

dx dt ψ†(∂t + i At − ∂x − i Ax )ψ, (1)

which has both perturbative U(1) gauge anomaly and pertur-
bative gravitational anomaly. We like to remark that anomaly
defined as such is not a property of physical systems, but a
property of a formalism trying to convert a classical theory to
a quantum theory.

There is another invertible anomaly—’t Hooft anomaly,
that can be defined within a quantum system with a global
symmetry, and is a property of physical systems. It is not an
obstruction to go from classical theory to quantum theory, but
rather an obstruction to gauge a global symmetry within a
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quantum system [4]. It is quite amazing that the obstruction to
quantize a classical gauge theory (gauge anomaly) is closely
related to the obstruction to gauge a global symmetry within
a quantum system.

Motivated by some early results [5,6], in recent years, we
started to have a new understanding of anomaly as a physical
property of quantum systems [7–9], rather than an obstruction
to quantize a classical theory: (1) gravitational anomaly in a
theory directly corresponds to topological order [10,11] in one
higher dimension; (2) ’t Hooft anomaly for global symmetry
G in a theory directly corresponds to symmetry protected
topological (SPT) order [12–14] with on-site symmetry G in
one higher dimension, and (3) such an anomalous theory is
realized as a boundary theory of the corresponding topological
order and/or SPT order [see Fig. 1(b)].

So an anomaly is nothing but a topological order and/or
a SPT order in one higher dimension, and the anomalies can
be classified via the classification of topological orders and
SPT orders in one higher dimension [7,15]. The boundary of
topological order realizes all possible gravitational anomaly,
and the boundary of SPT order realizes all possible ’t Hooft
anomaly and mixed gravity/’t Hooft anomaly. The boundary
of symmetry enriched topological order will corresponds to
new types of gravitational anomaly with symmetry. This point
of view of anomaly plus Atiyah formulation of topological
quantum field theory [16] allow us to develop a general theory
of anomaly [7–9].

The anomaly from this new point of view is not the same
as the previously defined anomaly before 2013, and is more
general. This is because the previously defined anomalies are
always invertible (i.e., can be canceled by another anomaly).
Those anomalies are classified by invertible topological orders
and/or SPT orders in one higher dimension, and are realized
by the boundary of the invertible topological orders and/or
the SPT orders. We know that generic topological orders are
usually not invertible [8,17]. Hence, the anomalies realized

2643-1564/2019/1(3)/033054(20) 033054-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.033054&domain=pdf&date_stamp=2019-10-29
https://doi.org/10.1103/PhysRevResearch.1.033054
https://creativecommons.org/licenses/by/4.0/


WENJIE JI AND XIAO-GANG WEN PHYSICAL REVIEW RESEARCH 1, 033054 (2019)

x
(b)

t
y

boundaryspace

(a)
x

t
y

S1 S1

FIG. 1. (a) A particular time t evolution produces a particular
ground state in the degenerate ground-state subspace on the space
S1 × S1. (b) A particular extension of a space-time S1 × S1 as the
boundary of a bulk D2 × S1 produces a particular anomalous parti-
tion function in the vector space of partition functions on space-time
S1 × S1 (i.e., the boundary).

by the boundary of generic topological orders are usually
noninvertible (i.e., cannot be canceled by any other anomaly).
Those noninvertible topological orders will give rise to a
new kind of gravitational anomalies on the boundary, which
will be called noninvertible anomaly. For example, the chiral
conformal field theory (CFT) on the boundary of a generic
Chern-Simons theory is an example of noninvertible anomaly
[18].

We like to mention that, in addition to the above general
point of view proposed in Refs. [7–9] that include non-
invertible anomalies, Refs. [19,20] also proposed a similar
general point of view based mathematical category theory and
cobordism theory. In particular, those general points of view
suggest that the partition function becomes a vector in a vector
space for a theory with noninvertible anomaly, as suggested in
Refs. [16,21]. In fact, the vector space that contains partition
functions of an anomalous theory can be identified with the
degenerate ground-state subspace [10,11] [see Fig. 1(a)] of the
topological order in one higher dimension that characterizes
the anomaly. This is because if we regard a space direction
as time direction, the space manifold can be viewed as a
boundary of space-time, and the ground degenerate subspace
becomes the vector space of partition functions (see Fig. 1)
[8,22].

In this paper, we will study some simplest noninvertible
anomalies—bosonic global gravitational anomalies in 1+1D
which correspond to a 2+1D bosonic topological order. We
will first give a general discussion, in particular the physical
meaning of “multicomponent partition functions as a vector in
a vector space.” Then we will discuss some examples of 1+1D
bosonic theories with noninvertible gravitational anomalies
that correspond to (1) 2+1D bosonic Z2 topological order
[23,24] (i.e., the topological order described by the Z2-gauge
theory). (2) 2+1D bosonic double-semion (DS) topological
order [25,26]. (3) 2+1D bosonic semion topological order
(i.e., ν = 1/2 quantum Hall state) [27]. (4) 2+1D bosonic
Fibonacci topological order [25,26].

We will also discuss an application of invertible and non-
invertible anomalies. There is a general belief that a gapless
CFT has a partition function that is invariant under mapping-
class-group (MCG) transformations of the space-time (the
modular transformations for two-dimensional space-time),
provided that the CFT can be put on a lattice. Being able
to put a CFT on a lattice is nothing but the anomaly-free
condition. This suggests that the MCG invariance of the

partition function corresponds to the anomaly-free condition.
So an anomalous CFT will have a partition function which is
not MCG invariant, but MCG covariant.1 Since the anomaly
corresponds to a topological order in one higher dimension
that is described by a higher category, the change of anoma-
lous partition function can be described by the data of this
higher category. In this paper, we will derive one such result.

Consider a CFT in d-dimensional closed space-time Md ,
whose gravitational anomaly is described a (d + 1)D topo-
logical order. The (d + 1)D topological order has N-fold
degenerate ground states on Md . Let GMd be the MCG for
Md . Under a MCG transformation g ∈ GMd , the degenerate
ground states transform according to a projective represen-
tation Rtop(g) of GMd [8,11,28,29]. Such a projective repre-
sentation Rtop(g) is the data that characterize the (d + 1)D
topological order (and hence the anomaly). It was conjectured
[11] that such data fully characterizes the topological order.
From the correspondence described in Fig. 1, we find that a
CFT with gravitational anomaly in d-dimensional space-time
has several partition functions Z (gμν, i), i = 1, . . . , dim(Rtop),
which transform as

Z (g · gμν, i) = Rtop
i j (g)Z (gμν, j), (2)

where gμν is the metrics on the d-dimensional space-time Md ,
which describes the shape of Md , and g · gμν is the MCG
action on gμν .

When d = 2 [Eq. (2)], becomes Eq. (24), which we will
explain in detail. We like to remark that, in some dimensions
(for examples, when d = 2 or when there is no perturbative
gravitational anomaly), Rtop(g) can be a representation of
MCG GMd [8]. In particular, in Eq. (24), the partition func-
tions transform as a representation of MCG SL(2,Z).

For an anomaly-free CFT, the corresponding (d + 1)D
topological order is trivial and Rtop = 1 are 1-by-1 matrices.
In the case, the above becomes the usual MCG invariant
condition on the partition function:

Z (g · gμν ) = Z (gμν ). (3)

It is likely that the MCG invariant partition functions on Md

completely classify anomaly-free CFTs. Thus, it is also likely
that the modular covariant partition functions (2) completely
classify anomalous CFTs [i.e., the boundaries of (d + 1)D
topological order described by Rtop(g)].

We would like to point out that Eq. (2) also covers the
cases of gapped boundaries of (d + 1)D topological order.
In this case Z (gμν, i) = Z (i) becomes gμν independent. The
d = 2 case is studied in detail in Refs. [30,31], where Z (i) is
denoted as W 1i and is called fusion matrix or wave function
overlap. Thus Eq. (2) is a unified description for both gapped
and gapless boundaries.

As another application, we point out that anomaly-free
fermionic theories exactly correspond a subset of the bosonic
theories with the noninvertible gravitational anomaly de-
scribed by the bosonic Z2 topological order with emergent

1The partition functions of a fermionic CFT on a d + 1D lattice
are MCG covariant in a special way, so that the sum of the partition
functions are still invariant under the fermionic MCG. For example,
in 1+1D, the fermionic MCG is generated by T 2 and S.
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fermion (i.e., the twisted Z2 gauge theory) in one higher
dimension. Thus we can construct anomaly-free fermionic
theories, such as their partition functions, by constructing
bosonic theories and their partition functions with this par-
ticular noninvertible gravitational anomaly.

The general theory developed here is for both purely chiral
and nonchiral CFT’s on the boundary. A related work [32]
has given a comprehensive theory of purely chiral CFT’s on
the boundary of a 2+1D topological order, based on tensor
category theory. When the boundary is purely chiral, our
theory is just a subset of the full theory developed in Ref. [32].
Both theories provide a unified approach for gapped and
gapless boundaries. Recently, some nonchiral CFT’s on the
boundary of 2+1D topological order were studied in an in-
dependent work [33]. In particular, multicomponent partition
functions on a 1+1D gapless boundary of 2+1D double-Ising
topological order were calculated. A connection between the
modular transformation of boundary partition functions and
the S and T matrices that characterize the modular tensor
category for the 2+1D bulk topological order was noticed.
Our paper generalizes those results and provides a more
systematic discussion.

We also like to remark that, in the presence of symmetry,
there are also several partition functions from the different
symmetry twisting boundary conditions in d-dimensional
space-time [34–36]. Those partition functions with different
boundary conditions also transform covariantly under MCG
transformations. If the anomaly is not invertible, there will be
several partition functions for each twisted boundary condi-
tion. This generalization and its MCG transformations will be
discussed in Ref. [37], for d = 2 case.

II. TOPOLOGICAL INVARIANT AND PROPERTIES
OF BOUNDARY PARTITION FUNCTION

First, let us describe the topological path integral that
can realize various topological orders. The boundaries of
those topological orders realize invertible and noninvertible
anomalous theories. This way, we can relate anomalies with
topological invariants in one higher dimensions.

A. Topological partition function as topological invariant

A very general way to characterize a topologically ordered
phase is via its partition function Z (MD) on closed space-time
MD with all possible topologies. A detailed discussion on how
to define the partition function via tensor network is given in
Ref. [8] and in Appendix C. From this careful definition, we
see that the partition function also depends on the branched
triangulation of the space-time (see Appendix C), as well as
the tensor associated with each simplex. We collectively de-
note the triangulation, the branching structure, and the tensors
as T . Thus the partition function should be more precisely
denoted as ZTN(MD, T ). In a very fine triangulation limit
(i.e., the thermodynamic limit), we believe that the partition
function depends on T via an effective metric tensor gμν

of the space-time manifold, if the tensor network describes
a “liquid” state, as opposed to a foliated state (a nonliquid
state) [38–42]. Thus the partition function can be denoted
as Zfield(MD, gμν ) in the thermodynamic limit. Zfield(MD, gμν )

correspond to the partition function of a field theory where
the different lattice regularizations T are not important as
long as they produce the same equivalent metric gμν . Here,
gμν and g′

μν are regarded as equivalent if they differ by
a diffeomorphim since Zfield(MD, gμν ) = Zfield(MD, g′

μν ). Let
MMD be the space formed by all metrics gμν of MD (up
to diffeomorphic equivalence), which is called the moduli
space of MD. Thus the partition function Zfield(MD, gμν ) is a

complex function on the moduli space MMD
Zfield(MD,−)−−−−−−→ C.

However, ZTN(MD, T ) [or ZTN(MD, gμν )] is not a topo-
logical invariant since it contains a so-called volume term
e− ∫

MD ε dDx where ε is the energy density. The volume term
can be factored out. And we can obtain a topological partition
function Z top

TN (MD) which is believed to be a topological
invariant [8,22]:

ZTN(MD, T ) = e− ∫
MD ε dDxZ top

TN (MD, T ). (4)

Appendix C 4 describes the way to fine-tune the tensors to
make the volume term vanishes (i.e., ε = 0). In this case, the
path integral directly produces the topological partition func-
tion. Such a topological invariant may completely characterize
the topological order.

Let us describe topological invariant, the topologi-
cal partition function of the field theory, Z top

field(MD, gμν )
[i.e., Z top

TN (MD, T )] in more details. The “topological prop-
erty” of Z top

field(MD, gμν ) may appear in two ways [8]. (1)
Z top

field(MD, gμν ) is a local constant function on MMD . In
this case, the topological partition function only depends on

π0(MMD ): π0(MMD )
Zfield(MD,−)−−−−−−→ C. Such a complex function

on π0(MMD ) is a topological invariant, since Z top
field(MD, gμν )

does not depend on any smooth change of gμν . In this case,
the boundary has a global gravitational anomaly.

(2) The reduction from lattice partition function
Z top

TN (MD, T ) to the field theory partition function
Z top

field(MD, gμν ) may have a phase ambiguity. However,
we can define the change of phase for Z top

field(MD, gμν ) as we
go along a segment I in MMD without ambiguity:

phase change = ei 2π
∮

I α = ei 2π
∮

MD×I �, (5)

where α is a 1-form on MMD and � is closed D + 1 form
constructed from the curvature tensor on MD × I . In this
case, the boundary has a perturbative gravitational anomaly.
For example, when D = 3, � = 	c

24 p1, where p1 is the first
Pontryagin class on 4-manifold. Z top

field(M3, gμν ) is given by

Z top
field(M3, gμν ) = ei 2π	c

24

∮
MD ω3 , (6)

where the 3-form ω3 satisfies dω3 = p1 and corresponds to
the gravitational Chern-Simons term. The coefficient 	c is
the chiral central charge of the boundary state. In this case,
Z top

field(M3, gμν ) depends on the smooth change of gμν and is
not a topological invariant in the usual sense.

B. Invertible and noninvertible topological orders

Most topological orders are not invertible under the stack-
ing operation. (Here, by definition, an invertible order [8,17]
can be canceled by another order, i.e., the stacking of the two
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orders gives rise to the trivial order.) The invertible topological
orders form a subset of topological orders. The topological
invariant for invertible topological orders, Z top

TN (MD, T ), is a
pure phase factor: |Z top

TN (MD, T )| = 1 [8,43–45].
The boundaries of invertible topological orders can have

(standard) perturbative gravitational anomalies, which are the
most studied in the literature. The boundaries of noninvertible
topological order can have different gravitational anomalies.
We will call the latter as noninvertible gravitational anomalies,
and call the standard gravitational anomalies as invertible
gravitational anomalies. In this paper, we will concentrate on
the noninvertible anomalies.

To give an example of invertible anomalies, let us consider
a E8 bosonic quantum hall state described by the following K
matrix [46,47]:

KE8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

which has an invertible topological order, since det(KE8 ) = 1.
Its boundary is described by the (E8)1 CFT that has a pertur-
bative gravitational anomaly, due to its nonzero chiral central
charge c = 8. It is a chiral CFT whose partition function has
a single character,

Z (τ ) = χE8 (τ ) = KE8
(q)

η8(q)
, q ≡ e2i πτ (8)

where η(q) = q
1

24
∏∞

n=1(1 − qn) is the Dedekind eta function,
and K is the theta function for a lattice characterized by an
integer symmetric matrix K :

K (q) =
∑

n∈ZdimK

qn�Kn/2, (9)

and KE8 is the E8 root lattice, given by Eq. (7). The first a few
terms in the expansion is

χE8 = q−1/3(1 + 248q + 4124q2 + O(q3)), (10)

where the 248 generators of E8 are counted in the second
term in this single sector. χE8 transforms according to the
one-dimensional representation of the modular group

χE8 (−1/τ ) = χE8 (τ ), χE8 (τ + 1) = e−i 2π
3 χE8 (τ ). (11)

The 1+1D perturbative gravitational anomaly character-
ized by the chiral central charge 	c constrains the boundary
partition function in 1+1D:

lim
q→0

Z (q) = integer × q− c
24 q− c

24 , 	c = c − c. (12)

Thus, knowing the 1+1D boundary partition function, we can
also determine its perturbative gravitational anomaly 	c. In

S1

(b) (c)(a)

FIG. 2. (a) Space-time D2 × S1 (solid cylinder). (b) I × S1 × S1

(cylinder) and D2 × S1 (solid cylinder). (c) Gluing the cylinder
with solid cylinder, along the S1 × S1 = T 2 boundary, reproduces
the space-time D2 × S1. The tensor networks on the solid cylinder
and the cylinder define the path integral. The tensors on the inner
solid cylinder are the bulk tensors that describe a topological path
integral. The tensors on the outer cylinder can be anything, which
may describe a gapless CFT at long distance. Different choices of
boundary tensor network on the outer cylinder give rise to different
types of boundaries.

this paper, we will try to go one step further. We will de-
termine the global gravitational anomaly of 1+1-dimensional
theories from its partition function.

C. Properties of boundary partition function

To concentrate on global anomaly, we will assume that
there is no perturbative anomaly. In this case, the global
anomaly is characterized by the bulk topological invariant
Z top

field(MD, T ), which can be realized by the topological path
integral described in Appendix C 4 [8]. In this paper, we
assume the bulk theory is always described by the topological
path integral, whose partition function directly corresponds to
the topological invariant Z top

field(MD, T ).
To link such a topological invariant (i.e., topological path

integral), Z top
TN (MD, T ) to the partition function on the bound-

ary Bd , d = D − 1, we note that the boundary partition func-
tion is given by [Fig. 2(a)] [8,22]

Z (Bd ; MD, T ) = Z top
TN (MD, T ), Bd = ∂MD. (13)

The boundary is the so-called natural boundary described in
Appendix C 3, but here we sum over the boundary degrees of
freedom. We note that the bulk is gapped. Thus the low-energy
properties of the boundary (below the bulk gap) are described
by the above Z (Bd , TB).

We may obtain a more general boundary by stacking a
d-dimensional system described by a d-dimensional tensor
network, ZTN(Bd , TB), to the boundary [see Fig. 2(b)]. The
resulting boundary partition function has a form

Z (Bd , TB; MD, T ) = ZTN(Bd , TB)Z top
TN (MD, T ) (14)

We may also allow the boundary and bulk degrees of freedom
to interact with each other by gluing the boundary to the
bulk as in Fig. 2(c). We see that the boundary partition
function Z (Bd , TB; MD, T ) is not purely given by a tensor
network on the boundary Bd , which gives rise to a partition
function ZTN(Bd , TB). It may contain a bulk topological term
Z top

TN (MD, T ). The nonvanishing bulk topological term implies
the boundary quantum system defined by Z (Bd , TB; MD, T ) to
be potentially anomalous. If the boundary partition function is
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S1i

FIG. 3. The space-time D2 × S1 with a world line of type-i
topological excitation, wrapping in the S1 direction. The path integral
on the inner solid cylinder is a topological path integral with world
line, as described in Appendix C 5.

given purely by a tensor network ZTN(Bd , TB) on the boundary
[i.e., when Z top

TN (MD, T ) = 1], such a quantum system will be
anomaly-free.

D. 1+1D anomalous theory on space-time torus T 2

In this section, we will concentrate on 1+1D anomalous
theories. To define its partition function on a space-time torus
T 2, we consider a 2+1D tensor network path integral (see
Appendix C) on a simple extension of T 2 – D2 × S1 [see
Fig. 2(c)]

Z (T 2; D2 × S1) = Z top
TN (D2 × S1), ∂D2 = S1. (15)

The tensors on the inner solid cylinder define a topological
path integral described in Appendix C that realizes a topolog-
ical order corresponding to the anomaly under consideration.
The tensors on the outer cylinder [see Fig. 2(b)] can have more
than one choice, representing different kinds of boundaries.

We can define a more general partition function for 1+1D
anomalous theory by extending T 2 to more complicated M3,
T 2 = ∂M3 Ref. [8]. Furthermore, in M3, we can insert a world
line of a topological excitation, and the partition function is
generalized to (see Fig. 3)

Z
(
T 2; D2

i × S1
) = Z top

TN

(
D2

i × S1
)
. (16)

Note that the surface of the inner solid cylinder in Fig. 3
(after integrating out only the bulk degrees of freedom as
in Appendix C 3) corresponds to a wave function, |ψi〉, that
describes one of the degenerate ground states of the bulk
topological order on the torus. If the path integral on the inner
solid cylinder is a topological path integral, |ψi〉 automatically
normalizes to 1: 〈ψi|ψi〉 = 1 (as discussed in Ref. [31]). Thus,
more precisely, the 1+1D partition function for an anomalous
theory is given by

Z (T 2, |ψi〉) = Z top
TN

(
D2

i × S1
)
. (17)

Here the degenerate ground-state wave functions |ψi〉 are
labeled by the type-i of the topological excitations. For
the trivial excitations labeled by 1, Z (T 2, |ψ1〉) correspond
to the partition function for the space-time in Fig. 2(c)
without any world-line insertion.

The dependence on the ground-state wave function |ψi〉
of the topological order on the torus is the key character of
anomalous partition function [8,16]. (1) If |ψi〉 is a product
state, then Z (T 2, |ψi〉) is a partition function of an anomaly-
free theory. (2) If |ψi〉 is unique (i.e., the topological order has
a nondegenerate ground state on the torus), then Z (T 2, |ψi〉) is
a partition function of a theory with invertible anomaly. (3) If

|ψi〉 is not unique (i.e., the topological order has degenerate
ground states on torus), then Z (T 2, |ψi〉) is a partition function
of a theory with noninvertible anomaly.

E. Modular transformations of the partition function
for an anomalous theory

Let us fine tune the action of the 1+1D anomalous theory,
so that it has a vanishing ground-state energy density. In this
case, its partition function on T 2 will not depend on the size
of the space-time, but only depend on the shape of the space-
time. The shape of a torus T 2 can be described by a complex
number τ . Thus we may write the 1+1D partition function as

Z (τ, τ , |ψi〉) = Z top
TN

(
D2

i × S1
)
. (18)

The complex parameters τ and τ ′ = τ + 1 describe the
same shape of a torus, related by a coordinate transformation.
Therefore we expect the partition function of an anomaly-free
1+1D theory to satisfy

Z (τ, τ ) = Z (τ + 1, τ + 1). (19)

On the other hand, for an anomalous 1+1D theory, it satisfies

Z
(
τ, τ , T top

i j |ψ j〉
) = Z (τ + 1, τ + 1, |ψi〉), (20)

since the coordinate transformation acts nontrivially on the
bulk ground-state wave function |ψi〉 on torus. Here the
unitary matrix T top

i j describes such a nontrivial action, which
is a modular transformation of the torus ground states of
the 2+1D bulk topological order [11,28]. Similarly, τ and
τ ′ = −1/τ also describe the same shape after a coordinate
transformation. Thus

Z
(
τ, τ , Stop

i j |ψ j〉
) = Z (−1/τ,−1/τ , |ψi〉), (21)

where the unitary matrix Stop
i j describes another modular

transformation of the ground states on a torus of the bulk
topological order.

The partition function Z (τ, τ , |ψi〉) depends on |ψi〉 in a
linear fashion

Z (τ, τ , Mi j |ψ j〉) = Mi jZ (τ, τ , |ψ j〉). (22)

To see this, note that the path integral that sums over the
degrees of freedom in the bulk and the outer surface of outer
cylinder [see Fig. 2(b)] gives rise to a wave function 〈φ| that
lives on the inner surface of the outer cylinder. The partition
function Z (τ, τ , |ψi〉) is simply

〈φ|ψi〉 = Z (τ, τ , |ψi〉). (23)

Thus Z (τ, τ , |ψi〉) is a linear function of |ψi〉. As a result,
Eqs. (20) and (21) can be rewritten as

T top
i j Z (τ, τ ; j) = Z (τ + 1, τ + 1; i),

Stop
i j Z (τ, τ ; j) = Z (−1/τ,−1/τ ; i), (24)

where Z (τ, τ , i) ≡ Z (τ, τ , |ψi〉). Equation (24) is a key result
of this paper. It describes the modular transformation proper-
ties of the partition functions for an anomalous theory, i.e., a
boundary theory of a 2+1D topological order characterized
by T top and Stop.
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For a gapped anomalous theory, the partition functions do
not depend on τ . Equation (24) becomes

Z (i) = T top
i j Z ( j), Z (i) = Stop

i j Z ( j). (25)

We recover a condition for gapped boundary of a topological
order obtained in Refs. [30,31], where Z (i) was denoted as
W 1i. Note that for the gapped case, the partition functions Z (i)
are ground-state degeneracy of the system with a world line of
the type-i topological excitation inserted in the bulk and are
nonnegative integers.

The above is a general discussion of 1+1D anomalous
theory, which can have a noninvertible anomaly. In particular,
the boundary CFT may have separate right-moving part and
left-moving part, and each part (i.e., the corresponding set of
characters) transforms according to certain SR,L and TR,L ma-
trices. Those boundary SR,L and TR,L matrices may be different
from the Stop and T top matrices for the bulk topological order.
However, after we combine the right movers and left movers
to construct multicomponent partition functions Z (τ, τ ; i), we
find that Z (τ, τ ; i) transform according to the bulk Stop and
T top matrices. In the following, we will discuss some simple
examples of 1+1D noninvertible anomaly.

We like to remark that equation of form Eq. (24) has
appeared before, but in different physical context. For ex-
ample, the characters (the conformal blocks) of a purely
chiral CFT transform according to Eq. (24), which relates the
purely chiral CFT to a modular tensor category since both
as characterized by the S and T matrices. If we include the
defect lines in a CFT, we may also obtain multiple partition
functions labeled by the defect lines [48]. Those partition
functions also transform as Eq. (24). The defect lines asso-
ciated with symmetry twist are always invertible. Reference
[48] also described noninvertible defect lines which is beyond
the symmetry twist. Many multicomponent partition function
discussed in this paper are directly related to the partition
function with those noninvertible defect lines.

The new prospect offered in this paper is the connection
between the boundary CFT and the bulk topological order. In
other words, in this paper, we view Eq. (24) as a constraint
on the boundary theory of a 2+1D topological order, char-
acterized by Stop and T top. This helps us to classify different
possible boundaries of a given 2+1D topological order. The
character point of view, the defect line point of view, and
the topological order point of view for Eq. (24), although
different, have some close relations. In this paper, we give the
CFT characters and the partition functions induced by defect
lines another physical interpretation, by viewing them as
noninvertible anomaly (i.e., as boundary of 2+1D topological
order).

III. A NONINVERTIBLE BOSONIC GLOBAL
GRAVITATIONAL ANOMALY FROM 2+1D Z2

TOPOLOGICAL ORDER

A 2+1D Z2 topological order has four type of excitations,
1, e, m, f , where e, m are bosons and f is a fermion.
e, m, f are topological excitations with π mutual statistics
respect to each other. (Remember that a topological excitation
is defined as the excitation that cannot be created by any
local operators). Such a topological order can have many

different boundaries, which all carry the same noninvertible
gravitational anomaly. In this section, we will discuss some of
those boundary theories [8].

A. Two gapped boundaries of the 2+1D Z2 topological order

A gapped boundary of the 2+1D Z2 topological order
is induced by m particle condensation. This boundary has
only one type of topological excitations e. The topological
excitation e has a Z2 fusion e ⊗ e = 1, and is described by
a symmetric fusion category Rep(Z2) (which is the fusion
category formed by the representations of Z2 group). Such a
boundary described by Rep(Z2) has a nondegenerate ground
state. Its partition function is given by Z (τ, τ , 1) = 1 (where
1 means that there is no insertion of world line, i.e., i = 1 in
Fig. 3).

The insertion of a world line of m-type topological exci-
tations (see Fig. 3) produces another boundary, where e on
the boundary S1 acquires a π phase as it goes around the
boundary. The partition function for such a boundary is still
given by Z (τ, τ , m) = 1.

If we insert a world line of e-type or a f -type, the resulting
boundary will carry an un-paired e excitations. Such an un-
paired e costs a finite energy εe. These boundaries will have
partition functions Z (τ, τ , e) = Z (τ, τ , f ) = #e−εeβ |β→∞ =
0, when the size of space-time β approaches to infinity.

So the first gapped boundary of Z2 topological order is de-
scribed by four partition functions in the basis of topological
excitations (1, e, m, f )

Z (τ, τ , 1) = Z (τ, τ , m) = 1,

Z (τ, τ , e) = Z (τ, τ , f ) = 0. (26)

They can be viewed as the partition function for an anomalous
c = 0 CFT (i.e., a gapped theory). One can check that these
four partition functions in the excitations basis satisfy Eq. (25)
[30,31], since for Z2 topological order, Stop and T top are given
by

T top
Z2

=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

Stop
Z2

= 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠. (27)

Let us obtain another gapped boundary of the 2+1D Z2

topological order, by lowering the energy of e to a negative
value. This will drive a “Z2 symmetry” breaking transition and
obtain an e-condensed state, which have a twofold ground-
state degeneracy on a ring. (If we condensed e particle on
an open segment on the boundary, we will also get a twofold
ground-state degeneracy.) This new boundary is described by
the following four partition functions

Z (τ, τ , 1) = Z (τ, τ , e) = 2,

Z (τ, τ , m) = Z (τ, τ , f ) = 0. (28)

They again satisfy Eq. (24).
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Here Z (τ, τ , 1) = 2 means the Z2 topological order on D2

[i.e., the boundary state on S1, see Fig. 2(c)] has a twofold
degeneracy. This twofold degeneracy comes from the emer-
gent mod-2 conservation of e particles on the boundary, and
subsequently the spontaneous breaking of this emergent Z2

symmetry. However, since the Z2 symmetry is emergent, when
the boundary S1 has a finite density ne of the e particles,
the emergent mod-2 conservation may be explicitly broken
by an amount e−1/neξ where ξ is a length scale. In this case,
the twofold degeneracy is lifted by an amount e−1/neξ . So the
boundary described by Eq. (28) is unstable. After the lifting
of the degeneracy, the boundary is actually described by

Z (τ, τ , 1) = Z (τ, τ , e) = 1,

Z (τ, τ , m) = Z (τ, τ , f ) = 0, (29)

which correspond to the boundary of the 2+1D Z2 topological
order induced by e condensation [while the boundary induced
by m condensation is described by Eq. (26)].

B. A gapless boundary of the 2+1D Z2 topological order

A gapless boundary of the 2+1D Z2 topological order is
given by a 1+1D gapless system described by a Majorana
fermion field

H =
∫

dx (λRi ∂xλR − λLi ∂xλL ). (30)

We like to stress that such a 1+1D gapless system is actually
a bosonic system where the states in the many-body Hilbert
are all bosonic (i.e., contain an even number of Majorana
fermions). We refer such a 1+1D gapless system as the boson-
restricted Majorana fermion theory. It is different from the
usual Majorana fermion theory.

We can give the Majorana fermion a mass gap to obtain a
gapped boundary:

H =
∫

dx (λR i ∂xλR − λL i ∂xλL + i mλRλL ). (31)

This gapped boundary corresponds to the gapped boundary
described above. If we lower m to a negative value, we
should drive the “Z2 symmetry” breaking transition described
above and obtain a twofold ground-state degeneracy on a ring.
This is different from the standard Majorana fermion theory
where the negative m also gives rise to nondegenerate ground
state. So for our boson-restricted Majorana fermion theory, a
positive m gives rise to nondegenerate ground state while a
negative m gives rise to a twofold ground state degeneracy on
a ring. If we only change the sign of m on an open segment,
then both the standard Majorana fermion theory and our
bosonic Majorana fermion theory will give rise to a twofold
ground-state degeneracy.

So when m = 0 the gapless bosonic Majorana fermion
theory describes the critical point of the Z2 symmetry break-
ing phase transition mentioned above. The gapless boson-
restricted Majorana fermion theory describes a conformal
field theory (CFT) with a noninvertible gravitational anomaly.
In this paper, we like to understand this anomalous CFT in
detail. In particular, we would like to compute its partition
function and their properties under modular transformations.

To understand the critical CFT for the “Z2 symmetry”
breaking transition, let us introduce a 1d lattice Hamiltonian
on a ring to describe the gapped boundary in Sec. III A

H = −U
∑

i

σ z
i − J

∑
i

σ x
i σ x

i+1, U, J > 0, (32)

where σ l , l = x, y, z are Pauli matrices. Here an up-spin σ z
i =

1 correspond to an empty site and an down-spin σ z
i = −1

correspond to a site occupied with an e particle. Since number
of the e particles is always even, thus the Hilbert space V of
our model is formed by states with even numbers of down spins
σ z

i = −1. Note that our Hilbert space is nonlocal, i.e., it does
not have a tensor product decomposition:

V �= ⊗iVi, (33)

where Vi is the two dimensional Hilbert space for site i. It
is this property that make our model to have a noninvertible
gravitational anomaly.

We like to mention that, we can view the 2+1D Z2 topo-
logical order as a gauged Z2 symmetric state with a trivial SPT
order. The boundary of the 2+1D Z2 symmetric state can be
described by a transverse Ising model (32) with the standard
Hilbert space (i.e., without the

∏
i σ

z
i = 1 constraint). The

boundary can be in a symmetric phase [described by Eq. (32)
with U � J] or a Z2 symmetry breaking phase [described
by Eq. (32) with U  J]. We see that after gauging the Z2

symmetry to obtain the Z2 topological order in the bulk, the
only change in the boundary theory is the addition of the
constraint

∏
i σ

z
i = 1 [49] that changes the many-body Hilbert

space to make it nonlocal (i.e., make the boundary theory to
have a noninvertible gravitational anomaly).

In our model (32) for the boundary, the J term is allowed
since the e particles have only a mod-2 conservation. In the
U � J limit, the above lattice model describes the gapped
phase in Sec. III A. As we change U to U  J , we will
drive a “Z2 symmetry” breaking phase transition. The critical
point at U = J is described by a CFT with noninvertible
gravitational anomaly. Such a CFT is described by the boson-
restricted Majorana fermion theory mentioned in Sec. III B.
The Majorana fermion theory is obtained from Eq. (32) via
the Jordan-Wigner transformation.

To obtain the partition function of the anomalous CFT, let
us first consider the partition function of the transverse Ising
model (32) at critical point U = J . There are four partition
functions Zax,at for the transverse Ising model, with different
Z2 boundary conditions ax = ±1 and at = ±1. The partition
functions are given by the characters χ1(τ ), χψ (τ ), χσ (τ ), of
two Ising CFTs (see Appendix A 3), one for right movers and
the other for the left movers. We find

Z1,1 = |χ1|2 + |χψ |2 + |χσ |2,
Z1,−1 = |χ1|2 + |χψ |2 − |χσ |2,
Z−1,1 = χ1χψ + χψχ1 + |χμ|2,

Z−1,−1 = −χ1χψ − χψχ1 + |χμ|2. (34)
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This means that the partition functions for the even and odd
Z2 sectors are given by

Zeven = Z1,1 + Z1,−1

2
= |χ1|2 + |χψ |2,

Zodd = Z1,1 − Z1,−1

2
= |χσ |2. (35)

For the anomalous CFT on the boundary of 2+1D Z2 topo-
logical order, its partition function is given by the partition
function of the Ising model for the even Z2 sector

Z (τ, τ , 1) = |χ1|2 + |χψ |2. (36)

If we insert the e world line in the bulk (see Fig. 2), the corre-
sponding partition function Z (τ, τ , e) is given by Zodd(τ, τ ):

Z (τ, τ , e) = |χσ |2. (37)

Similarly, we find

Z (τ, τ , m) = |χμ|2 (38)

and

Z (τ, τ , f ) = χ1χψ + χψχ1. (39)

We find that the above partition functions Z (τ, τ , i), i =
1, e, m, f , indeed satisfy Eq. (24). Those partition functions
describe a 1+1D gapless theory with a noninvertible gravita-
tional anomaly, which can appear as a boundary of the 2+1D
Z2 topological order.

IV. A NONINVERTIBLE BOSONIC GLOBAL
GRAVITATIONAL ANOMALY FROM 2+1D DS

TOPOLOGICAL ORDER

Now let us consider the boundary of the 2+1D DS topo-
logical order. Since the DS topological order can be viewed
as a gauged 2+1D Z2 symmetric state with the nontrivial Z2

SPT order. Let us first review a boundary theory of the 2+1D
Z2 SPT state on a 1d ring with even number of sites, with the
following Hamiltonian [50]:

H = −U
∑

i

σ z
i σ z

i+1 − J
∑

i

(
σ x

i + σ z
i−1σ

x
i σ z

i+1

)
, U, J > 0.

(40)

The above Hamiltonian has a non-on-site Z2 symmetry gener-
ated by

U =
∏

i

σ x
i

∏
i

CZi,i+1, (41)

where CZi j acts on two spins as

CZi j = |↑↑〉〈↑↑| + |↓↑〉〈↓↑| + |↑↓〉〈↑↓| − |↓↓〉〈↓↓|.

= 1 + σ z
i + σ z

j − σ z
i σ z

j

2
(42)

From Appendix B, we see that the above Hamiltonian in
Eq. (40) is Z2 symmetric. However, the Z2 symmetry has a
’t Hooft anomaly.

To have a theory that is defined on rings with both even
and odd sites, we should consider different (but equivalent)

non-on-site Z2 symmetry:

U =
∏

i

σ x
i

∏
i

si,i+1, (43)

where si j acts on two spins as

si j = |↑↑〉〈↑↑| + |↓↑〉〈↓↑| − |↑↓〉〈↑↓| + |↓↓〉〈↓↓|.
= 1

2

(
1 − σ z

i + σ z
j + σ z

i σ z
j

)
. (44)

The Z2 transformation has a simple picture: it flips all the spins
and include a (−)N↑→↓ phase, where N↑→↓ is the number of
↑→↓ domain wall. From Appendix B, we see that the follow-
ing Hamiltonian is invariant under the new Z2 transformation:

H = −U
∑

i

σ z
i σ z

i+1 − J
∑

i

(
σ x

i − σ z
i−1σ

x
i σ z

i+1

)
, U, J > 0.

(45)

The boundary of 2+1D Z2 SPT state described by Eq. (45)
has a symmetry breaking phase when U � J . The boundary
can also be gapless described by a c = c = 1 CFT when
U = 0. Equation (45) has no symmetric gapped phase, since
the Z2 symmetry is not on-site (i.e., has a ’t Hooft anomaly)
[13].

When U = 0, the model (45) can be mapped to the XY
model on 1d lattice [50]:

HXY = −J
∑

i

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
. (46)

In this case, the anomalous 1+1D theory is gapless and is
described by a u14 × u14 CFT (see Appendix A 1). It has a
partition function

ZXY(q, q) ≡ ZZ2-SPT(q, q) =
3∑

i=0

∣∣χu14
i (q)

∣∣2
(47)

with primary fields of dimension (hi, hi ) = ( i2

8 , i2

8 ). The above
partition function can be rewritten as

ZZ2-SPT(q, q) = 1

|η(q)|2
∑

(a,b)∈�

q
1
2 a2

q
1
2 b2

, (48)

where (a, b) form a lattice � (see Fig. 4):

(a, b) = 1
2 (l + 2m, l − 2m), l, m ∈ Z. (49)

So all the U(1) vertex operators in our XY model can be
labeled by (l, m) which have scaling dimension

(h, h) =
(

1

2
a2,

1

2
b2

)
=

(
(l + 2m)2

8
,

(l − 2m)2

8

)
. (50)

This is the labeling scheme used in Ref. [50]. It was found that
the U(1) vertex operator labeled by (l, m) carry the Z2 charge
l + m mod 2.

We see that each character |χu14
i |2 contains U(1) vertex

operators with different Z2 charges. Thus it is more convenient
to rewrite the partition function in terms of the u116 characters

ZZ2-SPT(q) =
7∑

i=0

∣∣χu116
2i

∣∣2 +
7∑

i=0

χ
u116
2i+4χ

u116
2i . (51)

033054-8



NONINVERTIBLE ANOMALIES AND MAPPING- … PHYSICAL REVIEW RESEARCH 1, 033054 (2019)

1

1
l

m

FIG. 4. The lattice � formed by points (a, b). Each point cor-
responds to a U(1) vertex operator with scaling dimension (h, h) =
( 1

2 a2, 1
2 b2). The “×” points give rise to |χ u14

0 |2. The “◦” points give
rise to |χ u14

1 |2. The “+” points give rise to |χ u14
2 |2. The “�” points

give rise to |χ u14
3 |2. We also mark the directions of the l and m labels.

The shaded points carry the Z2 charge l + m = 1 mod 2, and the
unshaded points carry the Z2 charge l + m = 0 mod 2.

The U(1) vertex operators in |χu116
2i |2 carry the Z2 charge i mod

2. The U(1) vertex operators in χ
u116
2i+4χ

u116
2i carry the Z2-charge

i + 1 mod 2.
In the presence of the Z2 symmetry, we can define 4-

partition functions for different Z2-symmetry twists in the
space and time directions (ax, at ) = (±1,±1). ZZ2-SPT is the
partition function with no symmetry twist (ax, at ) = (1, 1):

Z1,1 =
7∑

i=0

∣∣χu116
2i

∣∣2 +
7∑

i=0

χ
u116
2i+8χ

u116
2i . (52)

with a Z2-symmetry twist in time direction the terms with Z2

charge 1 acquiring a − sign:

Z1,−1 =
7∑

i=0

(−)i
∣∣χu116

2i

∣∣2 −
7∑

i=0

(−)iχ
u116
2i+8χ

u116
2i . (53)

After an S transformation of u116 (see Appendix A 1), we get

Z−1,1 =
7∑

i=0

χ
u116
2i+1χ

u116
2i+5 +

7∑
i=0

χ
u116
2i+1χ

u116
2i+13. (54)

From Z−1,1 we find

Z−1,−1 =
7∑

i=0

(−)iχ
u116
2i+1χ

u116
2i+5 −

7∑
i=0

(−)iχ
u116
2i+1χ

u116
2i+13. (55)

by adding a − sign to the terms with Z2 charge 1.
Now we gauge the Z2 on-site symmetry in the 2+1D SPT

state to obtain the 2+1D DS topological order. The 2+1D DS
topological order has a gapped boundary which contains topo-
logical excitation s that satisfies a Z2 fusion role s ⊗ s = 1.
The 1d particles with Z2 fusion rule are described by one of the
two fusion categories. The first one is Rep(Z2) mentioned in
the last section. The second one is a different fusion category,
which we refer as the semion fusion category [25,26]. Such
a gapped boundary can be described by Eq. (45) in U � J

limit (i.e., in the Z2 symmetry breaking phase), where the
Z2 domain walls correspond to the boundary particle s. The
fusion of those domain walls is described by the semion
fusion category, provided that the fusion processes preserve
the nonon-site Z2 symmetry (43),

However, there is one problem with the above picture:
in the Z2 symmetry breaking phase, all the domain wall
configurations have twofold degeneracy induced by the Z2

transformation (43). To resolve this, we need to modify the
many-body Hilbert space on a ring by imposing the constraint∏

i

σ x
i

∏
i

si,i+1 = 1, (56)

i.e., we include only even Z2-charge states in our many-body
Hilbert space. The model Eq. (45), together with the Z2-
even Hilbert space, describes the boundary of the 2+1D DS
topological order. Such a 1+1D theory has a noninvertible
gravitational anomaly described by 2+1D DS topological
order.

Now we see that using the partition functions Zax,at of the
model (45) with different Z2-symmetry twists, we can con-
struct the four partition functions for the gapless boundary of
2+1D DS topological order. For example, the partition func-
tion of the model (45) in the even Z2 charge sector, Z1,1+Z1,−1

2 ,
corresponds to the partition function for the boundary of
the DS topological order without inserting any anyon world
line, Z (τ, τ , 1). Note that the DS topological order has four
types of excitations: trivial excitation 1, semion s, conjugate
semion s∗, and topological boson b. Thus the boundary has
four partition functions Z (τ, τ , 1), Z (τ, τ , s), Z (τ, τ , s∗), and
Z (τ, τ , b), which are given by

Z (1) = Z1,1 + Z1,−1

2
, Z (s) = Z−1,1 + Z−1,−1

2
,

Z (b) = Z1,1 − Z1,−1

2
, Z (s∗) = Z−1,1 − Z−1,−1

2
. (57)

The 2+1D DS topological order is characterized by (in the
basis of 1, s, s∗, b)

T top
DS =

⎛
⎜⎝

1 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 1

⎞
⎟⎠,

Stop
DS = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠. (58)

Using the above Stop
DS and T top

DS and the modular transformations
of u116 in Appendix A 1, we can explicitly check that the
four boundary partition functions (57) satisfy the modular
covariance Eq. (24).

V. NONINVERTIBLE GRAVITATIONAL ANOMALY
AND “NONLOCALITY” OF HILBERT SPACE

In Ref. [7], it was stressed that the ’t Hooft anomaly of
a global symmetry in a theory is not an obstruction for the
theory to have an ultraviolate (UV) completion (i.e., to have
a lattice realization). Such an anomalous theory can still be
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realized on a lattice, however, the global symmetry has to be
realized as an nonon-site symmetry in the lattice model.

In this section, we would like to propose that a noninvert-
ible gravitational anomaly in a theory is not an obstruction for
the theory to have a UV completion. The anomalous theory
can still be realized on a lattice, if there is no perturbative
gravitational anomaly. However, the Hilbert space of UV
theory V is not given by the lattice Hilbert space Vlatt: V �=
Vlatt.

The lattice Hilbert space Vlatt has a tensor product decom-
position

Vlatt = ⊗iVi, (59)

where Vi is the Hilbert space for each lattice site. We call the
Hilbert space with such a tensor product decomposition as a
local Hilbert space. A system with such a local Hilbert space
is free of gravitational anomaly, by definition.

In contrast to an anomaly-free theory, the UV completion
of a theory with noninvertible gravitational anomaly does not
have a local Hilbert space (i.e., with the above tensor product
decomposition). In other words, a noninvertible gravitational
anomaly is not an obstruction to have a UV completion,
but for the UV completion to have a local Hilbert space.
This understanding of noninvertible gravitational anomaly is
supported by the example discussed in the last section.

In last section, we pointed out the boundary of 2+1D
Z2 topological order (which has a noninvertible gravitational
anomaly) has a UV completion described by a lattice model
(32), with a constraint on the Hilbert space

∏
i σ

z
i = 1. It is the

constraint
∏

i σ
z
i = 1 that makes the Hilbert space nonlocal.

Let us describe the above result using a more physical
reasoning. One boundary of 2+1D Z2 topological order has
a single type of topological excitations e, which is mod 2
conserved. The Hilbert space always has an even number of
e particles. On the other hand, when there is no e-particle
excitations, the boundary ground state is not degenerate. Here
we like to point out that the even-particle constraint (i.e., Z2

fusion) plus the nondegeneracy of the ground state is a sign of
1+1D noninvertible gravitational anomaly.

The example in the last section supports such a claim.
The even-particle constraint is imposed by

∏
i σ

z
i = 1. The

nondegenerate ground state is given by ⊗i|σ z = 1〉. Such a
theory describes a boundary of 2+1D Z2 topological order
and has a noninvertible anomaly. The Ising model may also
be in the symmetry breaking phase. Due to the constraint
⊗i|σ z = 1〉, the symmetry breaking phase also has a unique
ground state ⊗i|σ x = 1〉 + ⊗i|σ x = −1〉. In such a symmetry
breaking phase, there are always an even number of domain
walls, that correspond to an even number of topological
excitations.

On the other hand, an even-particle constraint plus twofold
degenerate ground states will lead to an anomaly-free theory.
We can consider an Ising model in symmetry breaking phase
and without the constraint on Hilbert space. Such a phase has
twofold degenerate ground states and the number of domain
walls (which correspond to the e particles) is always even.
Thus even-particle constraint plus twofold degenerate ground
states can be realized by a lattice model with local Hilbert
space and is thus anomaly-free.

There is also a mathematical way to understand the above
claim. The e particles with mod 2 conservation in 1+1D can
be described by a fusion category with a Z2 fusion ring. There
are only two different fusion categories with a Z2 fusion ring,
both have 1+1D noninvertible anomaly. One fusion category
describes the boundary of 2+1D Z2 topological order, and the
other describes the boundary of DS topological order. Both
noninvertible anomalies can be described by the following
Ising model (in a gapped phase)

H = −
∑

i

σ z
i σ z

i+1 (60)

but with different constraints on Hilbert space. The anomaly
corresponds to the Z2 topological order has a constraint∏

i σ
x
i = 1, and the anomaly corresponds to the DS topologi-

cal order has a constraint
∏

i σ
x
i

∏
i si,i+1 = 1 [see Eq. (43)].

VI. SYSTEMATICAL SEARCH OF GAPPED AND GAPLESS
BOUNDARIES OF A 2+1D TOPOLOGICAL ORDER

A. Boundaries of 2+1D topological order

In this section, we want to systematically find gapped
and gapless boundary theories of a 2+1D topological order
by solving Eq. (24) from the data Stop and T top of the bulk
topological order. This is a generalization of finding possible
1+1D critical theories via finding modular invariant partition
functions. Note that, regardless of whether the boundary is
gapped or gapless, it always has the same anomaly character-
ized by the bulk topological order.

To solve Eq. (24), we may start with a CFT with partition
functions Zbdy(τ, τ , I ), which transform as

TIJZbdy(τ, τ , J ) = Zbdy(τ + 1, τ + 1, I ),

SIJZbdy(τ, τ , J ) = Zbdy(−1/τ,−1/τ , I ). (61)

We then construct Z (τ, τ , i) as a linear summation of
Z (τ, τ̄ , I )’s,

Z (τ, τ , i) = MiI Zbdy(τ, τ , I ). (62)

Now Eq. (24) becomes

MiI Zbdy(τ + 1, τ + 1, I ) = MiI TIJZbdy(τ, τ , J )

= (T top)i jMjJZbdy(τ, τ , J ). (63)

We see that MiI must satisfy

MiI = (T top)i jT
∗

IJMjJ , MiI = (Stop)i jS
∗
IJMjJ . (64)

We also note that, for a fixed i, Z (τ, τ , i) can be zero,
indicating the always presence of gapped excitations on the
boundary. Z (τ, τ , i) can also be a τ -independent positive
integer. It means that the ground states are gapped and have
a degeneracy given by Z (τ, τ , i). Otherwise, Z (τ, τ , i) has an
expansion

Z (τ, τ , i) = q− c
24 q− c

24

∞∑
n,n=0

Dn,n(i)qn+hi qn+hi ,

q = ei 2πτ , Dn,n(i) = nonnegative integer, (65)

where (hi, hi ) are the scaling dimensions for the type-i topo-
logical excitation. Such an expansion describes the many-
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body spectrum of the gapless boundary of the disk D2
i , with

a type-i topological excitation at the center of the disk. Here
the subscript i in D2

i indicates the type-i excitation on the disk.
Let us assume the boundary S1 = ∂D2

i has a length L. Then
Dn,n(i) is number of many-body states on D2

i with energy (n +
hi + n + hi ) 2π

L , and momentum (n + hi − n − hi ) 2π
L . Here we

have assumed that velocity of the gapless excitations is v = 1.
Thus Dn,n(i) are nonnegative integers.

Also D0,0(i) is the ground-state degeneracy on the bound-
ary of the disk D2

i . Since the boundary can be gapless, the
ground-state degeneracy needs to be defined carefully. Here,
we view two energy levels with an energy difference of
order 2π/L as nondegenerate. We view two energy levels
with an energy difference smaller than (2π/L)α, α > 1, as
degenerate. It is in this sense we define the ground-state
degeneracy D0,0(i) for a gapless system in L → ∞ limit. We
believe that the ground state degeneracy on disk D2 is always
1. Therefore, we like to impose a nondegeneracy condition
on the boundary D0,0(1) = 1. Zbdy(τ, τ , I ) satisfies a similar
quantization condition.

From Eq. (62), we see that MiI is the multiplicity of the
number of energy levels in the many-body spectrum of the
boundary theory. Therefore, for a fixed i, if MiI �= 0, then

MiI are quantized to make Dn,n(i)

to be nonnegative integer and D0,0(1) = 1. (66)

In practice, to find MiI , we may compute the eigenvectors
of T top ⊗ T ∗ + Stop ⊗ S∗ with eigenvalue 2, that satisfy the
above quantization condition.

B. Z2 topological order

To find a CFT that describes a boundary of 2+1D Z2

topological order, we need to solve Eq. (24) with Stop and T top

given by Eq. (27) that characterize the 2+1D Z2 topological
order. Let us first try to find gapped boundaries by choosing
Zbdy(τ, τ ) = 1, the partition function of a trivial gapped 1+1D
state. Now Eq. (64) reduces to

Z (i) = (
T top

Z2

)
i jZ ( j), Z (i) = (

Stop
Z2

)
i jZ ( j). (67)

So we need to find common eigenvectors of Stop
Z2

and T top
Z2

,
both with eigenvalue 1. We also require the solutions to
satisfy the quantization condition (66), i.e., the components
of the solutions are all nonnegative integers. The condition
D0,0(1) = 1 becomes Z (1) = 1. This agrees with the fact that
the ground state of 2+1D Z2 topological order on a disk D2 is
nondegenerate if there is no accidental degeneracy. This can
be achieved by finding eigenvectors of Stop

Z2
+ T top

Z2
that satisfy

Eq. (66).
We find that Stop

Z2
+ T top

Z2
has two eigenvectors with eigen-

value 2, given by

(Zm-cond(i)) = (1, 0, 1, 0), (Ze-cond(i)) = (1, 1, 0, 0), (68)

where i = (1, e, m, f ). They are the only two nonnegative
integral eigenvectors with Z (1) = 1. Thus the 2+1D Z2 topo-
logical order has only two types of gapped boundaries, an e
condensed boundary described by Ze-cond(i) and an m con-
densed boundary described by Zm-cond(i) [30].

If we choose Zbdy(τ, τ , I ) to be the partition functions (the
characters) of Is ⊗ Is CFT (see Appendix A 3), then S and T
will be 9 × 9 matrices:

SIs⊗Is = S∗
Is ⊗ SIs, TIs⊗Is = T ∗

Is ⊗ TIs, (69)

where SIs, TIs are given in Eq. (A11). We find eigenvalue 2
for T top

Z2
⊗ T ∗

Is⊗Is
+ Stop

Z2
⊗ S∗

Is⊗Is
to be threefold degenerate. We

obtain the following three solutions of Eq. (24)⎛
⎜⎝

Z (τ, τ , 1)
Z (τ, τ , e)
Z (τ, τ , m)
Z (τ, τ , f )

⎞
⎟⎠ =

⎛
⎜⎝

|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2
|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2

0
0

⎞
⎟⎠, (70)

⎛
⎜⎝

Z (τ, τ , 1)
Z (τ, τ , e)
Z (τ, τ , m)
Z (τ, τ , f )

⎞
⎟⎠ =

⎛
⎜⎝

|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2
0

|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2
0

⎞
⎟⎠, (71)

⎛
⎜⎝

Z (τ, τ , 1)
Z (τ, τ , e)
Z (τ, τ , m)
Z (τ, τ , f )

⎞
⎟⎠ =

⎛
⎜⎜⎝

|χ1(τ )|2 + |χψ (τ )|2
|χσ (τ )|2
|χμ(τ )|2

χ1(τ )χψ (τ ) + χψ (τ )χ1(τ )

⎞
⎟⎟⎠, (72)

that satisfy the quantization condition (66).
The first two solutions correspond to the two gapped

boundaries of the 2+1D Z2 topological order induced by
e and m condensation respectively, and then stacking with
a transverse Ising model at critical point. So the first two
solutions are regarded as gapped boundaries. Here we would
like to introduce the notion of reducible boundary. If the
partition functions Z (τ, τ , i) of a boundary can be factorized
into a form

Z (τ, τ , i) = Zinv(τ, τ )Z ′(τ, τ , i), (73)

then we say the boundary is reducible. We will call the
boundary described by Z ′(τ, τ , i) as the reduced boundary.
Here, Z (τ, τ , i) and Z ′(τ, τ , i) are partition functions sat-
isfying (24) and Eq. (65), and Zinv(τ, τ ) is a modular in-
variant partition function satisfying Eq. (65). Noticing that
|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2 is modular invariant, so the
first two boundaries are reducible and their reduced boundary
are gapped boundaries described by Eq. (68).

The third solution (72) corresponds to an irreducible gap-
less boundary. Let us consider the stability of such c = c = 1

2
gapless boundary. To begin with, we review the stability of the
critical point of transverse Ising model described by

ZIs(τ, τ ) = |χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2. (74)

From the above partition function, we see that there are
two relevant operators: ψψ with scaling dimension (h, h) =
( 1

2 , 1
2 ), and σ with scaling dimension (h, h) = ( 1

16 , 1
16 ).

Among the two, σ is odd under the Z2 symmetry of the
transverse Ising model.

In analogy, to examine the stability of the gapless boundary
(72), we examine the partition function Z (τ, τ , 1). We do not
consider other partition functions, since the partition function
Z (τ, τ , 1) describes the physical boundary of Fig. 2 without
the insertion of the world line. From Z (τ, τ , 1), we see that
gapless boundary (72) has only one relevant operator ψψ with
scaling dimension (h, h) = ( 1

2 , 1
2 ). So the gapless boundary

(72) can be the phase transition point between two gapped
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boundaries. In fact, according to the discussion in Sec. III B,
the third gapless boundary is the critical transition point be-
tween the gapped e condensed boundary and the m condensed
boundary.

We can also use the characters χm4
h of the (4,5) minimal

model (or tricritical Ising model [51], see Appendix A 3) with
central charge c = c = 7

10 , to construct the boundary partition
functions Zbdy(τ, τ , I ) that have the Z2 noninvertible anomaly
[i.e., satisfy Eq. (24)]. We obtain

⎛
⎜⎝

Z (1)
Z (e)
Z (m)
Z ( f )

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∣∣χm4
0

∣∣2 + ∣∣χm4
1

10

∣∣2 + ∣∣χm4
3
5

∣∣2 + ∣∣χm4
3
2

∣∣2

∣∣χm4
7

16

∣∣2 + ∣∣χm4
3

80

∣∣2

∣∣χm4
7

16

∣∣2 + ∣∣χm4
3

80

∣∣2

χm4
0 χm4

3
2

+ χm4
1

10
χm4

3
5

+ χm4
3
5

χm4
1

10
+ χm4

3
2

χm4
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(75)

If we choose Zbdy(τ, τ , I ) to be built from the characters of
u(1)M ⊗ u(1)M CFT, we obtain the following simple solution
of gapless boundary

⎛
⎜⎝

Z (τ, τ ; 1)
Z (τ, τ ; e)
Z (τ, τ ; m)
Z (τ, τ ; f )

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∣∣χu14
0

∣∣2 + ∣∣χu14
2

∣∣2

∣∣χu14
1

∣∣2 + ∣∣χu14
3

∣∣2

χ
u14
1 χ

u14
3 + χ

u14
3 χ

u14
1

χ
u14
0 χ

u14
2 + χ

u14
2 χ

u14
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (76)

Note that Z (τ, τ , e) and Z (τ, τ , m) are no longer identical, but
differ by a charge conjugation, whose action induce on the
characters is C : χ

u1M
i χ

u1M
j → χ

u1M
i χ

u1M
M− j .

C. Double-semion topological order

To find gapped boundaries of 2+1D DS topological order,
we need to solve

Z (i) = (
T top

DS

)
i jZ ( j), Z (i) = (

Stop
DS

)
i jZ ( j), (77)

where T top
DS and Stop

DS are given by Eq. (58). We find that Stop
DS +

T top
DS has only one eigenvector with eigenvalue 2, given by

(Zb(i)) = (1, 0, 0, 1), (78)

where i = (1, s, s∗, b). Thus the 2+1D DS topological order
has only one type of gapped boundary, a b condensed bound-
ary [30].

Next, we consider possible gapless boundaries of DS topo-
logical order described by Is ⊗ Is CFT, by solving Eq. (64) for
solutions satisfying Eq. (66). We find only one eigenvector for
T top

DS ⊗ T ∗
Is⊗Is

+ Stop
DS ⊗ S∗

Is⊗Is
with eigenvalue 2. We obtain the

following unique solution of Eq. (24):⎛
⎜⎝

Z (τ, τ , 1)
Z (τ, τ , s)
Z (τ, τ , s∗)
Z (τ, τ , b)

⎞
⎟⎠ =

⎛
⎜⎝

|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2
0
0

|χ1(τ )|2 + |χψ (τ )|2 + |χσ (τ )|2

⎞
⎟⎠. (79)

Such a solution corresponds to the gapped boundary of 2+1D
DS topological order, and then stacking with a transverse Ising
model at critical point. So this solution is regarded as a gapped
boundary. There is no irreducible gapless boundary described
by Is ⊗ Is.

Actually, we can obtain an even stronger result 2+1D DS
topological order has no irreducible gapless boundary with
central charge c = c � 25

28 . This result is obtained by realizing
that the DS anomalous partition functions, for irreducible
gapless boundary, has a nonzero component Z (τ, τ , s). Other-
wise, the gapless boundary can be viewed as a gapped bound-
ary stacked with an anomaly-free 1+1D CFT. The condition
(24) for the T top transformation requires that the excitations
in the partition function has topological spin h − h = 1

4 mod
1. This constrains the central charge of the anomalous CFT.
If the unitary CFT has a central charge c = c < 1, then the
boundary CFT must be given by a chiral-antichiral minimal

model Cft
p,p+1 × C

ft
p,p+1. The topological spin for the operators

in such CFT is given by sr,s,r′,s′ = hr,s − hr′,s′ [see Eq. (A10)].
We find that, for p < 7, sr,s,r′,s′ cannot be 1

4 mod 1. Thus the
condition Eq. (24) cannot be satisfied for T top transformation.

Last, we consider possible gapless boundary theories of DS
topological order described by u1M ⊗ u1M CFT, by solving
Eq. (64) for solutions satisfying Eq. (66). This includes many
cases, one for each choice of M. So we need to consider each
case separately.

For M = 16, we have found an irreducible gapless bound-
ary described by u116 ⊗ u116 CFT:

⎛
⎜⎝

Z (1)
Z (s)
Z (s∗)
Z (b)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑3
i=0

∣∣χu116
4i

∣∣2 + ∑3
i=0 χ

u116
4i+10χ

u116
4i+2∑3

i=0 χ
u116
4i+1χ

u116
4i+5 + ∑3

i=0 χ
u116
4i+3χ

u116
4i+15∑3

i=0 χ
u116
4i+3χ

u116
4i+7 + ∑3

i=0 χ
u116
4i+1χ

u116
4i+13∑3

i=0

∣∣χu116
4i+2

∣∣2 + ∑3
i=0 χ

u116
4i+8χ

u116
4i

⎞
⎟⎟⎟⎟⎟⎟⎠

. (80)

From the partition function Z (τ, τ , 1), we see that there
is an relevant operator with scaling dimension (h, h) =
( 42

2×16 , 42

2×16 ) = ( 1
2 , 1

2 ). So the gapless boundary (80) is un-
stable. It describes the transition point between two gapped
phases in Eq. (45). One gapped phase for U > 0 and other
gapped phase for U < 0. The gapless critical point is de-
scribed by U = 0.

For M = 4, we find that there is no irreducible gapless
boundary described by u14 ⊗ u14 CFT.

For M = 2, we find that there is only one irreducible
gapless boundary described by u12 ⊗ u12 CFT:

⎛
⎜⎝

Z (τ, τ , 1)
Z (τ, τ , s)
Z (τ, τ , s∗)
Z (τ, τ , b)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∣∣χu12
0

∣∣2

χ
u12
1 χ

u12
0

χ
u12
0 χ

u12
1∣∣χu12

1

∣∣2

⎞
⎟⎟⎟⎟⎟⎠. (81)

There is no other irreducible gapless boundary described
by u12 ⊗ u12 CFT. But there is a reducible gapless boundary
described by

⎛
⎜⎝

Z (τ, τ , 1)
Z (τ, τ , s)
Z (τ, τ , s∗)
Z (τ, τ , b)

⎞
⎟⎠ =

⎛
⎜⎜⎝

∣∣χu12
0

∣∣2 + ∣∣χu12
1

∣∣2

0
0∣∣χu12

0

∣∣2 + ∣∣χu12
1

∣∣2

⎞
⎟⎟⎠, (82)

which is a stacking of a gapped boundary described by
Eq. (78) and the CFT for spin-1/2 Heisenberg chain.
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From the partition function Z (τ, τ , 1), we find that the
irreducible boundary (81) has no relevant operator. It has only
several marginal operators, such as JJ , e±i

√
2φe±i

√
2φ with

scaling dimension (h, h) = (1, 1). Here, J is the U(1) current
operator and e±i

√
2φ are U(1)-charged operators. Those opera-

tors can be marginally relevant. If there is only one marginally
relevant operator gÔ in the Hamiltonian, the renomalization
group (RG) flow of the coupling constant g is given by

dg

dβ
= αg2. (83)

We see that regardless the sign of α, there is a finite region of
g where g flows to zero. In this case, the CFT can be stable.
When there are many marginally relevant operators giÔi, RG
flow of the coupling constants gi is given by [52]

dgi

dβ
= αi jkg jgk . (84)

In Appendix D, we discuss the above RG equation in more
details and show that generic coupling constants gi always
flow to infinite. Thus the CFT is unstable, and the 2+1D DS
topological order always has a gapped boundary without fine
tuning.

We would like to remark that from this gapless boundary of
DS topological order, and apply the relations (57), we can find
another gapless boundary theory of Z2 SPT, whose partition
function is given by

ZZ2-SPT(q, q) =
1∑

i=0

∣∣χu12
i (q)

∣∣2
, (85)

which is different from Eq. (47). The partition function (85)
can also be rewritten as

ZZ2-SPT(q, q) = |η(q)|−1
1∑

i=0

q
1
2 a2

q
1
2 b2

, (86)

where (a, b) form a lattice �u12 ,

(a, b) = 1√
2

(l + m, l − m), l, m ∈ Z. (87)

The Z2 charges of the vertex operators in |χu12
i |2 is i mod 2,

or (l + m) mod 2 on the lattice.
From the Z2-even partition function |χu12

0 (q)|2, we find that
the gapless boundary (85) has no Z2-even relevant operator.
However, as mentioned above, there may be many marginally
relevant operators, and it is yet to be verified if the gapless
boundary (85) of 2+1D Z2-SPT order is perturbatively stable
or not. In some previous studies, a gapless boundary (47) for
the same 2+1D Z2-SPT order is found to be perturbatively
unstable against Z2 symmetric perturbations [50,53], via rele-
vant perturbations (with total scaling dimension less than 2).
In this paper, we found a gapless boundary of Z2-SPT state
(85), which is more stable against Z2 symmetric perturbations,
in the sense that the instability only come from potentially
marginally relevant operators (with total scaling dimension
equal to 2).

D. Semion topological order

There is a close relative of 2+1D DS topological order—
2+1D semion topological order, which has only two types
of excitations: trivial excitation 1 and semion s. The 2+1D
semion topological order can be realized by ν = 1/2 bosonic
Laughlin state.

Let us describe the data that characterize the 2+1D semion
topological order. The topological spins and the quantum
dimensions of 1 and s are (s1, ss) = (0, 1

4 ) and (d1, ds) =
(1, 1). The topological Stop

sem and T top
sem matrices are

T top
sem = e−i 2π

24

(
1 0
0 ei 2π

4

)
,

Stop
sem = 1√

2

(
1 1
1 −1

)
. (88)

To obtain the possible boundaries of 2+1D semion topo-
logical order, we just need to solve Eq. (24). We find a simple
boundary described by the following partition function [in
terms of u12 characters (A1)](

Z (τ, τ , 1)
Z (τ, τ , s)

)
=

(
χ

u12
0 (τ )

χ
u12
1 (τ )

)
. (89)

The 1+1D theory described by the above partition functions
has both perturbative and global gravitational anomaly.

E. Fibonacci topological order

Another simple 2+1D topological order is the Fibonacci
topological order. It is characterized by the following topo-
logical data. The central charge is 14

5 mod 8. There are two
types of excitations 1 and γ . Their topological spins and
the quantum dimensions are (s1, sγ ) = (0, 2

5 ) and (d1, ds) =
(1, φ), where φ =

√
5+1
2 , the golden ratio. The topological

Stop
Fib and T top

Fib matrices are

T top
Fib = e−i 2π

24
14
5

(
1 0
0 ei 2π 2

5

)
,

Stop
Fib = 1√

φ + 2

(
1 φ

φ −1

)
. (90)

Solving Eq. (24), we can find several gapless boundary of
the Fibonacci topological order: (1) (G2)1 CFT with central
charge (c, c) = ( 14

5 , 0), with the partition functions(
Z (τ, 1)
Z (τ, γ )

)
=

(
χ

G21
0 (τ )

χ
G21
1 (τ )

)

= e−i 2π
24

14
5

(
1 + 14q + 42q2 + O(q3)

q
2
5 (7 + 34q + 119q2 + O(q3))

)
,

(91)

where χ
G21
i (τ ) are the characters of level-1 G2 current algebra,

see Appendix A 4. The first multiplicity equaling 7 appearing
in Z (τ, γ ) implies that when there is a Fibonacci anyon in the
bulk, the boundary has sevenfold degeneracy. The degeneracy
cannot be split unless the anyon is moved to the boundary.

(2) su(2)3 × u(1)M CFT has a central charge c = 9
5 + 1 =

14
5 and c = 0. The su23 CFT has four chiral characters χ

su23
j ,

labeled by the spin j = 0, 1
2 , 1, 3

2 (see Appendix A 2) with S
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and T matrices

Tsu23 = e−i 2π
24

9
5

⎛
⎜⎜⎝

1 0 0 0
0 ei 2π 3

20 0 0
0 0 ei 2π 2

5 0
0 0 0 ei 2π 3

4

⎞
⎟⎟⎠,

Ssu23 = 1√
2(φ + 2)

⎛
⎜⎝

1 φ φ 1
φ 1 −1 −φ

φ −1 −1 φ

1 −φ φ −1

⎞
⎟⎠. (92)

When M = 2, we find a solution of Eq. (24):

(
Z (τ, 1)
Z (τ, γ )

)
=

⎛
⎝χ

u12
0 χ

su23
0 + χ

u12
1 χ

su23
3
2

χ
u12
1 χ

su23
1
2

+ χ
u12
0 χ

su23
1

⎞
⎠. (93)

In fact, we find the expansion of the Z (τ, i) in Eq. (93) in
terms of modular parameter q = ei 2πτ to be the same as that
of Eq. (91).

(3) The same result also arises in su(2)28 with c = 14
5 ,

Z (τ, 1) = χ
su228
0 + χ

su228
5 + χ

su228
9 + χ

su228
14 ,

Z (τ, γ ) = χ
su228
3 + χ

su228
6 + χ

su228
8 + χ

su228
11 , (94)

and see Appendix A 2 for explicit forms of characters.
(4) (E8)1 × (F4)1 CFT, with central charge (c, c) = (8, 26

5 ),
and c − c = 14

5 . (F4)1 CFT has the S and T matrices:

T(F4 )1 = e−i 2π
24

26
5

(
1 0
0 ei 2π 3

5

)
, S(F4 )1 = Stop

Fib. (95)

Therefore (E8)1 × (F4)1 is also a gapless boundary of the
Fibonacci topological order.(

Z (τ, τ , 1)
Z (τ, τ , γ )

)
=

(
χ (E8 )1 (τ )χ (F4 )1

0 (τ )

χ (E8 )1 (τ )χ (F4 )1
1 (τ )

)
. (96)

VII. DETECT ANOMALIES FROM 1+1D
PARTITION FUNCTIONS

So far, we have discussed how to use anomaly to constrain
the structure of 1+1D partition function. In this section, we
are going to consider a different problem: given a partition
function, how to determine its anomaly? We have mentioned
that the 1+1D perturbative gravitational anomaly can be
partially detected via q → 0 limit of partition function [see
(12)]. So here we will concentrate on global gravitational
anomalies.

Let us consider partition functions constructed using the
characters of Ising CFT:

ZM (τ, τ ) =
∑

i, j=1,ψ,σ

χ i(τ )Mi jχ j (τ ). (97)

Under modular transformation ZM transforms as

ZM (τ + 1, τ + 1) = ZMT (τ, τ ), MT = T †
Is MTIs,

ZM (−1/τ,−1/τ ) = ZMS (τ, τ ), MS = S†
IsMSIs, (98)

where SIs and TIs are given by Eq. (A11).

FIG. 5. The modular transformations on the partition functions
ZMn , n = 1, 2, 3, for a gapless boundary of a 2+1D Z2 topological or-
der. For example, the two red lines to the right represent the following
T transformations: M2 → M3 : ZM2 (τ + 1, τ + 1) = ZM3 (τ, τ ) and
M3 → M2 : ZM3 (τ + 1, τ + 1) = ZM2 (τ, τ ). The blue lines represent
the S transformations. The pattern of the transformations charac-
terizes an 1+1D noninvertible gravitational anomaly described by
2+1D Z2 topological order.

Let us consider a particular partition function

Z (τ, τ , 1) = ZM1 (τ, τ ), M1 =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠, (99)

which is not modular invariant. Starting from M1, the modular
transformations (98) generate two other partition functions
described by

M2 =
⎛
⎝

1
2

1
2 0

1
2

1
2 0

0 0 1

⎞
⎠, M3 =

⎛
⎝

1
2 − 1

2 0

− 1
2

1
2 0

0 0 1

⎞
⎠. (100)

The actions of modular transformations on ZM1 , ZM2 , and
ZM3 are described by Fig. 5. Such orbits of modular trans-
formations can be used to characterize the anomaly in the
partition function. At this point, it is not fully clear if such
a characterization is complete or not, i.e., it is not clear if
different anomalies always have different orbits. However,
the orbits in Fig. 5 are consistent with the 1+1D anomaly
described by 2+1D Z2 topological order. This is because
the Stop

Z2
and T top

Z2
transformations of the 2+1D Z2 topological

order (27), when acting on

|1〉 ≡

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ (101)

will generate

|2〉 ≡ 1

2

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ = 1

2
(|1〉 + |e〉 + |m〉 + | f 〉),

|3〉 ≡ 1

2

⎛
⎜⎝

1
1
1

−1

⎞
⎟⎠ = 1

2
(|1〉 + |e〉 + |m〉 − | f 〉). (102)

The actions of Stop
Z2

and T top
Z2

on |1〉, |2〉, and |3〉 will generate
the same orbits as in Fig. 5.

We may also consider a partition function constructed
using u116 characters:

Z (τ, τ , 1) =
3∑

i=0

∣∣χu116
4i

∣∣2 +
3∑

i=0

χ
u116
4i+10χ

u116
4i+2. (103)

Starting from Z (τ, τ , 1) = Z1(τ, τ ), using modular trans-
formations S and T in Eq. (A2), we can generate five
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FIG. 6. The modular transformations on the partition functions
Zn, n = 1, 2, . . . , 6, for a gapless boundary of 2+1D DS topological
order. For example, the red lines in the middle represent the follow-
ing T transformations: Z4 → Z2 : Z4(τ + 1, τ + 1) = Z2(τ, τ ) and
Z5 → Z4 : Z5(τ + 1, τ + 1) = Z4(τ, τ ). The blue lines represent the
S transformations. The pattern of the transformations characterizes
an 1+1D noninvertible gravitational anomaly described by 2+1D
DS topological order.

additional partition functions Zn(τ, τ ), n = 2, 3, 4, 5, 6. Un-
der the modular transformations S and T , the partition func-
tions Zn(τ, τ ), n = 1, . . . , 6 change into each other. The
orbits are described by Fig. 6. Such orbits are consistent with
the 1+1D anomaly described by 2+1D DS topological order.

VIII. SUMMARY

In this paper, we study noninvertible gravitational anoma-
lies that correspond to noninvertible topological orders in one
higher dimension. A theory with a noninvertible anomaly can
have many partition functions, which are linear combinations
of N partition functions. For 1+1D noninvertible anomaly,
N is the number of types of the topological excitations in
the corresponding 2+1D topological order. The anomalous
1+1D partition functions Z (τ, τ , i), i = 1, . . . , N , are not
invariant under the modular transformation, but transform in a
nontrivial way described by the modular matrices Stop

i j and T top
i j

that characterize the corresponding 2+1D topological order.
Similarly, an anomalous theory on an arbitrary close space-
time manifold Md also has many partition functions Z (Md , i),
which transforms according to a representation RMd of the
mapping-class-group GMd of Md . The GMd representation
RMd describes how the ground states of the corresponding
(d + 1)D topological order transform on a spatial manifold
Md . As an application of our theory of noninvertible anomaly,
we show that for 2+1D DS topological order, its irreducible
gapless boundary must have central charge c = c > 25

28 .
At the beginning of the paper, we mentioned that ’t Hooft

anomaly is an obstruction to gauge a global symmetry. How-
ever, if we include theories with noninvertible anomaly, then
even global symmetry with ’t Hooft anomaly can be gauged,
which will result in a theory with a noninvertible anomaly.
This is because a theory with ’t Hooft anomaly can be realized
as a boundary of SPT state in one dimension higher, where
the global symmetry is realized as an on-site-symmetry. We
can gauge the global on-site-symmetry in bulk and turn the
SPT state into a topologically ordered state. The boundary of
the resulting topologically ordered state is the theory obtained
by gauging the anomalous global symmetry. This connection
between ’t Hooft anomaly and noninvertible gravitational
anomaly allows us to use the theory of gravitational anomaly

developed in this paper to systematically understand ’t Hooft
anomaly and its effect on low energy properties. Those issues
will be studied in Ref. [37].

We like to remark that in this paper, we only studied
the modular covariance of torus partition functions of 1+1D
anomalous systems. However, in order for the partition func-
tions to be realizable on a boundary of a 2+1D topological
order, just requiring the modular covariance of torus partition
functions is not enough. We should also require the partition
functions on high genus surfaces to transform properly under
the corresponding MCG transformations. The resulting parti-
tion functions should be realizable on a boundary of a 2+1D
topological order.
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APPENDIX A: CHARACTERS OF CHIRAL CFTS

1. u1M CFT

u1M current algebra is generated by the current ∂zϕ(z)
and ei

√
Mϕ . The primary fields of the current algebra are

ei m√
M

ϕ
, 0 � m � M − 1. The character χu1M

m of u1M CFT is
given by

χu1M
m (τ ) = η−1(q)

∞∑
n=−∞

q
1
2 ( m

R +nR)2
, (A1)

where 0 � m < M and R2 = M. Under modular transforma-
tion S and T , the characters transform as follows:

χ
u1M
i

(
− 1

τ

)
= Si jχ

u1M
j (τ ), Si j = e−i 2π

i j
M√

M
,

χ
u1M
i (τ + 1) = Ti jχ

u1M
j (τ ), Ti j = e−i 2π

24 ei 2π i2

2M δi j . (A2)

In the case of semion model, the left-moving part has
two sectors, the vacuum and semion sector. They are primary
fields of u12 current algebra:

χ
u12
0 = η(q)−1

∑
n∈Z

q
1
2 (2n)2−1(2n) = η(q)−1

∑
n∈Z

qn2
,

χ
u12
1 = η(q)−1

∑
n∈Z

q(n+ 1
2 )(n+ 1

2 ). (A3)

2. su2k CFT

The CFT of the level-k SU(2) current algebra, su2k , has
characters χ

su2k
j (τ ):

χ
su2k
j (q) = q(2 j+1)2/4(k+2)

[η(q)]3

×
∑
n∈Z

[2 j + 1 + 2n(k + 2)]qn[2 j+1+(k+2)n], (A4)
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where j ∈ {0, 1
2 , . . . , k

2 }. Their modular transformations are

χ
su2k
j (−1/τ ) =

∑
l∈P

S jlχ
su2k
l (τ ),

S jl =
√

2

k + 2
sin

[
π (2 j + 1)(2l + 1)

k + 2

]
, (A5)

χ
su2k
j (τ + 1) = e−i 2π

24
3k

(k+2) ei 2π
j( j+1)
k+2 χ

su2k
j (τ ).

3. The minimal model CFT

The chiral CFTs with central charge c < 1 are called the
minimal models. They are labeled by two integers p, p′ with
p, p′ > 2 and an equivalence (p, p′) ∼ (p′, p). We demote
those CFTs as Cft

p,p′ . The central charge and the dimensions
of primary fields are given by

c = 1 − 6(p − p′)2

pp′ ,

hr,s = (r p′ − sp)2 − (p − p′)2

4pp′ , (A6)

1 � r � p − 1, 1 � s � p′ − 1,

which satisfy

hr,s = hp−r,p′−s = hp+r,p′+s (A7)

The CFTs are unitary if and only if |p′ − p| = 1. In this case,
the character for the primary field (r, s) is given by

χr,s(q) = qhr,s

η(q)

∑
n∈Z

qn[(np+r)(p+1)−ps](1 − q(2np+r)s),

η(q) = q
1

24

∞∏
n=1

(1 − qn), q = e2i πτ , (A8)

where χr,s(q) = χp−r,p′−s(q). The S matrix is

Srs;ρσ =
√

8

pp′ (−1)(1+sρ+rσ ) sin

(
π

p′

p
rρ

)
sin

(
π

p

p′ sσ
)

.

(A9)

For unitary minimal models (p, p′) = (p, p + 1), we have

c = 1 − 6

p(p + 1)
,

hr,s = (r + r p − sp)2 − 1

4p(p + 1)
, 1 � r � p − 1, 1 � s � p,

(A10)

For c = 1/2 Ising CFT, p = 3, p′ = 4. (r, s) = (1, 1) and
(2,3) correspond to the identity primary field 1. (r, s) = (1, 2)
and (2,2) correspond to primary field σ with hσ = 1

16 . (r, s) =
(1, 3) corresponds to primary field ψ with hψ = 1

2 . In the
basis of {χ1, χψ, χσ }, the modular transformation is given by

SIs = 1

2

⎛
⎝ 1 1

√
2

1 1 −√
2√

2 −√
2 0

⎞
⎠,

TIs = e−i π
24

⎛
⎝1 0 0

0 −1 0
0 0 ei 2π

16

⎞
⎠. (A11)

4. Exceptional current algebra CFT

Both (G2)1 and (F4)1 characters have the form as follows
[54]:

χ0 =
[
λ(1 − λ)

16

] 1−x
6

2F1

(
1

2
− 1

6
x,

1

2
− 1

2
x; 1 − 1

3
x; λ

)
,

χ1 = N

[
λ(1 − λ)

16

] 1+x
6

2F1

(
1

2
+ 1

6
x,

1

2
+ 1

2
x; 1 + 1

3
x; λ

)
,

(A12)

where λ(τ ) = ( θ2(τ )
θ3(τ ) )

4
, in terms of theta functions,

θ2(τ ) =
∑
n∈Z

q
1
2 (n+ 1

2 )2

, θ4(τ ) =
∑
n∈Z

(−1)nq
n2

2 . (A13)

Under modular transformation T : λ → λ(λ − 1) and S :
λ → 1 − λ,

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (A14)

(q)n =
{

1 n = 0
(q+n−1)!

(q−1)! n > 0 (A15)

is the hypergeometric function defined for |z| < 1, and x =
1 + c

2 . The parameters for some examples are

(G2)1 : N = 7, x = 12
5 ,

(F4)1 : N = 26, x = 18
5 ,

(E8)1 : N = 2, x = 4. (A16)

APPENDIX B: NON-ON-SITE Z2 SYMMETRY
TRANSFORMATIONS

The first nonon-site Z2 symmetry transformation (41)
transforms σ x

i in the following way [see (42)]:

⎛
⎝∏

j

σ x
j

∏
j

CZ j, j+1

⎞
⎠σ x

i

⎛
⎝∏

j

σ x
j

∏
j

CZ j, j+1

⎞
⎠

= 1 + σ z
i−1 + σ z

i − σ z
i−1σ

z
i

2

1 + σ z
i + σ z

i+1 − σ z
i σ z

i+1

2
σ x

i

1 + σ z
i−1 + σ z

i − σ z
i−1σ

z
i

2

1 + σ z
i + σ z

i+1 − σ z
i σ z

i+1

2

= 1 + σ z
i−1 + σ z

i − σ z
i−1σ

z
i

2

1 + σ z
i + σ z

i+1 − σ z
i σ z

i+1

2

1 + σ z
i−1 − σ z

i + σ z
i−1σ

z
i

2

1 − σ z
i + σ z

i+1 + σ z
i σ z

i+1

2
σ x

i
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=
(

1 + σ z
i−1 + σ z

i − σ z
i−1σ

z
i

2

1 + σ z
i−1 − σ z

i + σ z
i−1σ

z
i

2

)(
1 + σ z

i + σ z
i+1 − σ z

i σ z
i+1

2

1 − σ z
i + σ z

i+1 + σ z
i σ z

i+1

2

)
σ x

i

=
(
1 + σ z

i−1

) − (
1 − σ z

i−1

)
2

(
1 + σ z

i+1

) − (
1 − σ z

i+1

)
2

σ x
i = σ z

i−1σ
x
i σ z

i+1. (B1)

The second non-on-site Z2 symmetry transformation (43) transforms σ x
i in a similar way [see Eq. (44)]:⎛

⎝∏
j

σ x
j

∏
j

s j, j+1

⎞
⎠σ x

i

⎛
⎝∏

j

σ x
j

∏
j

s j, j+1

⎞
⎠

= 1 − σ z
i−1 + σ z

i + σ z
i−1σ

z
i

2

1 − σ z
i + σ z

i+1 + σ z
i σ z

i+1

2
σ x

i

1 − σ z
i−1 + σ z

i + σ z
i−1σ

z
i

2

1 − σ z
i + σ z

i+1 + σ z
i σ z

i+1

2

= 1 − σ z
i−1 + σ z

i + σ z
i−1σ

z
i

2

1 − σ z
i + σ z

i+1 + σ z
i σ z

i+1

2

1 − σ z
i−1 − σ z

i − σ z
i−1σ

z
i

2

1 + σ z
i + σ z

i+1 − σ z
i σ z

i+1

2
σ x

i

=
(

1 − σ z
i−1 + σ z

i + σ z
i−1σ

z
i

2

1 − σ z
i−1 − σ z

i − σ z
i−1σ

z
i

2

)(
1 − σ z

i + σ z
i+1 + σ z

i σ z
i+1

2

1 + σ z
i + σ z

i+1 − σ z
i σ z

i+1

2

)
σ x

i

=
(
1 − σ z

i−1

) − (
1 + σ z

i−1

)
2

(
1 + σ z

i+1

) − (
1 − σ z

i+1

)
2

σ x
i = −σ z

i−1σ
x
i σ z

i+1. (B2)

APPENDIX C: TOPOLOGICAL PATH INTEGRAL
ON A SPACE-TIME WITH WORLD LINES

1. Space-time lattice and branching structure

To find the conditions on the domain-wall data, we need
to use extensively the space-time path integral. Let us first
describe how to define a space-time path integral. We first
triangulate the three-dimensional space-time to obtain a sim-
plicial complex M3 (see Fig. 7). Here we assume that all
simplicial complexes are of bounded geometry in the sense
that the number of edges that connect to one vertex is bounded
by a fixed value. Also, the number of triangles that connect to
one edge is bounded by a fixed value, etc.

In order to define a generic lattice theory on the space-
time complex M3, it is important to give the vertices of
each simplex a local order. A nice local scheme to order the
vertices is given by a branching structure [14,55]. A branching
structure is a choice of the orientation of each edge in the
n-dimensional complex so that there is no oriented loop on
any triangle (see Fig. 8).

The branching structure induces a local order of the
vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming edges, and the second vertex

e
v

12

2e
e01

02

012φ

v0
0

3

2

6

5

4

v11

FIG. 7. A two-dimensional complex. The vertices (0-simplices)
are labeled by i. The edges (1-simplices) are labeled by 〈i j〉. The
faces (2-simplices) are labeled by 〈i jk〉. The degrees of freedoms
may live on the vertices (labeled by vi), on the edges (labeled by ei j)
and on the faces (labeled by φi jk).

is the vertex with only one incoming edge, etc. So the
simplex in Fig. 8(a) has the following vertex ordering:
“0”<“1”<“2”<“3.”

The branching structure also gives the simplex (and its sub
simplexes) an orientation denoted by si j···k = 1, ∗. Figure 8
illustrates two 3-simplices with opposite orientations s0123 = 1
and s0123 = ∗. The red arrows indicate the orientations of the
2-simplices which are the subsimplices of the 3-simplices.
The black arrows on the edges indicate the orientations of the
1-simplices.

The degrees of freedom of our lattice model live on the
vertices (denoted by vi where i labels the vertices), on the
edges (denoted by ei j where 〈i j〉 labels the edges), and on
other high dimensional simplicies of the space-time complex
(see Fig. 7).

2. Discrete path integral

In this paper, we only consider a type of 2+1D path integral
that can be constructed from a tensor set T of two real and one
complex tensors: T = (wv0 , dv0v1

e01
,Ce01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123
). The

complex tensor Ce01e02e03e12e13e23;φ012φ023
v0v1v2v3;φ013φ123

can be associated with a
tetrahedron, which has a branching structure (see Fig. 9). A
branching structure is a choice of an orientation of each edge
in the complex so that there is no oriented loop on any triangle

3
0 0

2

3

121

FIG. 8. Two branched simplices with opposite orientations. (a) A
branched simplex with positive orientation and (b) a branched sim-
plex with negative orientation.
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2

3

e12

13e

e01 02e
0 03e e23

1

FIG. 9. The tensor Ce01e02e03e12e13e23;φ012φ023
v0v1v2v3;φ013φ123

is associated with a
tetrahedron, which has a branching structure. If the vertex-0 is above
the triangle-123, then the tetrahedron will have an orientation s0123 =
∗. If the vertex-0 is below the triangle-123, the tetrahedron will have
an orientation s0123 = 1. The branching structure gives the vertices a
local order: the ith vertex has i incoming edges.

(see Fig. 9). Here the v0 index is associated with the vertex-0,
the e01 index is associated with the edge-01, and the φ012 index
is associated with the triangle-012. They represent the degrees
of freedom on the vertices, edges, and triangles.

Using the tensors, we can define the path integral on any
3-complex that has no boundary:

Z (M3) =
∑

v0,··· ;e01,··· ;φ012,···

∏
vertex

wv0

∏
edge

dv0v1
e01

×
∏
tetra

[
Ce01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123

]s0123
, (C1)

where
∑

v0,··· ;e01,··· ;φ012,··· sums over all the vertex indices, the
edge indices, and the face indices, s0123 = 1 or ∗ depending
on the orientation of tetrahedron (see Fig. 9). We believe such
type of path integral can realize any 2+1D topological order.

3. Path integral on space-time with natural boundary

On the complex M3 with boundary: B2 = ∂M3, the parti-
tion function is defined differently:

Z (M3) =
∑

{vi;ei j ;φi jk}

∏
vertex/∈B2

wv0

∏
edge/∈B2

dv0v1
e01

×
∏
tetra

[
Ce01e02e03e12e13e23;φ012φ023

v0v1v2v3;φ013φ123

]s0123
, (C2)

where
∑

vi;ei j ;φi jk
only sums over the vertex indices, the edge

indices, and the face indices that are not on the boundary. The
resulting Z (M3) is actually a complex function of vi’s, ei j’s,
and φi jk’s on the boundary B2: Z (M3; {vi; ei j ; φi jk}). Such
a function is a vector in the vector space VB2 . (The vector
space VB2 is the space of all complex function of the boundary
indices on the boundary complex B2: �({vi; ei j ; φi jk}.) We
will denote such a vector as |�(M3)〉. The boundary is
attached with the tensors wvi and dv0v1

e01
. The boundary (C2)

defined above is called a natural boundary of the path integral.
We also note that only the vertices and the edges in

the bulk (i.e., not on the boundaries) are summed over in
|�(M3)〉. When we glue two boundaries together, those
tensors wvi and d

viv j
ei j are added back. For example, let M3 and

N 3 to have the same boundary (with opposite orientations)
∂M3 = −∂N 3 = B2, which give rise to wave functions on
the boundary |�(M3)〉 and 〈�(N 3)| after the path integral
in the bulk. Gluing two boundaries together corresponds to
the inner product 〈�(N 3)|�(M3)〉. So the tensors wvi and

FIG. 10. A retriangulation of a 3D complex.

d
viv j
ei j defines the inner product in the boundary Hilbert space
VB2 . Therefore we require wvi and d

viv j
ei j to satisfy the following

unitary condition:

wvi > 0, d
viv j
ei j > 0. (C3)

4. Topological path integral

We notice that the above path integral is defined for any
space-time lattice. The partition function Z (M3) depends on
the choices of the space-time lattice. For example, Z (M3)
depends on the number of the cells in space-time, which
give rise to the leading volume dependent term, in the large
space-time limit (i.e., the thermodynamic limit)

Z (M3) = e−εV Z top(M3), (C4)

where V is the space-time volume, ε is the energy density of
the ground state, and Z top(M3) is the volume independent
partition function. It was conjectured that the volume inde-
pendent partition function Z top(M3) in the thermodynamic
limit, as a function of closed space-time M3, is a topological
invariant that can fully characterize topological order [8,22].
So it is very desirable to fine tune the path integral to make
the energy density ε = 0. This can be achieved by fine-tuning
the tensors wvi and d

viv j
ei j . However, we can do better. We

can choose the tensor (wv0 , dv0v1
e01

, Ce01e02e03e12e13e23;φ012φ023
v0v1v2v3;φ013φ123

) to
be the fixed-point tensor-set under the renormalization group
flow of the tensor network [12,56]. In this case, not only
the volume factor e−εV disappears, the volume independent
partition function Z top(M3) is also retriangulation invariant,
for any size of space-time lattice. In this case, we refer the path
integral as a topological path integral, and denote the resulting
partition function as Z top(M3). Z top is also referred as the
volume independent the partition function, which is a very im-
portant concept, since only the volume independent partition
functions correspond to topological invariants. In particular, it
was conjectured that such kind of topological path integrals
describes all the topological order with gappable boundaries.
For details, see Refs. [8,22].

FIG. 11. A retriangulation of another 3D complex.
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The invariance of partition function Z under the retriangu-
lation in Figs. 10 and 11 requires that∑

φ123

Ce01e02e03e12e13e23;φ012φ023
v0v1v2v3;φ013φ123

Ce12e13e14e23e24e34;φ123φ134
v1v2v3v4;φ124φ234

=
∑
e04

dv0v4
e04

∑
φ014φ024φ034

Ce01e02e04e12e14e24;φ012φ024
v0v1v2v4;φ014φ124

×C∗e01e03e04e13e14e34;φ013φ034
v0v1v3v4;φ014φ134

Ce02e03e04e23e24e34;φ023φ034
v0v2v3v4;φ024φ234

, (C5)

Ce02e03e04e23e24e34;φ023φ034
v0v2v3v4;φ024φ234

=
∑

e01e12e13e14,v1

wv1 dv0v1
e01

dv1v2
e12

dv1v3
e13

dv1v4
e14

∑
φ012φ013φ014φ123φ124φ134

×Ce01e02e03e12e13e23;φ012φ023
v0v1v2v3;φ013φ123

C∗e01e02e04e12e14e24;φ012φ024
v0v1v2v4;φ014φ124

×Ce01e03e04e13e14e34;φ013φ034
v0v1v3v4;φ014φ134

Ce12e13e14e23e24e34;φ123φ134
v1v2v3v4;φ124φ234

. (C6)

We would like to mention that there are other similar con-
ditions for different choices of the branching structures. The
branching structure of a tetrahedron affects the labeling of the
vertices. For more details, see Ref. [57].

5. Topological path integral with world lines

In this paper, we also need to use the space-time path
integral with world lines of topological excitations. We denote
the resulting partition function as

, (C7)

where i, j, k, . . . ∈ {1, 2, · · · , N} label the type of topological
excitations, and α, β, γ label the different fusion channels
(i.e., different choices of actions at the junction of three world
lines). The world lines are defined via a different choice of
tensors for simplexes that touch the world lines. In this paper,
we will choose the tensors very carefully, so that the path
integral with world lines is also retriangulation invariant (even
for the retriangulations that involve the world lines). The
different choices of re-triangulation-invariant world lines are
labeled by the different types of topological excitations. In this
paper, we will only consider those topological path integrals
with retriangulation invariance.

APPENDIX D: RENORMALIZATION GROUP FLOW
OF MARGINAL PERTURBATIONS OF SU(2)1 CFT

There are in total nine terms of marginal perturbations in
SU(2)1 CFT, composed of left and right currents. Let us first
consider the following three couplings:

Sint =
3∑

i=1

∫
giOi, Oi = JiJi. (D1)

The renormalization group (RG) equations have the form

ġi = αi jkg jgk, (D2)

(−−−) (+ −−)

(+ + −)

(+ − +)

(+ + +)(− + +)

(−− +)

(− + −)

g1

g2

g3

FIG. 12. The RG flow of δS = ∑
i=1,2,3

∫
d2xgiJiJi. There are

only fixed lines, shown as the blue lines. There are no stable sheets
or regions, as indicated by the orange flow arrows. The corners are
labeled by (s1, s2, s3).

where αi jk is proportional to the operator product expansion

αi jk = 〈OiOjOk〉 = 〈JiJjJk〉〈JiJ jJk〉 = (εi jk )2. (D3)

It follows that

ġ1 = g2g3, ġ2 = g3g1, ġ3 = g1g2. (D4)

The solution of the beta function has four fixed lines. To
solve them, take the form gi(t ) = λi f (t ), and one finds λ1λ2

λ3
=

λ2λ3
λ1

= λ3λ1
λ2

. Therefore λi = siα, where α � 0, si = ±1 to be
determined. The RG equations become

ḟ (t ) = sα f 2(t ), (D5)

where s = s1s2s3. The solution is

f (t ) = f (0)

1 − sα f (0)t
. (D6)

This leads to the RG solution of fixed lines

gi(t ) = gi(0)

1 − s|gi(0)|t , |g1(0)| = |g2(0)| = |g3(0)|. (D7)

We find that (1) when s > 0, the following four fixed lines
flow towards infinity:

g1(t ) = g2(t ) = g3(t ) > 0,

g1(t ) = −g2(t ) = −g3(t ) > 0,

−g1(t ) = g2(t ) = −g3(t ) > 0,

−g1(t ) = −g2(t ) = g3(t ) > 0. (D8)

(2) When s < 0, the following four fixed lines flow towards
g1 = g2 = g3 = 0:

g1(t ) = g2(t ) = g3(t ) < 0,

g1(t ) = −g2(t ) = −g3(t ) < 0,

−g1(t ) = g2(t ) = −g3(t ) < 0,

−g1(t ) = −g2(t ) = g3(t ) < 0. (D9)

This allows us to show that there are no stable regions or
sheets in the (g1, g2, g3) parameter space, as illustrated in
Fig. 12.

Through the above example, we see a general pattern. If
there is only one marginally relevant coupling, i.e., if we are
on a fixed line, then there is a finite region, such that all
the couplings in that region flow to zero. This finite region
represents the region of stable gapless phase. If there are
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two marginally relevant couplings, i.e., if we are on a plane
spanned by two fixed lines, then there is no finite region where
the couplings flow to zero. When there are more marginally

relevant couplings, the system is getting even more unstable.
So we believe that, for our case with nine marginally relevant
couplings, the corresponding CFT is unstable.
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