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Multilayered vortices
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Vortices are localized planar structures that attain topological stability and can be used to describe collective
behavior in a diversity of situations of current interest in nonlinear science. In high-energy physics, vortices
engender an integer winding number and appear under the presence of a local Abelian symmetry. In this work, we
study vortices in a Maxwell-Higgs model, in which the gauge symmetry is enhanced to accommodate additional
symmetries, responsible to generate localized structures to be used to constrain the vortex structure in a given
region in the plane. The main aim is to examine how the vortex profile changes when it inhabits a limited region,
an issue of current interest to the study of vortices at the nanometric scale.
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I. INTRODUCTION

In 1957, Abrikosov unveiled the existence of vortex lat-
tices in superconductors [1]. The procedure is based on
the Ginzburg-Landau theory [2] and involves nonrelativistic
fields. However, it is also possible to find relativistic field
theories that support localized vortex solutions. The first
relativistic model was examined by Nielsen and Olesen [3] in
1973, described by a complex scalar field minimally coupled
with a Maxwell gauge field under the action of the local
U(1) symmetry. Vortices seem to be everywhere in nonlinear
science. They appear in magnetic materials at the nanometric
scale [4,5], in spinor Bose-Einstein condensates [6], in fluids
and in many other systems. In superfluid 3He, in particular,
recent works have shown that the presence of superfluid
phases are strongly influenced by mesoscopic confinement
[7] and by nanoscale channels [8], which can greatly alter
the phase diagram by stabilizing broken symmetry phases
not observed in bulk samples. Vortices also appear in spe-
cific arrangements of living systems [9,10], in particular, in
small droplets of dense bacterial suspensions [9], where the
influence of global confinement on collective motion was
also identified, connected with the competition between radial
confinement, self-propulsion and other factors, with the effect
of robustly inducing intriguing steady vortex states.

In high-energy physics, vortices are topological structures
with the magnetic field giving rise to a magnetic flux which is
controlled by an integer number n ∈ Z of the basic magnetic
flux, which the integer also known as vorticity or wind-
ing number. Magnetic vortices are vortices described by the
magnetization of magnetic materials, and there they are also
localized structures topologically protected by the Pontryagin
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index. Magnetic vortices are half-skyrmions, that is, they
have skyrmion number one-half and belong to the class of
topological structures known as magnetic skyrmions [11–13],
which are protected by the Pontryagin index with integer
value, the skyrmion number. Magnetic vortices and magnetic
skyrmions have an important interface when one deals with
magnetic structures in magnetic materials at the nanometric
scale [4,5,13].

In this work, we focus on the relativistic Maxwell-Higgs
system, but we enhance the local U(1) symmetry to the case of
U(1) × G, with the extra symmetry governed by G, which can
be the discrete Z2 symmetry or another local U(1) symmetry.
Here, however, we innovate using the second symmetry to
describe a topological structure which is localized in the
plane, and so capable of entrapping the original vortex into
a limited region of the plane, modeling the presence of a
geometric constriction. We have examined this for kinks in
the real line very recently [14], and in the present work, we
discuss the much harder case of vortices, which requires the
presence of two spatial dimensions and the addition of extra
degrees of freedom. Issues concerning the enhancement of the
local U(1) symmetry were investigated before in Ref. [15]
and more recently in Refs. [16,17], for instance, but here
we deal with another possibility, focusing on the entrap-
ment of vortices into geometrically constrained regions in the
plane. The subject is of current interest, since the study of
nanometrically sized vortexlike structures may induce effects
due to the appearance of constraints in the material at the
nanometric scale [7,8]. This is the case, for instance, in
[18], where particular geometric junction was used to create
skyrmions from domain walls, and also in Ref. [19], where
a geometric constriction is of key importance to demonstrate
experimentally the current-driven transformation of domain
walls into magnetic skyrmions in a magnetic strip, an issue of
direct interest to skyrmion-based spintronics. More recently,
in Ref. [20] the authors investigated the pattern formation
of geometrically confined skyrmions, and there they show in
particular that the disk-shaped geometry directly contributes
for the formation of a multilayered magnetic structure.
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The magnetic skyrmions and vortices are localized finite
energy configurations that appear in magnetic materials and
have been studied with a diversity of applications; see, e.g.,
the recent review [13] and references therein. One interest-
ing mechanism responsible for the formation of skyrmions
relies on the Dzyaloshinsky-Moriya interaction [11,21,22],
which is induced by the lack of inversion symmetry and the
strong spin-orbit coupling which are present in the material.
Skyrmions also appeared in the relativistic context in the
Skyrme work [23], in the search for a unified theory of mesons
and baryons. In the present work, however, we focus on
vortices in the planar relativistic Maxwell-Higgs model, that
is, we revisit the Nielsen and Olesen work [3], but we enlarge
the system to accommodate extra degrees of freedom. We do
this in the next Sec. II, where we study two distinct models. In
Sec. III, we end the study discussing other possibilities related
to the results of this work.

II. MODELS

A. First model, with U(1) × Z2 symmetry

We start with the following Lagrange density, with di-
mensionless quantities and metric tensor ημν such that
diag(ημν ) = (1,−1,−1), with μ, ν = 0, 1, 2:

L= − 1
4 f (χ )FμνFμν + |Dμϕ|2 + 1

2∂μχ∂μχ −V (|ϕ|, χ ). (1)

In this model, χ is a neutral real scalar field, ϕ is a charged
complex scalar field, Fμν = ∂μAν − ∂νAμ, Dμ = ∂μ + iAμ,
and Aμ is a vector field. V (|ϕ|, χ ) is the potential, which is
supposed to account for interactions between the neutral and
charged fields. Also, f (χ ) is a nonnegative real function of
the neutral field, and for some constant values of χ , the model
leads us back to the standard Maxwell-Higgs system, with
V (|ϕ|) being the Higgs-type potential. The symmetry in this
case is U(1) × Z2, accounting for the local U(1) symmetry and
the global Z2 symmetry which is governed by the real scalar
field χ . To search for vortices we consider static fields, take
A0 = 0 and

χ = χ (r), ϕ = g(r)einθ , �A = − θ̂

r
(a(r) − n), (2)

where n is a nonvanishing integer that represents the vorticity
and the functions must obey the boundary conditions χ (0) =
χ0, χ (∞) = χ∞, g(0) = 0, g(∞) = 1, a(0) = n, and a(∞) =
0. In this case, the magnetic field is given by B = −a′/r, and
the flux is quantized, � = n �0, with �0 = 2π being the basic
flux. Note that we are taking unity electric charge and we will
also use n = 1, for simplicity.

The equations of motion are written as

1

r
(rχ ′)′ = fχ

a′2

2r2
+ Vχ , (3a)

1

r
(rg′)′ = a2g

r2
+ 1

2
Vg, (3b)

r

(
f

a′

r

)′
= 2ag2, (3c)

where fχ = df /dχ , Vχ = ∂V/∂χ , and V|ϕ| = ∂V/∂|ϕ|. The
presence of nonlinearity in the potential adds further

nonlinearities in the above equations of motion, which is
mandatory to obtain stable localized structures. The static
configurations governed by the above equations of motion
engender energy density

ρ = f (χ )
a′2

2r2
+ g′2 + a2g2

r2
+ 1

2
χ ′2 + V (g, χ ). (4)

The above field configurations are invariant under rotations in
the plane, and one may follow the lines of Refs. [17,24] to
find a first-order framework that minimizes the energy of our
system. It arises with the potential

V (|ϕ|, χ ) = 1

2

(
1 − |ϕ|2)2

f (χ )
+ 1

2

W 2
χ

r2
, (5)

where W = W (χ ) is an auxiliary function that controls the
neutral field. The presence of the radial coordinate in the
last term of the potential was first studied in Ref. [25], and
is important to support stable planar kinklike solution to be
constructed from the neutral field χ . With the above potential,
the energy that comes from Eq. (4) is minimized to E =
2π + 2π |W (χ (∞)) − W (χ (0))| if the following first-order
equations are satisfied

χ ′ = ±Wχ

r
, (6)

and

g′ = ±ag

r
, −a′

r
= ± (1 − g2)

f (χ )
. (7)

The positive and negative signs in Eq. (6) are related by
the change r → 1/r, and the ones in Eqs. (7) by a → −a,
so we only consider the positive signs. Since the first-order
equations provide minimum energy solutions, they are stable
against small fluctuations of the field configurations, because
the fluctuations cannot decrease the energy of the minimum
energy solutions.

The importance of the first-order equations (6) and (7)
goes beyond their simplicity; since they ensure minimum
energy to the corresponding solutions, they are then linearly
stable, discarding the necessity to conduct hard linear stability
analysis for the allowed vortex configurations. Another in-
teresting result is that the energy which is explicitly written
just above Eq. (6) does not depend on f (χ ), so we can
change the allowed forms of f (χ ) without modifying the
energetic behavior of the solutions. And yet, another property
of the vortex configurations that solve the first-order equations
concerns their topological behavior. To see how this works, let
us introduce the topological current

jμT = 1
2εμσδFδσ , (8)

where εμσδ represents the Levi-Civita symbol. It is conserved,
such that ∂μ jμT = 0: the topological charge can be written
in the form QT = 2π (a(0) − a(∞)), using (2); thus, the
boundary conditions on a(r) lead us with QT = 2π . We then
see that the function f (χ ) does not modify neither the total
energy nor the topological charge of the vortex solutions that
obey the first-order equations (6) and (7). Another property
of interest is that the magnetic field is such that its flux gives
� = 2π , and so coincides with the topological charge. In the
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present context one notices that although the function f (χ )
controls the magnetic field, it does not interfere in its flux.
Thus, in summary, the function f (χ ) can be used to distribute
the magnetic field and the energy density in the plane without
altering neither its flux nor the total energy and stability of the
vortex solution. These are important properties of the above
model and its companion first-order equations.

To find solutions, however, one must suggest the form of
W (χ ) to determine the kinklike solution in Eq. (6) to be used
to model the function f (χ ) in order to feed the first-order
equations (7) to describe the vortex. Before going into this, we
notice that solutions of the above first-order equations allow us
to write the energy density (4) as two separated contributions,
in the form ρ = ρvor + ρχ , where

ρvor = f (χ )
a′2

r2
+ 2g′2, ρχ = χ ′2. (9)

To emphasize the role played by the several fields, we remark
that the χ field which is guided by the Z2 symmetry has to
be capable of generating a localized structure to entrap the
vortex described by the ϕ and Aμ fields that are guided by the
local U(1) symmetry. In this sense, the potential to describe
the χ field has to have at least two minima, say ±χ̄ , for which
V (|ϕ|,±χ̄ ) = V (|ϕ|), leading us back to the Maxwell-Higgs
potential. If we further require that in the limit χ → ±χ̄ , the
model becomes the Maxwell-Higgs model that supports the
standard Nielsen-Olesen vortex configuration, this imposes
that the function f (±χ̄ ) becomes the same positive constant,
and this further constrains the function f (χ ).

Let us now concentrate on the construction of explicit
models. We consider two distinct possibilities, with the χ field
engendering distinct nonlinearities of current interest, to see
how the nonlinearity associated with the Z2 symmetry may
modify the shape of the vortex described by the local U(1)
symmetry.

1. Cubic nonlinearity

Let us investigate the case in which the χ field engen-
ders cubic nonlinearity in the equation of motion. For the
model under investigation, this is implemented with the choice
W (χ ) = αχ − αχ3/3, such that

Wχ = α(1 − χ2), (10)

which vanishes at the values ±1, determining the minima
and the values χ0 and χ∞ to be used to define the solution
χ (r). The kinklike solution that appears from Eq. (6) with the
positive sign is

χ (r) = r2α − r2α
0

r2α + r2α
0

, (11)

where r0 is a parameter associated to the size of the kink and
α controls the slope of the solution at r = r0. In Fig. 1, we
depict this solution and its respective energy density ρχ (r) for
r0 = 1 and α = 1 and 2.

We use the above solution as a source for the function
that controls the magnetic permeability, which we take as
f (χ ) = (1 + λ2)/(λ2 + cos2(mπχ )), m ∈ N and λ ∈ R. This
is of practical interest because for large values of λ, the
function f (χ ) tends to unity, the χ field decouples, and g(r)

FIG. 1. The first model. The kinklike solution χ (r) (a) and its
energy density ρχ (r) (b) are depicted for the cubic case, with r0 = 1,
and α = 1 and 2. The thickness of the lines increases with α.

and a(r) become the Nielsen-Olesen vortex configurations.
For λ small, the model supports novel configurations, which
we investigate below. We first consider the case λ = 0. Here,
the first-order equations (7) with the upper sign become

g′ = ag

r
, −a′

r
= cos2

(
mπ

r2α − r2α
0

r2α + r2α
0

)
(1 − g2). (12)

We solve these equations numerically, and in Fig. 2 we depict
the vortex solutions, magnetic field B = −a′/r and energy
density ρvor (r) in Eq. (9) for n = 1 and for r0 = 1, m = 1,
and α = 1 and 2, from which we see how the parameter α

modifies the vortex. In order to verify the role of the parameter
m, we also depict the aforementioned quantities for n = 1,
and for r0 = 1, m = 2, and α = 1 and 2 in Fig. 3. We further
illustrate the model depicting in Fig. 4 the magnetic fields in
the plane for n = 1, and for r0 = 1 and some values of m

FIG. 2. The first model. The vortex solutions a(r) (descending
line) and g(r) (ascending line) in the (a) and (b), the magnetic field
B(r) = −a′/r [(c) and (d)] and the energy density ρvor (r) [(e) and
(f)]. They are depicted for the cubic case, with n = 1, r0 = 1, m = 1,
and α = 1 (left) and 2 (right), respectively.
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FIG. 3. The first model. The vortex solutions a(r) (descending
line) and g(r) (ascending line) in (a) and (b), the magnetic field
B(r) = −a′/r [(c) and (d)] and the energy density ρvor (r) [(e) and
(f)]. They are depicted for the cubic case, with n = 1, r0 = 1, λ = 0,
m = 2, and α = 1 (left) and 2 (right), respectively.

FIG. 4. The first model. The magnetic field associated to the
vortex is depicted in the plane for the cubic case, with n = 1, r0 = 1,
λ = 0, α = 1, and m = 1 (a), α = 2 and m = 1 (b), α = 1, and
m = 2 (c), and α = 2 and m = 2 (d).

FIG. 5. The first model. The vortex solutions a(r) (descending
line) and g(r) (ascending line) (four top panels), and the magnetic
field associated to the vortex, which is depicted in the plane (four
bottom panels). We take n = 1, r0 = 1, m = 1, α = 1, and λ = 0.5
[(a) and (e)], 1 [(b) and (f)], 2 [(c) and (g)], and 4 [(d) and (h)].

and α. We see that the magnetic field of the vortex engender
substructures associated to these parameters: a single central
disk and 2m external rings, with the radius of the central disk
increasing with increasing α. The energy density also shows
similar internal structure, but in a more subtle manner.

We now consider the case of a nonvanishing λ. The in-
vestigation is similar to the previous one, so in Fig. 5, we
only depict g(r), a(r), and the magnetic field in the plane for
n = 1 and r0 = 1, m = 1, α = 1, and λ = 0.5, 1, 2, and 4.
We remind that the case of λ = 0 is in the top left of Fig. 4,
and the case λ = 4 in the bottom right of Fig. 5 is essentially
the magnetic field of the Nielsen-Olesen model. One notices
from Figs. 2, 4, and 5 that the dependence of the vortex on λ is
much more significant for λ ∈ [0, 1]. Nevertheless, the results
show that the parameter λ provides the possibility to construct
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FIG. 6. The first model. The magnetic field is depicted in the
plane for the case of cubic nonlinearity in the Bessel case, with α = 1
and γ = 1.5 (a) and 5 (b).

vortices with profile different from the Nielsen-Olesen one.
Since the function f (χ ) that appear in (1) is directly related
to the magnetic permeability [24] of the model, it is the
change in the magnetic permeability that responds for the
modification of the vortex configuration. We also notice that
the total energy of the field configurations, which appears just
above Eq. (6), does not depend on λ and m, and this leads us
to the possibility to control the profile of the solution without
changing its total energy. On the other hand, the total energy
depends on α, which controls the shape of the rings and is
related to the additional Z2 symmetry.

We can consider another possibility, changing the function
f (χ ) to the new form f (χ ) = 1/J2

1 (γχ ), γ ∈ R, with J1

being the Bessel function of first kind. We call this the Bessel
case, which is motivated by Ref. [26] that deals with a Bessel
lattice. We shall further comment on this in the next Sec-
tion, but here the first-order equations (12) change to, taking
r0 = 1,

g′ = ag

r
, −a′

r
= J2

1

(
γ

r2α − 1

r2α + 1

)
(1 − g2). (13)

These equations are solved numerically, and the magnetic
field is now depicted in the plane in Fig. 6. We compare
these results with the previous ones to see that the magnetic
permeability can be modulated to control how the magnetic
field spread around the core of the localized vortex solution.

It is important to notice that although the magnetic field
may be spread around the center of the vortex in different
ways, its energy, stability, topological charge and magnetic
flux remain the same.

2. Cubic and quintic nonlinearities

We can study another type of potential for the χ field. We
do this changing (10) to

Wχ = αχ (1 − χ2). (14)

In this case, the minima are also at ±1, but now there is
another minimum at χ = 0. The equation of motion of the
χ field engenders cubic and quintic nonlinearities and the
solution changes from (11) to the new one

χ (r) = rα√
r2α

0 + r2α

. (15)

FIG. 7. The first model. The magnetic field is depicted in the
plane for the case of cubic and quintic nonlinearity in the Bessel
case, with α = 1 and γ = 1.5 (a) and 5 (b).

Here we also take r0 = 1. In this case, χ (r) is zero at the origin
and so different from the previous case. We then investigate
how the change from the cubic case displayed before to the
above cubic and quintic situation reflects in the profile of
the vortex configuration. To investigate this we consider the
same Bessel case, f (χ ) = 1/J2

1 (γχ ), as we did before. In this
case the first-order equation (12) changes to

g′ = ag

r
, −a′

r
= J2

1

(
γ rα

√
1 + r2α

)
(1 − g2), (16)

and the magnetic field is depicted in the plane in Fig. 7.
We can compare the results of Figs. 6 and 7 to see that
the nonlinearity associated to the χ field is also important
to control the magnetic field around the center of the vortex
solution.

We summarize the above results noticing that both the
magnetic permeability and the nonlinearity associated to the χ

field are important to modify the solution and control the
distribution of magnetic field around its center, changing the
standard solution into a multilayered structure.

B. Second model, with U(1) × U(1) symmetry

Let us now consider another model. If instead of the Z2

symmetry we use another local U(1) symmetry, the model
changes to accommodate extra fields, another complex scalar
field χ and another gauge field Aμ. In this case, the Lagrange
density becomes

L = − 1
4 f (|χ |)FμνFμν − 1

4FμνFμν

+ |Dμϕ|2 + |Dμχ |2 − V (|ϕ|, |χ |), (17)

where we use the notation Fμν = ∂μAν − ∂νAμ and Dμ =
∂μ + iqAμ. Since we aim to deal with vortex configurations,
we take static fields. Moreover, we consider the ansatz A0 =
A0 = 0, with ϕ and �A given as in Eq. (2) and the other fields
as

χ = h(r)eikθ , �A = − θ̂

qr
(c(r) − k), (18)

with k being another nonvanishing integer. The boundary con-
ditions now are: h(0) = 0, h(∞) = w, c(0) = k and c(∞) =
0. We see that one is doubling the degrees of freedom used to
describe the standard vortex solution, and the flux associated
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to the additional gauge field �A is also quantized: � �A =
(2π/q)k. The equations of motion are, taking n = k = 1,

1

r
(rg′)′ − a2g

r2
− 1

2
Vg = 0, (19a)

1

r
(rh′)′ − c2h

r2
− 1

2

(
fh

a′2

2r2
+ Vh

)
= 0, (19b)

r

(
f

a′

r

)′
− 2ag2 = 0, (19c)

r

(
c′

qr

)′
− 2qch2 = 0. (19d)

The energy density of the static fields is

ρ = f (h)
a′2

2r2
+ g′2 + a2g2

r2
+ c′2

2q2r2
+ h′2+ c2h2

r2
+ V (g, h).

(20)

To find a first-order framework, one follows [27] to show
that the potential

V (|ϕ|, |χ |) = 1

2

(1 − |ϕ|2)2

f (|χ |) + q2

2
(w2 − |χ |2)2, (21)

turns the energy minimized to 2π (1 + w2) if the following
first-order equations are satisfied

g′ = ±ag

r
, −a′

r
= ± (1 − g2)

f (h)
, (22)

and

h′ = ±ch

r
, − c′

qr
= ±q(w2 − h2). (23)

The upper and lower signs are related by the change a → −a
and c → −c, so we only deal with positive signs. Notice the
first-order equations (23) depend exclusively on c(r) and h(r).
So, we solve them independently, and use the solution to feed
the magnetic permeability controlled by the function f (h(r))
in Eqs. (22) and then find the solutions a(r) and g(r). For
simplicity, from now on we consider w = 1. The first-order
equations (22) and (23) allows us to write the energy density
(4) in the form ρ = ρ1 + ρ2, where

ρ1 = c′2

q2r2
+ 2h′2, ρ2 = f (h)

a′2

r2
+ 2g′2. (24)

We notice that the localized structures determined by Eqs. (23)
are the Nielsen-Olesen vortex solutions for q = 1, which we
call standard solutions and identify with the subscript st ; thus,
c(r) = cst (qr) and h(r) = hst (qr). This shows that the param-
eter q shrinks or expands the standard vortex solutions, and
since these solutions are well-known, with its corresponding
energy density ρ1 in Eq. (24) being a hump, we do not depict
them here.

To investigate how the aforementioned solutions modify
the other vortex structure, we also consider f (|χ |) = (1 +
λ2)/(λ2 + cos2(2πm|χ |)), m ∈ N and λ ∈ R. In the case for
λ = 0 the first-order equations (22) become

g′ = ag

r
, −a′

r
= cos2 (2πm hst (qr))(1 − g2). (25)

FIG. 8. The second model. The vortex solutions a(r) (descend-
ing line) and g(r) (ascending line) in (a) and (b), their magnetic field
B = −a′/r [(c) and (d)] and their energy density ρ2(r) [(e) and (f)].
They are depicted for n = 1, k = 1, λ = 0, m = 2, and q = 0.5 (left)
and 1 (right).

We use numerical procedures and depict in Figs. 8 and 9,
the vortex solutions, magnetic field, B = −a′/r, and energy
density ρ2(r) for some specific values of the parameters.

As in the previous model, here the magnetic field also
presents internal structures that are controlled by the param-
eters q and m. In Fig. 10, we depict the magnetic field in the
plane, displaying a central disk and m rings around it, which
are also controlled by q. The role played by λ is similar to
the previous case; for this reason, in Fig. 11, we only depict
the magnetic field in the plane for q = 0.5, m = 2, and λ =
0.5, 1, 2, and 4. The results show that the ringlike structures
are much more evident as λ approaches zero. We also notice
that the total energy which appears below the potential given
by Eq. (21) does not depend on q, which is provided by the
additional U(1) symmetry, so the shape of the rings does not
modify the total energy of the solution.

We summarize the above results noticing that in the second
model, with U(1) × U(1) symmetry, the first-order equations
(22) and (23) play a role which is similar to the case discussed
before for the first model. Besides simplifying the search
for solutions, they also obey the minimum energy condition
which ensure their linear stability. In particular, we can also
introduce a topological current and show that the correspond-
ing topological charge is conserved and related to the flux of
the magnetic field B = −a′/r described under the local U(1)
symmetry. Evidently, we can use another model related to
the extra U(1) symmetry. It can be, for instance, described
by the Chern-Simons term, instead the Maxwell one that we
used above. This case is harder, because the Chern-Simons
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FIG. 9. The second model. The vortex solutions a(r) (descend-
ing line) and g(r) (ascending line) in (a) and (b), the magnetic field
B(r) = −a′/r [(c) and (d)] and the energy density ρ2(r) [(e) and (f)].
They are depicted for n = 1, k = 1, λ = 0, m = 3, and q = 0.5 (left)
and 1 (right).

FIG. 10. The second model. The magnetic field associated to the
vortex is depicted in the plane for n = 1, k = 1, λ = 0, q = 0.5 and
m = 2 (a), q = 1 and m = 2 (b), q = 0.5 and m = 3 (c), and q = 1
and m = 3 (d).

FIG. 11. The second model. The magnetic field associated to the
vortex is depicted in the plane for n = 1, k = 1, q = 0.5, m = 2, and
λ = 0.5 (a), 1 (b), 2 (c), and 4 (d).

dynamics makes the vortex charged electrically and requires
the presence of cubic and quintic nonlinearities; see, e.g.,
Ref. [29]. However, since in our model the extra U(1) sym-
metry is included independently, this case can be implemented
with no new obstacle, so we do not investigate this possibility
in this work.

III. DISCUSSION

In this work, we have studied vortices in a relativistic
model with symmetry U(1) × G, with G being the Z2 symme-
try or another local U(1) symmetry. In the two cases, we have
developed first-order framework which unveils the presence
of stable vortex solutions, with the form of a central core
surrounded by shells that are controlled by the parameters
included in the extensions used to define the models. Although
the enhancement of the local U(1) symmetry to U(1) × Z2

or U(1) × U(1) is not new, here we innovate to describe the
entrapment of vortices into geometrically constrained regions
in the plane. In the case with the addition of the discrete Z2

symmetry, we have examined two distinct possibilities, one
with cubic nonlinearity, and the other with cubic and quintic
nonlinearities, to help shed some light on the role played
the by presence of nonlinearity. Anyway, nonlinearity related
to the additional symmetry is mandatory to give rise to the
localized structure to entrap the vortex.

Despite the intrinsic differences between the models with
U(1) × Z2 and U(1) × U(1) symmetries, the internal modi-
fication of the vortex is somehow similar, since it changes
from a single central core to the form of a multilayered
structure. We notice, however, that the total energy of the field
configurations engenders distinct behavior; in the first model,
it depends on α, a parameter that appears connected with
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the additional discrete Z2 symmetry; however, in the second
model with additional U(1) symmetry, it does not depend on q,
the parameter that appear linked to the additional local gauge
symmetry.

We believe that these novel structures are of current interest
to applications dealing with planar magnetic core and shells
structures, in particular with magnetic vortices, since they are
similar to the bimagnetic core and shell nanometric structures
that appear in space [28], that can be more accurate to the con-
struction of the new generation of devices with applications
in magnetic resonance imaging and magnetic data recording,
to quote just two possibilities. Since we are working in (2,1)
space-time dimensions, one could consider the possibility to
change the Maxwell term to the Chern-Simons one, to see if it
is possible to modify the standard Chern-Simons vertex con-
figuration [29] into a multilayered structure of the form pre-
sented in this work. This is harder because the Chern-Simons
vortex is charged electrically, engendering a constraint that
must be solved appropriately to generate acceptable solution.
However, a Chern-Simons model was investigated recently
in [24] and the results motivate further investigation on this
issue.

Another possibility of current interest concerns the exten-
sion of the present work to the case of magnetic monopoles.
This will certainly need the non Abelian SU(2) symmetry
to control the gauge fields in the three-dimensional space.
The problem here is much harder than the case of vortices
examined above, but the recent investigations in which the
magnetic monopole may change its standard form to the small
or hollow [30] or the bimagnetic [31] shape motivate further
investigations, aimed to transform the standard monopole into
a multilayered structure. In the case of vortices, we can also
think of the basic U(1) symmetry to describe the visible
sector, with the additional symmetry describing the hidden
sector. This issue was investigated recently in [27,32] with
different couplings, motivated to study possible mechanisms
to describe interaction between the baryonic and dark matter
within the low-energy frontiers of particle physics [33].

Other interesting possibilities concern the study of the
nonlinear Schrödinger and Gross-Pitaevskii equations. It is a
known fact that under specific conditions, they may support

vortices of several distinct profiles [34,35]; see, for instance,
Refs. [26,36–41] for some specific investigations on vortices
guided by the nonlinear Schrödiger or the Gross-Pitaevskii
equations. In Ref. [26], for instance, the author investigated
light propagation along the z axis in a bulk medium with
defocusing cubic nonlinearity and transverse modulation of
the refractive index, capable of generating stable ringlike
vortex configurations; see also Refs. [37–39] for other related
studies. The investigation described the presence of stable
ringlike vortex configurations trapped by a potential that
simulates a Bessel lattice, modulating the transverse profile
of the refractive index that leads to the ringlike structures.
We notice that there is a single equation, but there is a
trapping potential which is controlled externally by the Bessel
lattice. Differently, in Ref. [41], the authors considered a
binary Bose-Einstein condensate with tunable intercomponent
interaction that is modulated periodically, with frequency that
is resonant or nonresonant with the frequency of the harmonic
trapping potential. The many possibilities gave rise to ringlike
and a variety of exotic patterns. In this case, there are two
equations, with tunable intercomponent interaction. In the
models proposed in the present work, the ringlike structures
are modulated by changing the magnetic permeability of
the medium. Although this is different from the approaches
described in Refs. [26,41], we think that the idea described in
the present work can be extended to the nonlinear Schrödinger
and Gross-Pitaevsky equations, bringing novelties to both the
optical vortices and their close relatives, vortices in Bose-
Einstein condensates. Some of the above issues are now under
consideration, and we believe that the present research will
foster further studies on the subject.
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