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Anomalies in the switching dynamics of C-type antiferromagnets and antiferromagnetic nanowires
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Antiferromagnets (AFMs) are widely believed to be superior to ferromagnets in spintronics because of their
high stability due to the vanishingly small stray field. It is thus expected that the order parameter of AFMs should
always align along the easy axis of the crystalline anisotropy. In contrast to this conventional wisdom, we find that
the AFM order parameter switches away from the easy axis below a critical anisotropy strength when an AFM
is properly tailored into a nanostructure. The switching time first decreases and then increases with the damping.
Above the critical anisotropy, the AFM order parameter is stable and precesses under a microwave excitation.
However, the absorption peak is not at resonance frequency even for magnetic damping as low as 0.01. To resolve
these anomalies, we first ascertain the hidden role of dipolar interaction that reconstructs the energy landscape
of the nanosystem and propose a model of a damped nonlinear pendulum to explain the switching behavior. In
this framework, the second anomaly appears when an AFM is close to the boundary between underdamped and
overdamped phases, where the observed absorption line shape has a small quality factor and thus is not reliable
any longer. Our results should be significant to extract the magnetic parameters through resonance techniques.
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I. INTRODUCTION

Ferromagnets played a vital role in the early development
of magnetism, as well as modern spintronics, while studies
and applications of antiferromagnets (AFMs) are quite limited
due to their lack of tunability and are thus useless. In the past
few years, AFMs have started to attract significant attention
after the discovery of an electrical knob to control antifer-
romagnetic order in a class of antiferromagnets with broken
inversion symmetry [1,2]. Various aspects, such as a damping
mechanism [3,4], spin transfer torque [5–8], magnetic switch-
ing [1], spin pumping [9], and domain-wall/skyrmion dynam-
ics [10–19], have been extensively investigated. One strong
motivation of such intense interest in AFMs is their abundance
in nature and intriguing stability due to the vanishingly small
magnetostatic interaction (MI), which is ever doomed to be
its drawback. Accordingly, MI is neglected in most of the
theoretical and numerical studies of AFMs [10–13]. Never-
theless, the magnetic dipoles are there and the distribution of
the dipoles in an AFM will potentially influence the magnetic
energy and thus the magnetization dynamics, similar to the
situation of electric dipoles in dielectric materials such as
liquid crystals [20]. One open question is when and how
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the MIs manifest themselves and influence the magnetization
dynamics. A complete understanding of this issue may help us
in designing AFM-based devices that are truly free from the
perturbation of magnetic charges.

In this work we take a step toward showing that MI can
induce a switching of an AFM order when its crystalline
anisotropy is below a critical value. The switching occurs
at an ultrafast scale and widely exists in C-type AFMs and
AFM nanowires. By analytically calculating the interaction
of magnetic charges, we find that MI produces an effective
anisotropy that is quadratic in magnetic order and thus re-
constructs the energy landscape of the system, which has
an observable effect on magnetization switching and the
spin-wave spectrum. Above the critical anisotropy, an AFM
resonance is observed, but the absorption peak is not posi-
tioned at the true resonance frequency when the magnetic
damping is close to a critical value around 0.01. A detailed
analysis shows that the quality factor of the absorption line
shape is significantly reduced by the critical damping, near
which the system enters the overdamped regime and the Kittel
theory based on the Lorentz line shape fails.

This article is organized as follows. Our model, method-
ologies, and main findings are presented in Sec. II. In Sec. III
we explain the anomalous resonance behavior near the phase
boundaries and list the typical order of critical damping for the
commonly used AFMs. A discussion and summary are given
in Sec. IV.

II. MODEL AND RESULTS

We first consider a two-sublattice antiferromagnetic
nanowire with an easy axis along the longitudinal direction
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FIG. 1. (a) Schematic illustration of a two-sublattice antiferro-
magnetic nanowire. The red and blue arrows represent the magnetic
moments on each sublattice. The easy axis of crystalline anisotropy is
along the x axis. The plus and minus signs indicate the distribution of
magnetic charges on the surface (black) and inside the volume (gray),
respectively. (b) Switching time of magnetic order as a function
of damping. The red line is the theoretical prediction of Eq. (6).
The light blue and light pink regions represent the oscillating and
monotonic phases, respectively. The inset shows the two typical
switching modes in the two phases for α = 0.001 (blue line) and
α = 0.02 (red line), respectively.

as shown in Fig. 1(a). The magnetization dynamics is first
studied by numerically solving the Landau-Lifshitz-Gilbert
(LLG) equation [21]

∂Si

∂t
= −γ Si × Hi + α

S
Si × ∂Si

∂t
, (1)

where Si is the dimensionless spin vector at the ith site with
magnitude S, γ is the gyromagnetic ratio, and α is the Gilbert
damping. In addition, Hi is the effective field acting on Si,
including an antiferromagnetic exchange field between the
two nearest spins, the crystalline anisotropy field, and the stray
field. The effective field can be quantitatively evaluated as
Hi = −δH/δSi. The Hamiltonian H reads

H = J
∑
〈i, j〉

Si · S j − K
∑

i

S2
i,x − μ0μs

2S

∑
i

Si · Hd,i, (2)

where the first, second, and third terms represent the ex-
change, crystalline anisotropy, and magnetostatic energy, re-
spectively. Further, J , K , μ0, and μs are, respectively, the
exchange coefficient, the crystalline anisotropy coefficient,
the vacuum permeability, and the magnitude of local magnetic
moments. In addition, Hd,i is the dipolar field acting on the
spin Si. The factor 1/2 is introduced to eliminate the duplicate
calculation of magnetostatic energy.

To simulate the dynamics of the system, the parameters
are taken to mimic the commonly used AFM Mn2Au with
J = 24 meV [22] and μs = 3.59μB, where μB is the Bohr

magneton. Note that the anisotropy of Mn2Au is sensitive to
the magnitude of strain [23] and the magnitude of damping α

is still lacking experimental characterization, and thus we treat
them as free parameters. The following are our main findings.
(i) The antiferromagnetic order switches spontaneously away
from the easy axis (x axis) toward the transverse direction for
crystalline anisotropy K < 1.55 μeV (15 mT). Two typical
switching events are shown in the inset of Fig. 1(b). For
α < αc ∼ 0.01, the switching is accompanied by ultrafast
oscillation of magnetization, while the switching is monotonic
for larger dampings. (ii) The switching time first decreases
and then increases with the damping and the minimum is
located around the critical damping, which separates the
oscillation phase from the monotonic phase. In contrast, no
switching happens for the ferromagnetic counterpart with
exactly the same parameters except for the sign of the ex-
change coefficient J . Next we will show that this anomalous
switching of an AFM resulting from the effect of MI and
the oscillation/monotonic phase can be understood from the
underdamped and overdamped phenomena of a pendulumlike
motion of the AFM order parameter.

A. Theoretical formalism

To understand the anomalous switching behavior, the key
point is to properly consider the demagnetization effect in this
system. Here both the volume and surface charges contribute
to the magnetostatic field Hd , which can be formally evaluated
as

Hd,i = −Ms/S
∑

j

Ni j · S j, (3)

where Ms = μs/a3 is the saturation magnetization, with a
the distance between two neighboring spins, and Ni j is the
demagnetization tensor that depends only on the distance of
two spins [24].

Suppose the system is in a Néel state with Si =
(−1)iS(cos θex + sin θey), as shown in Fig. 1(a), and the
longitudinal dimension N � 1; then the total energy of the
system can be calculated as

E (θ ) = − (N − 1)JS2 − NKS2 cos2 θ

+ Na3Kd (D‖ cos2 θ + D⊥ sin2 θ ), (4)

where Kd = μ0M2
s /2, D‖ = Nxx

r=0 + 2
∑N/2

p=1(−1)pNxx
r=pa,

D⊥ = Nyy
r=0 + 2

∑N/2
p=1(−1)pNyy

r=pa, and r = |i − j|a is the
distance between two spins. The factor (−1)p comes from the
antiparallel (parallel) alignment of two spins separated by an
odd (even) distance a, which disappears for a ferromagnetic
state. Since the magnetostatic energy of two spins decays
with their distance as 1/r3 [25], two well-separated spins with
large separation do not contribute to the energy significantly.
Here we use a cutoff distance of r = 4a and analytically
derive D‖ = 0.5713 and D⊥ = 0.2144 by evaluating the
demagnetization tensors Nxx

r and Nyy
r directly. A choice of a

larger cutoff distance will not change D‖ or D⊥ more than
1%.

Here we pay special attention to the longitudinal magneti-
zation states (LSs) θ = 0 and transverse states (TSs) θ = π/2.
The energy difference of these two states can be explicitly
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FIG. 2. Energy landscape of the system as a function of spin
orientation θ for K = 0 (black line), K = Kc (red line), and K = 2Kc

(blue line). The vertical axis is scaled by NKd . (b) Phase diagram of
the system in the 4Hsp/HE ∼ α plane. The top left and bottom right
insets show the typical switching time as a function of crystalline
anisotropy for the overdamped regime and the underdamped regime,
respectively.

calculated as �E/N = −KS2 + Kd (D‖ − D⊥). For an AFM
with strong crystalline anisotropy, the LS is energetically
preferable while the TS becomes energetically preferable
when the anisotropy is very weak. The critical anisotropy can
be evaluated from �E = 0 as Kc = Kd (D‖ − D⊥). Figure 2(a)
shows the energy landscape of the system as a function of spin
orientation θ for K = 0 (black line), K = Kc (red line), and
K = 2Kc (blue line), respectively. Clearly, the LS (TS) has
lower energy than the TS (LS) for K > Kc (K < Kc). Then it
is expected that the antiferromagnet will spontaneously switch
from the LS to the TS for K < Kc, where the crystalline
anisotropy can be reduced by electrical means [26–28].

To analytically describe this switching process, we recall
the antiferromagnetic dynamic equations in terms of the stag-
gered order [17]

n × (∂tt n + αHE∂t n − HE hn) = 0, (5)

where n ≡ (S2i − S2i+1)/2S is the staggered order, HE ≡ 8JS
is the homogeneous exchange field, and hn = 4(K − Kc)ex is
the effective anisotropy field acting on the staggered order. In
spherical coordinates, the dynamic equations can be recast as

∂2ψ

∂t2
+ 2ζω0

∂ψ

∂t
+ sgn(K − Kc)ω2

0 sin ψ = 0, (6)

where ψ = 2θ , ζ = αHE/4Hsp, ω0 = γ Hsp, Hsp = √
HEKeff

is the spin-flop field, and Keff = |K − Kc| is the effective
anisotropy coefficient that includes the contribution from MI.
The sign function sgn(x) = 1 for x � 0 and −1 for x < 0.

This equation is similar to the dynamics of a damped non-
linear pendulum [29]. In general, the solution to Eq. (6) is
an elliptic function with a complicated time dependence [29].
To gain some insight into the timescale of the system, we
will solve Eq. (6) using the small-amplitude approximation
(sin ψ ∼ ψ).

According to the value of damping ratio ζ , three
regimes can be classified. (i) For the underdamped regime
ζ < 1, i.e., α < 4Hsp/HE , we have the solution ψ (t ) =
ψ0e−ζω0t sin(

√
1 − ζ 2ω0t + ϕ0). The system oscillates and

decays to the equilibrium state with a timescale of �t =
1/ζω0, i.e., the larger the damping is, the faster the
relaxation will be. This is consistent with the oscilla-
tion phase in Fig. 2(b). (ii) For the overdamped regime

ζ > 1, i.e., α > 4Hsp/HE , ψ (t ) = ψ0e−ζω0t (c1e
√

ζ 2−1ω0t +
c2e−

√
ζ 2−1ω0t ). Two modes 1/τs = (ζ −

√
ζ 2 − 1)ω0 and

1/τ f = (ζ +
√

ζ 2 − 1)ω0 compete to determine the dynam-
ics, while the long-time behavior of the pendulum is dom-
inated by the slow mode τs. Since τs increases with the
damping ratio, the relaxation time becomes larger with the
increase of damping. This is also consistent with the mono-
tonic phase in Fig. 2(b). (iii) For the critical regime ζ = 1, i.e.,
α = 4Hsp/HE , ψ (t ) = ψ0e−ζω0t . A complete phase diagram
in the 4Hsp/HE ∼ α plane is shown in Fig. 2(b). The typical
overdamped and underdamped cases are shown in the top left
and bottom right insets, respectively. They show distinguished
anisotropy dependences.

As a comparison, the ferromagnetic counterpart of Eq. (6)
reads [30]

∂θ

∂t
= −αγ Keff sin 2θ, (7)

which is a first-order ordinary differential equation. This equa-
tion can be analytically solved as −(t − t0)/�t = ln tan θ ,
where �t = 1/2αγ Keff . Differing from antiferromagnets, the
typical switching time does not depend on the strong exchange
constant HE and it usually takes a longer time to reach the
steady state because of Keff 
 HE .

B. Two- and three-dimensional cases

Up until now, we have focused on the switching behavior of
a one-dimensional (1D) magnetic nanowire, but the essential
physics is still valid for the C-type antiferromagnet in the
2D and 3D cases. To be specific, as shown in Fig. 3(a), the
magnetostatic field of a particular spin (dashed line) always
aligns parallel (antiparallel) to the nearest spins for a TS (LS)
in the C-type antiferromagnet. Hence, the TS is energetically
favorable. For the G-type antiferromagnet or checkerboard
antiferromagnet, the LS and TS are energetically degenerate,
which can be seen in Fig. 3(b). For reference, Table I lists the
strength of anisotropy coefficients induced by MI in various
spin orderings of antiferromagnets, which is calculated using
the technique presented in Sec. II A. As the spatial dimension
increases from one dimension to three, the influence of the MI
(D‖/D⊥) becomes more significant for C-type antiferromag-
nets.

Before going on, we emphasize that the effective
anisotropy caused by MI is very different from the
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FIG. 3. Schematic illustration of an antiferromagnet with
(a) C-type ordering and (b) G-type ordering in two dimensions. The
dashed lines indicate the flow of magnetostatic fields generated by
the central spin. (c) Schematic illustration of the difference between
two antiferromagnetically and ferromagnetically coupled spins. The
smiling and frowning faces refer to low-energy and high-energy
states, respectively.

ferromagnetic counterpart known as the shape anisotropy. Use
a 1D nanowire of sufficiently long length as an example,
the demagnetization factor is D‖ = 0 and D⊥ = 0.5 for a
ferromagnet,1 which implies that the magnetization always
tends to align in the longitudinal direction. For an antifer-
romagnet, the transverse direction is preferred by MI. This
difference motivates this work, showing that the distribution
of magnetic dipoles on an atomic scale will inevitably lead to
a very different energy landscape of the system. A schematic
illustration of this difference in a simple two-dipole model
is given in Fig. 3(c); the physics is as follows. Along a line,
the head-to-tail ferromagnetic state is the lowest energy state
and the head-to-head antiferromagnetic configuration is the
highest one. On the other hand, for two dipoles in a shoulder-
to-shoulder configuration, the lower-energy configuration is
the antiferromagnetic arrangement and the ferromagnetic one
is the highest one.

C. Spin-wave spectrum modification

Theoretically, the spin-wave dispersion near an antiferro-
magnetic Néel state is [31,32]

ω = ±γ H + γ

√
H2

sp + 4J2 sin2 ka, (8)

where H is the external field and k is the spin-wave vector.
For k = 0 and H = 0, we recover the magnetic resonance

1For a ferromagnet, we can follow a similar approach in
Sec. II A and derive D‖ = Nxx

r=0 + 2
∑N/2

p=1 Nxx
r=pa ≈ 0 and D⊥ =

Nyy
r=0 + 2

∑N/2
p=1 Nyy

r=pa ≈ 0.5.

TABLE I. List of the effective anisotropy coefficients gener-
ated by magnetostatic interaction in various spin orderings. Two-
dimensional square lattices and 3D simple cubic lattices are used to
calculated these values. The symbols CT and GT are short for C-type
and G-type ordering, respectively.

Item 1D 2D CT 2D GT 3D CT 3D GT

D‖ 0.5713 0.7369 0.4163 0.9922 0.3350
D⊥ 0.2144 0.0022 0.4163 0.0028 0.3350

frequency ω0 = γ
√

HEKeff = 2γ
√

2JKeff . Since Keff < K for
K > Kc, the spin-flop field will become smaller under the
influence of MI and the spin-wave frequency tends to have
a redshift.

To verify these predictions, we add a magnetic field pulse
h(t ) = h0sinc(ωt )ey to excite spin waves in an antiferromag-
netic nanowire and calculate the time dependence of S(x, t ) by
numerically solving the LLG equation. By taking a 2D Fourier
transform of Sy(x, t ), we obtain the spin-wave spectrum in the
(k, ω) plane as shown in Figs. 4(a) (K = 1.2Kc), 4(b) (K =
2Kc), and 4(c) (K = 10Kc). Clearly, the dispersion can only be
reproduced by including the influence of MI (white solid line),
especially the magnetic resonance mode located at k = 0. As
k increases, the influence of anisotropy becomes small, as
indicated by the merging trend of the solid and dashed lines.
We also plot the comparison of the resonance frequency as
a function of crystalline anisotropy in Fig. 4(d). The role

FIG. 4. Spin-wave spectrum of an antiferromagnetic nanowire
after fully taking account of the magnetostatic interaction for (a) K =
1.2Kc, (b) K = 2Kc, and (c) K = 10Kc. The color codes the Fourier
transform amplitude of Sy(x, t ). The white solid line is the theoretical
prediction with MI while the white dashed line is the prediction
without MI. (d) Magnetic resonance frequency as a function of
crystalline anisotropy with MI (black line) and without MI (red line)
for H = 0, h0 = 0.2 T, ω = 10 THz, and α = 10−4. The light red
region indicates the regime in which spontaneous switching occurs.
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of magnetostatic interaction becomes most significant when
K/Kc → 1.

III. ANTIFERROMAGNETIC RESONANCE

The magnetic resonance represents a large-amplitude oscil-
lation of magnetic order when the driving frequency matches
the natural frequency of the magnet. In experiments, by mea-
suring the position of maximum absorption and the linewidth
of the resonant spectrum, one can extract the magnetic param-
eters such as anisotropy and magnetic damping. In this section
we show that this common understanding has some intrinsic
problems for an antiferromagnet when the damping is close to
a critical value, which is on the order of the ratio of the spin-
flop field and the exchange field (∼0.01 for Keff ∼ 10−4HE).

Let us start from the dynamic equations in terms of the
two-sublattice magnetic moments [Eq. (1)]. Here we consider
the regime K > Kc. By setting ∂Si/∂t = 0, we find that the
ground state of the system is a Néel state along the x axis,
as shown in Fig. 1(a) with θ = 0. Generally, the magnetic
moments will perform uniform oscillations near this ground
state under the action of an oscillating field h = he−iωt , i.e.,
S2i = Sex + δSa(t ) and S2i+1 = −Sex + δSb(t ). By substitut-
ing the trial solutions into Eq. (1) and keeping only the terms
linear in δSa,b, we obtain

i
∂

∂t

(
δS+

a

δS+
b

)
= DH0

(
δS+

a

δS+
b

)
+ D

(
−h+
h+

)
, (9)

where δS+
a = δSy

a + iδSz
a and h+ = hy + ihz. Here D =

diag((1 − iα)−1, (1 + iα)−1) is the dissipation matrix and H0

is the effective Hamiltonian in the absence of damping,

H0 =
(

−� −2JS

2JS �

)
, (10)

where � = 2JS + 2Keff . Then the eigenspectrum can be de-
termined by solving the secular equation det(ω − DH0) = 0
as

ωr = 1

1 + α2

[−iαγ� ± γ

√
H2

sp − (αHE/4)2
]
. (11)

One immediately sees that there exists a critical damping
αc = 4Hsp/HE above which the eigenfrequencies are purely
imaginary, as shown in Fig. 5(a). Interestingly, this critical
damping is exactly the boundary that separates the oscilla-
tion phase (underdamped regime) from the monotonic phase
(overdamped regime) discussed in Sec. II A.

To see how the system responds to the electromag-
netic wave, we can rewrite Eq. (9) by assuming δSa,b(t ) =
δSa,be−iωt , (

δS+
a

δS+
b

)
=

(
χaa χab

χba χbb

)(
h+
h+

)
, (12)

where

χaa = � − ω − iαω

−ω2
0 + (1 + α2)ω2 + 2iα�ω

,

χbb = � + ω − iαω

−ω2
0 + (1 + α2)ω2 + 2iα�ω

,

FIG. 5. (a) Eigenfrequencies as a function of damping. The blue
dashed line denotes the position of critical damping αc. (b) Ab-
sorption spectrum as a function of frequency for α = 0.002 (black
line), α = 0.02 (red line), and α = 0.04 (blue line). The dashed
lines indicate the positions of the true resonance frequency ωr at the
corresponding damping. (c) and (d) Results for ferromagnets.

χab = −2JS

−ω2
0 + (1 + α2)ω2 + 2iα�ω

,

χba = −2JS

−ω2
0 + (1 + α2)ω2 + 2iα�ω

. (13)

Here we define the staggered order parameter as δn = δS+
a −

δS+
b = χnh+; then χn can be calculated as

χn = 2ω
[
ω2

0 − (1 + α2)ω2 + 2iα�ω
]

[
ω2

0 − (1 + α2)ω2
]2 + (2α�ω)2

. (14)

The imaginary part of χn [Im(χn)] is related to the absorp-
tion of the system at microwave frequencies [33], which
is maximal at ωm = ω0/(1 + α2).2 When α = 0, this peak
position is coincident with the resonance frequency predicted
by Eq. (11), i.e., ωm = ωr . Under a tiny damping, i.e., α ≪ 1,
one can reduce χn to the widely used Lorentz form as

Im(χn) = α�

(ω − ω0)2 + (α�)2
. (15)

Nevertheless, as damping further increases, we notice that the
peak frequency of the line shape ωm deviates from the real
resonant frequency ωr as

ωr

ωm
=

√
1 −

(
α

αc

)2

. (16)

For larger α, the deviation of ωm with ωr becomes larger and
it gives a completely wrong prediction of ωr when α ∼ αc, as
shown in Fig. 5(b).

2One can analytically obtain ωm by solving the equation
∂ lm(χn)/∂ω = 0.
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TABLE II. List of the critical damping in commonly used antifer-
romagnets. Note that the exchange fields have different definitions in
these references; here we only estimate the order of αc as Hsp/HE

for simplicity. There is no entry when no experimental values of
dampings are found.

Material Ref. HE (T ) Hsp(T ) αc Expt. α

NiO [34] 524 39 0.07 5 × 10−4

MnO [35] 127 29 0.23 <0.02
MnF2 [36,37] 55.6 9.75 0.18 6 × 10−4

α-Fe2O3 [38] 1040 6 0.006
LaMnO3 [39] 33.9 5.2 0.15
Na4

3+ cluster [40] 290 2.7 0.009

MnTe [41] 336 0.5 0.0015

Mn2Au [42] 1300 5 0.004
γ -MnCu [43] 377 13 0.034 0.78

To resolve this anomaly, we first notice that the width of
the line shape in Fig. 5(b) has become comparable to the
resonance frequency when α is close to αc. This suggests
that the quality factor Q of the resonance is very small and
thus the line shape is no longer reliable. To see this point
clearly, we can solve the half-maximum width of the line
shape �ω = 4αJS/(1 + α2) by setting ω = ωm in Eq. (14)
and derive the Q value as

Q = ωm

�ω
= αc(1 + α2)

2α
≈ αc

2α
. (17)

At α = αc, Q = 1/2 is very bad. This effect is intrinsic for all
types of antiferromagnets, whether the quality of the sample
is high or not. As a comparison, we can derive Q = 1/2α for a
ferromagnet, which does not suffer from this problem as long
as α 
 1, as shown in Figs. 5(c) and 5(d).

Physically, this difference between antiferromagnets and
ferromagnets comes from their different dissipation mecha-
nism. For an antiferromagnet, the magnetic moments on the
two sublattices must tilt away from antiparallel orientations to
launch the dissipation, while the antiferromagnetic exchange
coupling HE tends to suppress this tendency. As the exchange
coupling becomes large, this channel will become highly
inefficient, and therefore the resonant precession will be sup-
pressed. For a ferromagnet, one magnetic moment simply
dissipates through the Gilbert damping. The value of damping
uniquely determines the speed of dissipation.

For reference, we summarize the typical values of critical
dampings in Table II, which include antiferromagnetic insu-
lators, semiconductors, and metals. They range from 10−3

to 10−1. For most antiferromagnetic insulators, the intrinsic
damping is expected to be smaller than 10−3, from the ex-
perience of magnetic resonance. Hence they should be well

below the critical damping and antiferromagnetic resonance
is still a reliable technique to extract magnetic parameters.
For antiferromagnetic metals, the situation becomes worse
since the critical damping is considerably large compared with
the real damping and the resulting line shape may deviate
significantly from the Lorentz shape. This creates an intrinsic
difficulty in analyzing the resonance signal and it is probably
the reason why very few resonant experiments are available
for antiferromagnetic metals.

IV. DISCUSSION AND CONCLUSION

Here we would like to comment on the conventional wis-
dom of the AFM community. It was taken for granted that MI
in AFMs is negligible without any proof. Thus MI is neglected
in most, if not all, of the analytical models, numerical simu-
lations, and the analysis of AFM experimental results. Hence
it is not surprising that results found here were not predicted
early. Of course, MI naturally exists in experiments, and one
should be very careful to explain the experimental data by
the theory without MI effects, especially when extracting the
anisotropy coefficients.

In conclusion, we have studied MI effects on the an-
tiferromagnetic dynamics. Even though the total magnetic
charges of an AFM as well as the resulting magnetostatic
field outside the system are vanishingly small, the local charge
distribution at the atomic scale could considerably modify the
system anisotropy in magnetic nanowires as well in quasi-2D
and -3D structures. By analytically evaluating the effective
dipolar anisotropy, we find that MI could even change the
easy axis of a properly designed nanostructure. We found that
the switching time first decreases and then increases with the
damping. The underdamped and overdamped phases are thus
classified, resembling the motion of a nonlinear pendulum.
Near the phase boundary, the line shape of the AFM resonance
becomes non-Lorentzian with a very low quality factor and
thus it is no longer reliable to extract the magnetic parameters
in this case.
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