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The information convex allows us to look into certain information-theoretic constraints in two-dimensional
topological orders. We provide a derivation of the topological contribution ln da to the von Neumann entropy,
where da is the quantum dimension of anyon a. This value emerges as the only value consistent with strong
subadditivity, assuming a certain topological dependence of the information convex structure. In particular, it is
assumed that the fusion multiplicities are coherently encoded in a two-hole disk. A similar contribution (ln dα)
is derived for gapped boundaries. This method further allows us to identify the fusion probabilities and certain
constraints on the fusion theory. We also derive a linear bound on the circuit depth of unitary non-Abelian string
operators and discuss how it generalizes and changes in the presence of a gapped boundary.
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I. INTRODUCTION

Topological orders in two dimensions (2D) [1,2] are a long-
range entangled [3] gapped phase of matter whose ground
state has topological entanglement entropy (TEE) [4,5]. Its
ground-state degeneracy depends on the system topology and
these ground states are locally indistinguishable. Topological
orders support topological excitations, i.e., anyons in the 2D
bulk. These topological excitations cannot be created by local
operators, but they can be created by string operators. When
considering excited states with a few topological excitations,
the universal topological contribution of von Neumann en-
tropy from each superselection sector can also be identified.
Each bulk superselection sector or anyon type a contributes
to the von Neumann entanglement of a certain subsystem by
ln da, where da is the quantum dimension of anyon a [4,6].

Gapped boundaries may exist in nonchiral topological
orders [7–18]. In the presence of a gapped boundary, there
are deconfined boundary topological excitations on the 1D
gapped boundary. They carry boundary superselection sectors
and have their own fusion rules. When moving a bulk anyon
onto the gapped boundary and measuring its sector, the out-
come will be a certain boundary superselection sector. We will
refer to this phenomena as bulk-to-boundary condensation.
A ln dα contribution to the von Neumann entropy from each
boundary superselection sector α is observed in Ref. [18],
where dα is the quantum dimension of α.

Given these universal properties of 2D topological orders,
it is quite natural to ask whether a certain property follows
logically from several other properties and whether there is a
unified theoretical framework to describe these properties.
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The algebraic theory of anyon is proposed as a universal
framework to describe the bulk phase of the topological or-
der [19], and related proposals [9–11] for gapped boundaries
(of nonchiral topological orders) have also appeared in the
literature recently.

A remarkably different line of progress has been made
from a quantum information theory perspective. This research
brings new insights from the fundamental properties of quan-
tum many-body states. It is shown that a nonzero TEE is
necessary to have nontrivial ground-state degeneracy [20] and
to have nontrivial topological excitations [21]. These results
provide strong evidence that entanglement and other universal
properties of topologically ordered systems are nontrivially
related. Focusing on the properties of a quantum state allows
us to overcome certain intrinsic difficulties of interacting
many-body systems, e.g., the fact that only particular forms
of Hamiltonians can be solved for interacting many-body
systems. Moreover, it is shown that a long-range entangled
ground state of a topologically ordered system could be
converted to a product state only with a quantum circuit whose
depth scales at least linearly with the system size [22].

In a recent work, the information convex �(�) has been
proposed as a characterization of topological order [18]. It
applies to both the bulk and the gapped boundary. �(�) is
a set of density matrices on subsystem �; each element is
obtained from a density matrix minimizing the Hamiltonian
on a subsystem larger than � by many correlation lengths.
For topological orders, the information convex is argued to be
a low-dimensional convex set with elements locally indistin-
guishable from the ground state. The structure of the informa-
tion convex depends on the topology of the subsystem. The
information convex characterizes the fusion and condensation
multiplicities in addition to the bulk superselection sectors, the
boundary superselection sectors, and their quantum dimen-
sions. It is also a convenient framework to summarize many
of the known properties of topological orders.

In this work, we look into certain information-theoretic
constraints on the information convex structure. We show
that certain properties of the information convex follow from
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others. In particular, we derive the ln da, ln dα topological
contributions of entropy by showing that they are the only
values consistent with the strong subadditivity (SSA) [23] and
a set of assumptions concerning the topology dependence of
the information convex structure. This method also allows us
to calculate the fusion probability of bulk anyons, boundary
topological excitations, and the condensation probability from
the bulk to a gapped boundary. Also derived are some consis-
tency conditions on the fusion theory. Moreover, we derive a
linear bound on the circuit depth of the unitary non-Abelian
string operator and discuss how this result generalizes and
changes in the presence of a gapped boundary.

The results indicate that the information convex may be
treated as a theoretical object having its predictive power
from the self-consistency relations, and therefore it is more
than a convenient tool to summarize results obtained by other
methods. We hope this work also extends our toolbox and
provide us with another way to explore the fusion rules of
looplike excitations in 3D topological orders and their TEE
contributions.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the ground states of topological orders, the
topological excitations, and some basics of the information
convex. Relevant properties are summarized into a few as-
sumptions. In Sec. III, we describe a key assumption about
how the information convex encodes fusion multiplicities and
then provide a derivation of the ln da topological contribution
to the von Neumann entropy. In Sec. IV, we derive a similar
contribution (ln dα) from each boundary superselection sector
α. In Sec. V, we derive a relation about the condensation
from bulk to a gapped boundary. In Sec. VI, we provide
some more details of the method which reveals the physical
interpretations of several probabilities calculated in earlier
sections, and we also discuss the circuit depth of non-Abelian
anyon strings. In Sec. VII, we conclude with a summary.

II. THE GROUND STATES AND EXCITATIONS OF 2D
TOPOLOGICAL ORDERS

A. The ground states

In this subsection, we summarize relevant properties of
topologically ordered ground states into Assumptions G0,
G1, G2, and G3. While there are other equivalent ways to
write down the assumptions, we choose to write down the
assumptions using mutual information and conditional mu-
tual information. In this way, it is easier to borrow tools
from quantum information theory. We further emphasize that
information-theoretic considerations are physically relevant
because every physical quantum many-body system obeys the
law of quantum mechanics. Note that a very similar set of
assumptions about the topologically ordered ground states has
been used in Ref. [24].

In the following, we will use ρ, σ to denote (reduced) den-
sity matrices, and use subscripts �, ABC for the subsystems.
We will use S(σ ) ≡ −tr(σ ln σ ) to denote the von Neumann
entropy. The mutual information is defined as

I (A : C)ρ ≡ S(ρA) + S(ρB) − S(ρAB),

and the conditional mutual information is defined as

I (A : C|B)ρ ≡ S(ρAB) + S(ρBC ) − S(ρB) − S(ρABC ).

The strong subadditivity (SSA) [23] is the statement that
I (A : C|B)ρ � 0 for any density matrix ρABC . It is a very
powerful statement which is known to be the source of non-
trivial insights. As a special case, SSA implies I (A : C)ρ � 0
for any density matrix ρAC . For pedagogical discussions of
mutual information, conditional mutual information, and the
quantum information theory behind them, we refer the readers
to [25–27].

To be concrete, we assume that the system is on either an
infinite plane or a half plane with a single gapped boundary, so
that we have only a single ground state |ψ〉, and let us denote
the ground-state density matrix as

σ 1 ≡ |ψ〉〈ψ |. (1)

The method could be adapted to other manifolds. The ground
state is gapped; we neglect the correlations at a large enough
length scale ε. We will talk about the topology of a subsystem,
and it is understood that the topology is well defined only at a
length scale above ε.

Assumption G0. Consider the ground state of a topological
order on an infinite plane or a half plane bounded by a
gapped boundary. For arbitrary subsystems A and C which are
separated by a distance greater than some length scale ε, the
mutual information vanishes:

I (A : C)σ 1 = 0.

Here A, C can be either in the bulk or touch the boundary.
Remark. It is possible to generalize G0 to other system

topologies. However, one should be aware of potential coun-
terexamples. For example, on a generic ground state of a
torus T 2, it is possible to pick two annuli A and C which
are separated by a large distance and I (A : C) > 0; see [28].
In this case, each annulus could not shrink to a point by
continuous deformation on T 2. Also notice that if G0 is
satisfied, and σ̃ 1 is related to σ 1 by a finite-depth quantum
circuit, then I (A : C)σ̃ 1 = 0 when A and C are separated by a
length scale ε′ equal to ε plus circuit depth.

The following three assumptions, Assumptions G1, G2,
and G3, are statements about the vanishing of conditional
mutual information for certain subsystem choices.

Assumption G1. For any subsystem choice ABC topologi-
cally equivalent to the one shown in Fig. 1(a),

I (A : C|B)σ 1 = 0.

Assumption G2. For any subsystem choice ABC topologi-
cally equivalent to the one shown in Fig. 1(b),

I (A : C|B)σ 1 = 0.

Assumption G3. For any subsystem choice ABC topologi-
cally equivalent to the one shown in Fig. 1(c),

I (A : C|B)σ 1 = 0.

Remark. Assumptions G1, G2, and G3 may be understood
in the same manner; i.e., the von Neumann entropy of a
subsystem (of a topologically ordered ground state) can be
separated into local contributions plus a universal contribution
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FIG. 1. (a) The bulk subsystems A, B, C considered in Assump-
tion G1. (b) The subsystems A, B, C attached to a gapped boundary
considered in Assumption G2. (c) The subsystems A, B, C considered
in Assumption G3.

depending on the subsystem topology. For all the cases in
Fig. 1, both the local contributions and the topological contri-
butions cancel. Note, however, that unlike G0, the vanishing of
conditional mutual information in G1, G2, and G3 may break
down under finite-depth quantum circuits [29,30]. Nonethe-
less, all of the examples involve some sort of symmetry. It
is conjectured that for a generic quantum circuit without any
symmetry, G1, G2, and G3 still hold, albeit the quantum circuit
changes the scale ε.

B. The excitations

We describe three assumptions, Assumptions S1, S2, S3,
about the unitary string operators. The unitary string opera-
tors, when acting upon the ground state, can create deconfined
topological excitations inside the bulk or along a gapped
boundary. To state the assumptions, we first need to review
the superselection sectors briefly.

We use a, b to label bulk superselection sectors or bulk
anyon types [19]. Each bulk superselection sector is an equiv-
alent class of deconfined bulk excitations, and the excitations
(either a single excitation or several excitations) belonging
to one class cannot be transformed into another class by
any local operator. We use α, β to label boundary super-
selection sectors or boundary topological excitation types.
Each boundary superselection sector is an equivalent class
of deconfined boundary excitations [9], and the boundary
excitations (either a single excitation or several excitations
lying along the boundary) belonging to one class cannot be
transformed into another class by any local operator acting
around the boundary.

It should be noted that not every pair of excitations can
be connected by a string of the type in Fig. 2. An anyon a is
always connected with its antiparticle ā for the string operator
in Fig. 2(a); a boundary topological excitation α is always
connected with its antiparticle ᾱ for the string operator in
Fig. 2(b); α must be in the condensation channel of a if there
is a string of the type shown in Fig. 2(c) which connects a
and ᾱ. We summarize these into Assumptions S1, S2, and S3
below.

Assumption S1. A pair of bulk anyons (a, ā), shown in
Fig. 2(a), can be created by applying a unitary string operator
U (a,ā) onto the ground state. The string is inside the bulk and
the anyons a and ā are localized in a small area at the two ends

ā

U (a,ā)

a

ᾱ

U (α,ᾱ)

α

a

U (a,ᾱ)

ᾱ

(a)

(b)

(c)

FIG. 2. (a) A unitary string operator U (a,ā) in the bulk, which
creates anyon pair (a, ā). (b) A unitary string operator U (α,ᾱ) which
creates boundary topological excitation pair (α, ᾱ). (c) A unitary
string operator U (a,ᾱ) which creates a pair of topological excitations:
a bulk anyon a and a boundary topological excitation ᾱ which is in
the condensation channel of ā. The choice of color: Gray strings are
in the bulk and green strings touch the boundary; red dots are bulk
anyons and purple dots are boundary topological excitations.

of the string. The anyons are deconfined, and the middle part
of the string does not increase the energy density.

Assumption S2. A pair of boundary topological excitations
(α, ᾱ) along the same gapped boundary, shown in Fig. 2(b),
can be created by applying a unitary string operator U (α,ᾱ)

onto the ground state. The boundary topological excitations α

and ᾱ are localized in a small area at the two ends of the string.
The support of U (α,ᾱ) touches the boundary since the two
ends are along the boundary. On the other hand, the middle
part can either lie along the boundary or stretch into the bulk.
The boundary topological excitations are deconfined, and the
middle part of the string does not increase the energy density.

Assumption S3. A pair of topological excitations (a, ᾱ),
shown in Fig. 2(c), can be created by applying a unitary
string operator U (a,ᾱ) onto the ground state if α is in the
condensation channel of a. The bulk anyon a and boundary
topological excitations ᾱ are localized in a small area at
the two ends of the string. The topological excitations are
deconfined and the middle part of the string does not increase
the energy density.

Remark.
(1) Nonunitary string operators are discussed in many

references. They naturally appear in exactly solvable models
with non-Abelian anyons [31–33]. How do these operators
relate to our unitary string operators? In fact, it follows from
G0 that a unitary string operator exists for every nonunitary
string operator, albeit the support of the unitary string operator
is usually slightly thicker. A short proof is presented in
Appendix A.

(2) Implicitly, we have assumed that we have the freedom
to choose the support of the string; i.e., the string can be
deformed. We are aware that this deformation assumption
has been used in showing that any system that supports
anyons must have a nonvanishing topological entanglement
entropy [21].

(3) S1 says that a pair of anyons (a, ā) could be created
applying a unitary bulk string U (a,ā). It does not imply that
any state with two anyons (a, ā) could be obtained in this way.
A string attached to the boundary, see Fig. 13(b), may prepare
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a different quantum state with (a, ā) lying in the same
positions.

(4) We aim to give clear statements about the assumptions;
however, further reducing the set of assumptions requires
additional work. These assumptions have been recently shown
to emerge in a general theoretical framework based on an
entanglement area law [34].

(5) For non-Abelian a and α, we will discuss a linear
bound on the circuit depth of U (a,ā) and U (α,ᾱ); see Sec. VI D.

C. A brief review of the information convex

In this subsection, we briefly review the notion of the
information convex introduced in Ref. [18]. The information
convex �(�) is a set of density matrices on subsystem �;
each element is obtained from a density matrix minimizing
the Hamiltonian on a slightly larger subsystem �′ (which is
bigger than � at least by the length scale ε in G0). The original
definition applies to frustration-free local Hamiltonians, and
concrete calculations have been done in quantum double
models [8,31,33]. In light of the calculation, the following
results are expected to hold more generally.

For topological orders, the information convex �(�) is a
low-dimensional but nontrivial convex set, the structure of
which depends on the topology of subsystem �. It captures
how topological excitations modify the density matrix on
a subsystem away from them and how diverse the density
matrices can be. The information convex characterizes the
fusion and condensation multiplicities in addition to the bulk
superselection sectors {a}, boundary superselection sectors
{α}, and their quantum dimensions {da} and {dα}. The infor-
mation convex also provides a convenient framework to sum-
marize many of the previously known information-theoretic
properties of topological orders.

Given the evidence that the information convex may pro-
vide a useful concept and that explicit results are only avail-
able to some particular models up to now, an outstanding
problem is to establish its theoretical foundation with more
general principles. The assumptions listed below and the
results derived from them should be interpreted as some initial
progress toward this goal, and these assumptions should not be
interpreted as the axioms in the final theoretical framework.

Also, note that the original definition with the frustration-
free local Hamiltonian is not crucial here since the results in
this paper can be derived as long as the assumptions hold.

We will consider subsystems ω1, ω2, �1, �2, �3, �4,
�5, �6 in this paper. Each of them is a label of topology,
and the relation to the boundary is considered as part of the
topological data. Let us start with the simplest topologies ω1

and ω2, shown in Fig. 3. (Recall |ψ〉 is the ground state, and
we will use Ā to denote the complement of subsystem A.)

Assumption ω1. For a disk ω1 in the bulk, see Fig. 3,

�(ω1) = {
σ 1

ω1

}
, (2)

where σ 1
ω1

≡ trω̄1 |ψ〉〈ψ |.
Assumption ω2. For a disk ω2 attached to the gapped

boundary on a single connected component, see Fig. 3,

�(ω2) = {
σ 1

ω2

}
, (3)

where σ 1
ω2

≡ trω̄2 |ψ〉〈ψ |.

ω1

ω2

Σ(ω1)

Σ(ω2)

FIG. 3. Subsystems ω1, ω2 and the corresponding information
convex. �(ω1) contains a single element σ 1

ω1
and �(ω2) contains a

single element σ 1
ω2

.

Remark. Assumption ω1 is a convenient way to say that a
disk cannot tell whether there are excitations in other places.
If we apply ω1 to a manifold with multiple ground states,
one recovers the well-known fact that all ground states are
indistinguishable on a disk subsystem. The condition ω1 is
also known as the TQO-2 condition [35], which is crucial
in the study of perturbations in topological orders. ω2 is
simply a natural generalization of ω1 to a system with gapped
boundaries.

The next two topologies �1 and �2 are relevant to supers-
election sectors; see Fig. 4.

Assumption �1. For a bulk annulus �1, see Fig. 4,

�(�1) =
{

σ�1

∣∣∣∣σ�1 =
∑

a

paσ
a
�1

}
, (4)

where a is the label for bulk superselection sectors (or anyon
types). {pa} is a probability distribution and σ a

�1
is an extreme

point.
(1) Distinct extreme points are orthogonal:

σ a
�1

· σ b
�1

= 0, ∀a �= b. (5)

Ω1

Ω2

Σ(Ω1)

σ1
Ω1

σa
Ω1

σb
Ω1

· · ·

Σ(Ω2)

σ1
Ω2

σα
Ω2

σβ
Ω2

· · ·

FIG. 4. Bulk annulus �1 and half annulus �2 attach to the
boundary and the corresponding information convex. �(�1) and
�(�2) are always simplexes but usually not tetrahedrons. Here,
“· · · ” represents potentially more extreme points that are omitted.
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(2) There is a universal contribution to von Neumann
entropies:

S
(
σ a

�1

) = S
(
σ 1

�1

) + 2 f (a), (6)

where 1 is the vacuum sector; f (a) is real, f (1) = 0, and
f (a) = f (ā); ā is the antiparticle of a.

(3) The extreme point σ a
�1

is obtained on an annulus
surrounding an anyon a.

Assumption �2. For a half annulus �2 attaches to the
boundary, see Fig. 4,

�(�2) =
{

σ�2

∣∣∣∣σ�2 =
∑

α

pασ α
�2

}
, (7)

where α is the label for boundary superselection sectors (or
deconfined boundary topological excitations types). {pα} is a
probability distribution and σα

�2
is an extreme point.

(1) Distinct extreme points are orthogonal:

σα
�2

· σ
β

�2
= 0, ∀α �= β. (8)

(2) There is a universal contribution to von Neumann
entropies:

S
(
σα

�2

) = S
(
σ 1

�2

) + 2F (α), (9)

where 1 is the vacuum sector; F (α) is real, F (1) = 0, and
F (α) = F (ᾱ); ᾱ is the antiparticle of α.

(3) The extreme point σα
�2

is obtained on an �2 surround-
ing a boundary topological excitation α.

Remark. Assumptions �1 and �2 summarize how �1 and
�2 detect each (bulk or boundary) superselection sector and
how each superselection sector contributes to the von Neu-
mann entropy. Intuitively, the string operators U (a,ā) (U (α,ᾱ))
must pass through the subsystem �1 (�2) and this is why
the density matrices are modified. Moreover, we argue that
the orthogonal relation in Eq. (5) is a many-body effect. For
large system sizes, two distinct extreme points must be (to a
very good approximation) orthogonal to each other as long as
(1) they are short-range entangled when viewed as a 1D
system (the 1D is the radial direction), and (2) they have
a finite amount of difference on each thin annulus shell. A
similar argument could explain the orthogonal relation Eq. (8).

The universal contributions to von Neumann entropies, i.e.,
f (a) and F (α), are assumed to be generic real numbers. We
will later derive their values f (a) = ln da, see Eq. (16), and
F (α) = ln dα , see Eq. (24). They consist of the main results of
this paper. Despite that these values have been obtained from
other methods previously, e.g., [4,6,18], our derivation points
to a different perspective on the origin of these numbers be-
cause the assumptions are different. In particular, we assume
neither an underlying field theory nor an exactly solvable
lattice model. Rather, the values emerge from information-
theoretic constraints.

We would also like to compare the topological contribution
ln da in the S(σ a

�1
) and the same topological contribution for a

disk containing an anyon. It is known that a disk containing a
single anyon will have von Neumann entropy bigger than the
ground state von Neumann entropy by ln da. Note, however,
that this result is for an anyon pinned down to a fixed position.
In general, if we allow the anyon on the disk to entangle its

Ω4

Σ(Ω4)

Σ1
11(Ω4)

Σc
ab(Ω4)

Σc′
a′b′ (Ω4)

· · ·

Σc
ab(Ω4) ∈ { ∅ , , , · · · }.

FIG. 5. The bulk subsystem �4, i.e., a 2-hole disk, and its infor-
mation convex �(�4). �(�4) is the set of convex combinations of
�c

ab(�4). The geometry of each �c
ab(�4) depends solely on a non-

negative integer Nc
ab. For example, when Nc

ab = 0, 1, and 2, �c
ab(�4)

is isomorphic to an empty set, a point, and a solid ball, respectively.

position with an anyon on the rest of the system, the entan-
glement entropy can further grow. Intuitively, the topological
entanglement and “particle entanglement” are added up. On
the other hand, when we consider the von Neumann entropy
of an element σ� ∈ �(�), there are no particles inside �,
and we neatly pick out the topological contributions even
if the excitations on the rest of the system have “particle
entanglement.”

We will give explicit statements about �(�4), �(�5), and
�(�6) in later sections, i.e., Assumptions �4, �5, and �6.
These subsystems have the feature that the fusion multiplic-
ities Nc

ab, Nγ

αβ (or condensation multiplicities Nα
a ) manifest

in the structure of extreme points. This is crucial for our
method to work because fusion multiplicities contain enough
information to derive the quantum dimensions {da} (and {dα}).
Each multiplicity greater than 1 contributes a set of extreme
points parametrized by continuous variables. The interested
reader may take a quick look at Figs. 5, 7, and 9.

III. THE BULK OF A 2D TOPOLOGICAL ORDER

For the 2D bulk of a topological order, the superselection
sectors correspond to the anyon types (the vacuum sector is in-
cluded) [19]. We will use the terminology bulk superselection
sectors, anyon types, and topological charges interchangeably.
Let us label the bulk superselection sectors by {1, a, b, c, . . .},
where 1 is the vacuum sector. The fusion rule of anyons can
be written as

a × b =
∑

c

Nc
ab c. (10)

Here {Nc
ab} is the set of fusion multiplicities. They are non-

negative integers satisfying Nc
ab = Nc

ba and the set of condi-
tions in Appendix C.

The goal of this section is to provide a derivation of
the ln da universal topological contribution of von Neumann
entropy given the fusion multiplicities {Nc

ab}. In particular,
we will show that the ln da contribution emerges as the only
value consistent with SSA and a set of assumptions about
the information convex. Similar methods are applied to study
boundary topological excitations along a gapped boundary
(see Sec. IV) and bulk-to-boundary condensation (see Sec. V).
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A B C

(a)

(b)

a b

c̄

Ω1 Ω′
1

Ω′′
1

FIG. 6. (a) Annuli �1, �
′
1, �

′′
1 ⊆ �4 surrounding the three en-

tanglement cuts could detect the topological charges. In this picture,
we have σ a

�1
, σ b

�′
1
, and σ c

�′′
1

on these subsystems. (b) �4 is divided

into smaller pieces �4 = ABC. Both AB and BC have �1 topology.

A few other implications will be explored after a more detailed
discussion in Sec. VI.

A. Preparing for the derivation

In this subsection, we state and explain the key Assumption
�4 which describes the way Nc

ab encoded in �(�4). We further
state Proposition 1 about the existence of a certain element
which saturates SSA. The proof of Proposition 1 is provided
in Sec. VI. Both of them are crucial in the derivation of the
ln da contribution to the von Neumann entropy.

Assumption �4. For a subsystem �4, i.e., a 2-hole disk in
the bulk, see Fig. 5, the information convex �(�4) has the
following structure:

The set of extreme points of �(�4) forms a set M =⋃
(a,b,c) Mc

ab(�4). Each Mc
ab(�4) with Nc

ab �= 0 is a con-
nected component of M. Let �c

ab(�4) be the convex subset
of �(�4) formed by a convex combination of elements in
Mc

ab(�4).
Taking a partial trace to reduce σ

(a,b,c)x
�4

∈ �c
ab(�4) to cer-

tain subsystems of �1 topology surrounding each entangle-
ment cut, i.e., the �1, �′

1, and �′′
1 in Fig. 6(a), we get extreme

points σ a
�1

, σ b
�′

1
, and σ c

�′′
1
, respectively.

The density matrix σ
(a,b,c)x
�4

∈ �c
ab(�4) has a one-to-one

correspondence with ρ̂ (a,b,c)x , a density matrix on the fusion
Hilbert space V c

ab ≡ span{|i〉}Nc
ab

i=1. Extreme points of �c
ab(�4)

correspond to the pure-state density matrices on V c
ab. The

mapping preserves the convex structure, i.e.,

pσ
(a,b,c)x
�4

+ (1 − p)σ (a,b,c)y

�4
= σ

(a,b,c)z
�4

,

if and only if

p ρ̂ (a,b,c)x + (1 − p)ρ̂ (a,b,c)y = ρ̂ (a,b,c)z ,

where p ∈ [0, 1]. Furthermore, σ
(a,b,c)x
�4

has von Neumann
entropy:

S
(
σ

(a,b,c)x
�4

) = S
(
σ 1

�4

) + f (a) + f (b) + f (c) + S(ρ̂ (a,b,c)x ).

(11)

Here σ 1
�4

≡ tr�̄4
σ 1 is the unique element of �1

11(�4).
Remark. Assumption �4 is the statement that fusion multi-

plicities Nc
ab are coherently encoded in the information convex

�(�4). Furthermore, �4 says that different vectors of the
fusion Hilbert space could be determined (up to an overall
phase factor) by looking at the element σ

(a,b,c)x
�4

∈ �c
ab(�4).

Proposition 1. There exists a unique element σ
(a,b)
�4

∈
�(�4) such that for the partition �4 = ABC shown in
Fig. 6(b) the following hold:

(1) It prepares the extreme point σ a
AB when restricted to AB

and it prepares the extreme point σ b
BC when restricted to BC.

(2) It saturates the conditional mutual information:

I (A : C|B)σ (a,b) = 0.

The proof of Proposition 1 will be presented in Sec. VI.
For now, we simply point out that the proof needs G1, S1, �1,
and SSA.

B. The derivation of the ln da contribution
to von Neumann entropy

We present a derivation of the topological contribution
to the von Neumann entropy on annulus �1 by showing
f (a) = ln da, see Eq. (16), and the probability in Eq. (17) from
Assumptions G1, S1, ω1, �1, and �4.

First, we apply Proposition 1 to the (a, b) sector and the
vacuum sector (1,1), to express the von Neumann entropy
S(σ (a,b)

�4
) and S(σ 1

�4
) in terms of entropies on simpler sub-

systems AB, BC, and B in Fig. 6(b). We then use �1 and
ω1 to compare the von Neumann entropy in these simpler
subsystems and find

S
(
σ

(a,b)
�4

) = S
(
σ 1

�4

) + 2 f (a) + 2 f (b). (12)

Note that σ
(1,1)
�4

= σ 1
�4

follows from �4 and Proposition 1.

Next, we note that σ
(a,b)
�4

defined in Proposition 1 must
be an element with maximal entropy among the elements of
�(�4) which have topological charge a and b on the two
entanglement cuts surrounded by �1 and �′

1 in Fig. 6(a).
This follows from SSA, ω1, and �1. With �4, we express
σ

(a,b)
�4

as a convex combination of elements in
⋃

c �c
ab(�4),

and calculate its entropy with the help of �1. By maximizing
the von Neumann entropy, we find

S
(
σ

(a,b)
�4

) = S
(
σ 1

�4

) + f (a) + f (b) + ln

(∑
c

Nc
ab e f (c)

)
,

(13)

and that

σ
(a,b)
�4

=
∑

c

P(a×b→c)σ
(a,b,c)max
�4

, (14)
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where σ
(a,b,c)max
�4

is the maximal-entropy element of �c
ab(�4)

and P(a×b→c) = Nc
abe f (c)∑

d Nd
abe f (d ) .

In more detail, it follows from �1 and �4 that σ
(a,b,c)x
�4

·
σ

(a′,b′,c′ )y

�4
= 0 if (a, b, c) �= (a′, b′, c′), where σ

(a,b,c)x
�4

∈
�c

ab(�4) and σ
(a′,b′,c′ )y

�4
∈ �c′

a′b′ (�4). This is because of �1
and the general result that ρAB · σAB = 0 if ρA · σA = 0.
(See Appendix B for a proof.) Moreover, S(σ (a,b,c)x

�4
) �

S(σ 1
�4

) + f (a) + f (b) + f (c) + ln Nc
ab for any σ

(a,b,c)x
�4

∈
�c

ab(�4). The unique element that saturates the bound
is σ

(a,b,c)max
�4

. In the calculation of S(σ (a,b)
�4

) in Eq. (13),
we have also used the well-known result S(

∑
i pi ρ

i ) =∑
i pi[S(ρ i ) − ln pi] if ρ i · ρ j = 0, ∀i �= j, and {pi} is a

probability distribution.
We have obtained two expressions of S(σ (a,b)

�4
) in Eqs. (12)

and (13). By comparing them, one finds

e f (a)e f (b) =
∑

c

Nc
abe f (c). (15)

Because f (a) is real, we must have e f (a) ∈ (0,+∞). Equa-
tion (15) has a unique solution e f (a) = da, where da is the
quantum dimension uniquely defined given Nc

ab [19]. See also
Appendix C for a self-contained proof using a few assump-
tions about the fusion multiplicities. Thus,

f (a) = ln da. (16)

To summarize, we have derived the ln da topological con-
tribution of von Neumann entropy as the only value consistent
with SSA given Assumptions G1, S1, ω1, �1, and �4. We
have also derived the explicit form of density matrix σ

(a,b)
�4

in Eq. (14) with probability

P(a×b→c) = Nc
abdc

dadb
. (17)

Later we will identify the physical meaning of probability
P(a×b→c); see Sec. VI C.

IV. THE GAPPED BOUNDARY OF A 2D NONCHIRAL
TOPOLOGICAL ORDER

Two-dimensional nonchiral topological orders may have
gapped boundaries [7–16]. A bulk phase may have more
than one gapped boundary type. For each boundary type,
there are several boundary superselection sectors [9,10,18],
i.e., the types of deconfined boundary topological excita-
tions. We denote the boundary superselection sectors using
{1, α, β, γ , . . .}, where 1 is the boundary vacuum. Note that
the boundary superselection sectors are in general different
from bulk superselection sectors, and for non-Abelian models,
they usually cannot be identified as a subset of bulk superse-
lection sectors. Boundary topological excitations can fuse, and
the fusion rule can be written as

α × β =
∑

γ

Nγ

αβ γ . (18)

Here {Nγ

αβ} is the set of fusion multiplicities of boundary
topological excitations. They are non-negative integers satis-
fying the set of conditions in Appendix C. Note, however, that

Ω5 Σ(Ω5)

Σ1
11(Ω5)

Σγ
αβ

(Ω5)
Σγ′

α′β′ (Ω5)

· · ·

Σγ
αβ(Ω5) ∈ { ∅ , , , · · · }.

FIG. 7. Subsystem �5 which touches a gapped boundary and its
information convex �(�5).

unlike the fusion multiplicities of anyons we have Nγ

αβ �= Nγ

βα

for a most generic boundary theory. An example is the K =
{1} boundary of a quantum double model with a finite group
G [8,18]. In this case, each boundary superselection sector can
be identified as a group element of G, and the fusion rule is
identical to the group multiplication. Therefore, the fusion is
not commutative for a non-Abelian G.

The goal of this section is to provide a derivation of
the ln dα universal topological contribution of von Neumann
entropy given the fusion multiplicities {Nγ

αβ}. In particular,
we will show that the ln dα contribution emerges as the only
value consistent with SSA and a set of assumptions about
the information convex. The method is parallel to the one
discussed in Sec. III.

A. Preparing for the derivation

In this subsection, we state and explain the key Assumption
�5 which describes the way Nγ

αβ is encoded in �(�5). We
further state Proposition 2 about the existence of a certain
element which saturates SSA. The proof of Proposition 2 is
provided in Sec. VI. Both of them are crucial in the derivation
of the ln dα contribution of the von Neumann entropy.

Assumption �5. For a subsystem �5 shown in Fig. 7, i.e., a
connected subset of a half plane which has three entanglement
cuts touching the same boundary, the information convex
�(�5) has the following structure:

The set of extreme points of �(�5) forms a set M =⋃
(α,β,γ ) M

γ

αβ (�5). Each Mγ

αβ (�5) with Nγ

αβ �= 0 is a con-
nected component of M. Let �

γ

αβ (�5) be the convex subset
of �(�5) formed by the convex combination of elements in
Mγ

αβ (�5).

Taking a partial trace to reduce σ
(α,β,γ )x
�5

∈ �
γ

αβ (�5) to
certain subsystems of topology �2 surrounding each entan-
glement cut, i.e., the �2, �′

2, and �′′
2 shown in Fig. 8(a), we

get extreme points σα
�2

, σ
β

�′
2
, and σ

γ

�′′
2
, respectively.

Density matrix σ
(α,β,γ )x
�5

∈ �
γ

αβ (�5) has one-to-one corre-
spondence with ρ̂ (α,β,γ )x , a density matrix on a Hilbert space

V γ

αβ ≡ span{|i〉}Nγ

αβ

i=1. Extreme points of �
γ

αβ (�5) correspond
to the pure-state density matrices on V γ

αβ . The mapping pre-
serves the convex structure, i.e.,

pσ
(α,β,γ )x
�5

+ (1 − p)σ (α,β,γ )y

�5
= σ

(α,β,γ )z
�5

,
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(a)

(b)

A B C

α β γ̄

Ω2

Ω′
2

Ω′′
2

FIG. 8. (a) Subsystems �2, �
′
2, �

′′
2 ⊆ �5 surrounding the three

entanglement cuts can detect the boundary superselection sectors. In
this picture, we have σα

�2
, σ

β

�′
2
, and σ

γ

�′′
2

on these subsystems. (b) �5

is divided into smaller pieces, �5 = ABC. Both AB and BC have �2

topology.

if and only if

p ρ̂ (α,β,γ )x + (1 − p)ρ̂ (α,β,γ )y = ρ̂ (α,β,γ )z ,

where p ∈ [0, 1]. Furthermore, σ
(α,β,γ )x
�5

has von Neumann
entropy:

S
(
σ

(α,β,γ )x
�5

) = S
(
σ 1

�5

) + F (α) + F (β ) + F (γ ) + S(ρ̂ (α,β,γ )x ).

(19)

Here σ 1
�5

≡ tr�̄5
σ 1 is the unique element of �1

11(�5).

Proposition 2. There exists a unique element σ
(α,β )
�5

∈
�(�5) such that for the partition �5 = ABC shown in
Fig. 8(b) the following hold:

(1) It prepares the extreme point σα
AB when restricted to AB

and it prepares the extreme point σ
β
BC when restricted to BC.

(2) It saturates the conditional mutual information:

I (A : C|B)σ (α,β ) = 0.

The proof of Proposition 2 will be presented in Sec. VI.
For now, we simply point out that the proof needs G2, S2, �2,
and SSA.

B. The derivation of the ln dα contribution
to von Neumann entropy

We present a derivation of the topological contribution
to the von Neumann entropy on subsystem �2 by showing
F (α) = ln dα , see Eq. (24), and the probability in Eq. (25)
from Assumptions G2, S2, ω2, �2, and �5. The derivation is
essentially the same with that in Sec. III B, and we save our
explanations in many places.

First, we apply Proposition 2 to the (α, β ) sector and the
vacuum sector (1,1), to express the von Neumann entropy
S(σ (α,β )

�5
) and S(σ 1

�5
) in terms of entropies on simpler sub-

systems AB, BC, and B in Fig. 8(b). We then use �2 and
ω2 to compare the von Neumann entropy in these simpler
subsystems and find

S
(
σ

(α,β )
�5

) = S
(
σ 1

�5

) + 2F (α) + 2F (β ). (20)

Note that σ
(1,1)
�5

= σ 1
�5

follows from �5 and Proposition 2.

Next, we notice that σ
(α,β )
�5

defined in Proposition 2 must
be an element with maximal entropy among the elements of
�(�5) which have topological charge α and β on the two
entanglement cuts surrounded by �2 and �′

2 in Fig. 8(a). This
follows from SSA, ω2, and �2. With �5, we express σ

(α,β )
�5

as a convex combination of elements in
⋃

γ �
γ

αβ (�5), and
calculate its entropy with the help of �2. By maximizing the
von Neumann entropy, we find

S
(
σ

(α,β )
�5

) = S
(
σ 1

�5

) + F (α) + F (β ) + ln

(∑
γ

Nγ

αβ eF (γ )

)

(21)

and

σ
(α,β )
�5

=
∑

γ

P(α×β→γ )σ
(α,β,γ )max
�5

, (22)

where σ
(α,β,γ )max
�5

is the maximal-entropy element of �
γ

αβ (�5)

and P(α×β→γ ) = Nγ

αβeF (γ )∑
δ Nδ

αβeF (δ) .

We have obtained two expressions of S(σ (α,β )
�5

) in Eqs. (20)
and (21). By comparing them, one finds

eF (α)eF (β ) =
∑

γ

Nγ

αβeF (γ ). (23)

Because F (α) is real, we must have eF (a) ∈ (0,+∞). Equa-
tion (23) has a unique solution eF (α) = dα , where dα is the
quantum dimension uniquely defined given Nγ

αβ . See Ap-
pendix C for a self-contained proof using a few assumptions
about the fusion multiplicities. Thus,

F (α) = ln dα. (24)

To summarize, we have derived the ln dα topological con-
tribution of von Neumann entropy as the only value consistent
with SSA given Assumptions G2, S2, ω2, �2, and �5. We
have also derived the explicit form of density matrix σ

(α,β )
�5

in Eq. (22) with probability

P(α×β→γ ) = Nγ

αβdγ

dαdβ

. (25)

Later we will identify the physical meaning of probability
P(α×β→γ ); see Sec. VI C.

V. CONDENSATION FROM THE BULK
TO A GAPPED BOUNDARY

We know from the previous discussion that for a nonchiral
topological order with a gapped boundary there is a set of
bulk superselection sectors {1, a, b, . . .} and a set of boundary
superselection sectors {1, α, β, . . .}. It is possible to move
an anyon a onto a gapped boundary. After measurement of
the boundary superselection sector, it will turn into a certain
boundary topological excitation type. One could formally
write down this process as

a =
∑

α

Nα
a α. (26)

This process is similar to fusion [Eqs. (10) and (18)] but
there is only one excitation on the left-hand side. We will
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call this process bulk-to-boundary condensation1 and we will
frequently call it condensation for short. We call Eq. (26) the
condensation rule. Here {Nα

a } is a set non-negative integers
which we call the condensation multiplicities. We say bound-
ary topological excitation α is in the condensation channel of
anyon a if Nα

a � 1.
Because the terminology bulk-to-boundary condensation

is not as standard as fusion, we provide some additional
explanations and point out alternative terminologies in the
literature. In Ref. [8], an anyon is said to condense onto a
gapped boundary if it can disappear on a gapped boundary.2

This corresponds to the condensation to the boundary vacuum
1 in our terminology. Therefore, the condensation rule in our
definition is a generalization which includes a generic bound-
ary superselection sector. Our bulk-to-boundary condensation
has the same meaning as the bulk-to-boundary map or “the
bulk excitations fuse into the boundary” in Refs. [9,36].
Also, it is worth noting that bulk-to-boundary condensation is
physically different from anyon condensation [36–39], which
is a relation between two topologically ordered phases of the
bulk.

The goal of this section is to provide a derivation of the
formula da = ∑

α Nα
a dα . It emerges from the consistency with

SSA and a set of assumptions about the information convex.
The method is parallel to the one discussed in Sec. III.

A. Preparing for the derivation

In this subsection, we state and explain the key Assumption
�6 which describes the way Nα

a is encoded in �(�6). We
further state Proposition 3 about the existence of a certain
element which saturates SSA. The proof of Proposition 3 is
provided in Sec. VI. Both of them are crucial in the derivation
of the formula da = ∑

α Nα
a dα .

Assumption �6. Let �6 be a connected subsystem with two
entanglement cuts, one in the bulk and another touching the
gapped boundary; see Fig. 9. Its information convex �(�6)
has the following structure:

The set of extreme points of �(�6) forms a set M =⋃
(a,α) Mα

a (�6). Each Mα
a (�6) with Nα

a �= 0 is a connected
component of M. Let �α

a (�6) be the convex subset of �(�6)
formed by a convex combination of elements in Mα

a (�6).
Taking a partial trace to reduce σ

(a,α)x
�6

∈ �α
a (�6) and �1 or

�2 surrounding the entanglement cuts, see Fig. 10(a), we get
the extreme point σ a

�1
∈ �(�1) and the extreme point σα

�2
∈

�(�2), respectively.
Density matrix σ

(a,α)x
�6

∈ �α
a (�6) has a one-to-one corre-

spondence with ρ̂ (a,α)x , a density matrix on a Hilbert space
V α

a ≡ span{|i〉}Nα
a

i=1. Extreme points of �α
a (�6) correspond to

the pure-state density matrices on V α
a . The mapping preserves

the convex structure, i.e.,

pσ
(a,α)x
�6

+ (1 − p)σ (a,α)y

�6
= σ

(a,α)z
�6

,

1The terminology is adapted from Ref. [16]; the algebraic result
therein is the same as ours. However, the physical context is different
since the boundary excitations in Ref. [16] are confined.

2This is called “annihilating” particles at a gapped boundary in
Ref. [11].

Ω6

Σ(Ω6)

Σ1
1(Ω6)

Σα
a (Ω6)

Σα′
a′ (Ω6)

· · ·

Σα
a (Ω6) ∈ { ∅ , , , · · · }.

FIG. 9. Subsystem �6 which touches a gapped boundary and its
information convex �(�6).

if and only if

p ρ̂ (a,α)x + (1 − p)ρ̂ (a,α)y = ρ̂ (a,α)z ,

where p ∈ [0, 1]. Furthermore, σ
(a,α)x
�6

has von Neumann en-
tropy:

S
(
σ

(a,α)x
�6

) = S
(
σ 1

�6

) + f (a) + F (α) + S(ρ̂ (a,α)x ). (27)

Here σ 1
�6

≡ tr�̄6
σ 1 is the unique element of �1

1 (�6).

Proposition 3. There exists a unique element σ
(a)
�6

∈ �(�6)
such that for the partition �6 = ABC shown in Fig. 10(b) the
following hold:

(1) It prepares the extreme point σ a
AB when restricted to

AB.
(2) It saturates the conditional mutual information:

I (A : C|B)σ (a) = 0.

The proof of Proposition 3 will be presented in Sec. VI.
For now, we simply point out that the proof needs G3, S1, �1,
and SSA.

B. The derivation of da = ∑
α Nα

a dα

We present a derivation of the formula da = ∑
α Nα

a dα , see
Eq. (31), and the probability in Eq. (32) from Assumptions
G3, S1, ω1, ω2, �1, �2, and �6. Again, the derivation is
essentially the same as that in Sec. III B, and we save our
explanations in many places.

(a) (b)

A

B

C

a

ᾱ

Ω1

Ω2

FIG. 10. (a) Subsystems �1, �2 ⊆ �6 surrounding the two en-
tanglement cuts. For the state shown in the diagram, the topological
charges can be read from the extreme points σ a

�1
and σα

�2
. (b) �6 is

divided into smaller pieces �6 = ABC. AB has �1 topology and BC
has ω2 topology.
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First, we apply Proposition 3 to both (a, α) and (1,1)
sectors and use ω1, ω2 and �1 to derive

S
(
σ

(a)
�6

) = S
(
σ 1

�6

) + 2 f (a). (28)

Note that σ
(1)
�6

= σ 1
�6

follows from �6 and Proposition 3.

Next, we notice that σ
(a)
�6

defined in Proposition 3 must
be an element with maximal entropy among the elements of
�(�6) which have topological charge a on the entanglement
cut surrounded by �1 in Fig. 10(a). This follows from SSA,
ω1, ω2, and �1. With �6, we express σ

(a)
�6

as a convex com-
bination of elements in

⋃
α �α

a (�6), and calculate its entropy
with the help of �1 and �2. By maximizing the von Neumann
entropy, we find

S
(
σ

(a)
�6

) = S
(
σ 1

�6

) + f (a) + ln

(∑
α

Nα
a eF (α)

)
(29)

and

σ
(a)
�6

=
∑

α

P(a→α)σ
(a,α)max
�6

, (30)

where σ
(a,α)max
�6

is the maximal-entropy element of �α
a (�6) and

P(a→α) = Nα
a eF (α)∑

β Nβ
a eF (β )

.

We have obtained two expressions of S(σ (a)
�6

) in Eqs. (28)
and (29). By comparing them and plugging in the values
f (a) = ln da and F (α) = ln dα obtained in Eqs. (16) and (24),
we get

da =
∑

α

Nα
a dα. (31)

Now we can rewrite the probability in Eq. (30) as

P(a→α) = Nα
a dα

da
. (32)

Later we will identify the physical meaning of probability
P(a→α); see Sec. VI C.

VI. SOME PROOFS, PROBABILITIES,
CIRCUIT DEPTH, AND MORE

In this section, we present a collection of results about the
quantum states and the universal properties of topologically
ordered systems. Note that many of the results have been ob-
tained from other methods. The primary purpose is to present
a different logic, namely, that these results can be derived from
information-theoretic constraints. After reviewing some use-
ful facts about conditional mutual information in Sec. VI A,
we provide proofs of Propositions 1, 2, and 3 in Sec. VI B.
In Sec. VI C, we identify the physical meanings of the proba-
bilities P(a×b→c), P(α×β→γ ), and P(a→α) [from Eqs. (17), (25),
and (32), respectively]. In Sec. VI D, we discuss the circuit
depth of unitary string operators. In Sec. VI E, we discuss
some additional results which rely on a more advanced result,
namely, the ability to merge certain quantum Markov states.

A. Some useful facts about conditional mutual information

Recall that SSA [23] says I (A : C|B)ρ � 0, ∀ ρABC . A state
ρABC saturates SSA if I (A : C|B)ρ = 0. Such a state is called
a quantum Markov state (QMS) [40,41].

Some basic properties for a general state are as follows:

(1) Let A = A1A2 and C = C1C2; then

I (A2 : C2|B) � I (A : C|B), (33)

I (A1 : C1|A2BC2) � I (A : C|B). (34)

(2) If σ and σ ′ are related by unitary transformations on
individual subsystems, i.e.,

σ ′
ABC = (UAUBUC ) σABC (UAUBUC )†,

then

I (A : C|B)σ = I (A : C|B)σ ′ . (35)

Inequalities (33) and (34) are derived using SSA. For a
QMS ρ, I (A : C|B)ρ = 0 and the inequalities above become
equalities, i.e.,

I (A2 : C2|B)ρ = I (A : C|B)ρ = 0, (36)

I (A1 : C1|A2BC2)ρ = I (A : C|B)ρ = 0. (37)

We further notice that a QMS ρABC with I (A : C|B)ρ = 0 is
uniquely determined by its reduced density matrices ρAB and
ρBC .3

B. The proof of Propositions 1, 2, and 3

In this subsection, we provide the proofs of Propositions
1, 2 and 3 using assumptions described in Sec. II. More
precisely, we will show the following:

(1) {G1, S1, �1} ⇒ Proposition 1.
(2) {G2, S2, �2} ⇒ Proposition 2.
(3) {G3, S1, �1} ⇒ Proposition 3.
Because the three proofs are essentially the same, we

choose to discuss the proof of Proposition 1 in detail and then
briefly discuss the proof of the other two propositions.

The proof of Proposition 1 contains an explicit construction
of the state σ

(a,b)
�4

. Let us consider the bulk subsystems AA′, B,
CC′ shown in Fig. 11(a), �4 = ABC. According to G1,

I (AA′ : CC′|B)σ 1 = 0.

Let us apply unitary string operators U (a,ā) and U (b,b̄), the
support of which is within AA′ and CC′, respectively. These
unitary string operators are guaranteed to exist according to
S1. The anyon pair (a, ā) is in A′ and the anyon pair (b, b̄) is
in C′. Let

σ
(a,b)
�4

≡ trA′C′
[
(U (a,ā)U (b,b̄) )σ 1

AA′BCC′ (U (a,ā)U (b,b̄) )†
]
.

According to Eqs. (35) and (36), we have

I (A : C|B)σ (a,b) = 0.

Moreover, σ
(a,b)
�4

∈ �(�4) since there are no excitations
within and around ABC before tracing out A′ and C′. Also
notice that σ

(a,b)
�4

has topological charges a, b in the two
holes and therefore, according to �1, it prepares the extreme

3There is an explicit expression of the state ρABC =
ρ

1
2

ABρ
− 1

2
B ρBCρ

− 1
2

B ρ
1
2

AB [46]. We also note a robust version of this
statement proved using the Kim-Ruskai inequality [47]; see
Theorem 1 of [45].
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(a)

(b)

(c)

A B C

A B C

A

B

C

A′

A′ C ′

C ′

A′

A′ C ′
C ′

A′

A′

ā a b b̄

ᾱ α β β̄

ā

a

FIG. 11. (a) Subsystems AA′, B,CC′ are in the bulk. The unitary
string operator U (a,ā) lies in AA′ and the anyon pair (a, ā) it creates
is located within A′. The unitary string operator U (b,b̄) lies in CC′ and
the anyon pair (b, b̄) it creates is located within C′. (b) Subsystems
AA′, B,CC′ are attached to a gapped boundary. The unitary string
operator U (α,ᾱ) lies in AA′ and the boundary topological excitations
(α, ᾱ) it creates are located within A′. The unitary string operator
U (β,β̄ ) lies in CC′ and the boundary topological excitations (β, β̄ )
it creates are located within C′. (c) Subsystems AA′, B,C where C
attaches to the boundary and AA′B is in the bulk (away from the
boundary). The unitary string operator U (a,ā) lies in AA′ and the
anyons (a, ā) it creates are located within A′.

points σ a
AB and σ b

BC . Thus, the density matrix σ
(a,b)
�4

satisfies
all the conditions required in Proposition 1. Furthermore,
this QMS state σ

(a,b)
�4

is uniquely determined by its reduced
density matrices σ a

AB and σ b
BC . This completes the proof of

Proposition 1.
This proof provides a physical construction of σ

(a,b)
�4

. After
comparing it with the construction using the extreme points of
�(�4), in Eq. (14), one can identify the physical interpretation
of P(a×b→c); see Sec. VI C.

The proof of Proposition 2 is completely parallel given G2,
S2, �2, and the idea is illustrated in Fig. 11(b). Furthermore,
the proof of Proposition 3 is also parallel given G3, S1, �1,
and the idea is illustrated in Fig. 11(c).

In comparison, we notice that applying U (a,ᾱ) onto the
ground state (which is guaranteed to exist by S3), as is shown
in Fig. 10(a), in general does not give us a state with vanishing
conditional mutual information for the partition in Fig. 10(b).

C. Physical interpretation of probabilities

In this subsection, we discuss the physical interpretations
for the probabilities P(a×b→c) in Eq. (17), P(α×β→γ ) in Eq. (25),
and P(a→α) in Eq. (32).

The physical interpretation for the probability

P(a×b→c) = Nc
abdc

dadb

is the probability for a pair of independently created anyons
a, b to fuse into c. Here, we say two anyons are independently
created if they are created separately by two string operators
acting on nonoverlapping supports; see Fig. 11(a). We will call
P(a×b→c) the fusion probability. This physical interpretation
has been explored in the literature; see [25]. The information-
theoretic considerations in this paper rederive this physical
interpretation. In more detail, this physical interpretation fol-
lows from two facts:

(1) σ
(a,b)
�4

is the reduced density matrix of a state with
(a, ā), (b, b̄) created by two separated unitary strings on the
ground state; see Fig. 11(a).

(2) By restricting σ
(a,b)
�4

onto �′′
1, see Fig. 6(a), we get

tr�4\�′′
1
σ

(a,b)
�4

=
∑

c

P(a×b→c)σ
c
�′′

1
.

From the same reasoning, one arrives at the physical inter-
pretation for the probability

P(α×β→γ ) = Nγ

αβdγ

dαdβ

as the probability for a pair of independently created boundary
excitations α, β to fuse into γ . Here, we say a pair of bound-
ary excitations are independently created if they are created
separately by two string operators acting on nonoverlapping
supports; see Fig. 11(b). We will call P(α×β→γ ) the fusion
probability.

Furthermore, it can be shown by the same method that the
physical interpretation for the probability

P(a→α) = Nα
a dα

da

is the probability for a bulk anyon a, which had never met the
boundary, to condense into a boundary topological excitation
α. Here, we say that an anyon had never met the boundary
if it is created by a string operator supported in the bulk
(away from the boundary); see Fig. 11(c). We call P(a→α) the
condensation probability. In contrast, the anyon a in Fig. 10(a)
has met the boundary.

D. Circuit depth of string operators

The circuit depth of a unitary operator is a measure of how
complex a unitary operator is, from the viewpoint of a fixed
basis (i.e., the real space). In this section, we consider how
complex a unitary operator we need in order to propagate
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topological excitations by a certain distance. Therefore, we
discuss the circuit depth of the unitary string operators which
create these excitations, both in the bulk and in the presence of
a gapped boundary. In particular, we will consider the unitary
string operators U (a,ā) and U (α,ᾱ) which are guaranteed to
exist by S1, S2. We further consider the generalizations shown
in Fig. 13.

The discussion in this section is of the same spirit as [3,22]
which consider the minimal circuit depth needed in order to
convert a topologically ordered ground state into a product
state. Because two states within the same gapped phase may
(approximately) be related by a finite-depth quantum circuit,
the circuit depth of unitary string operators (either finite depth
or a depth scale with some length scale) is a universal property
of a gapped phase.

For an Abelian anyon a, U (a,ā) is consistent with a finite-
depth quantum circuit. In fact, in many exactly solvable
models, an Abelian anyon string is a depth-1 quantum circuit.
The depth is independent of the string length, i.e., the distance
separation between the anyons. However, we do not know
whether Abelian strings are finite-depth quantum circuits in
general.

In this subsection, we derive a concrete result: the circuit
depth of a non-Abelian anyon string is at least linear to the
distance separation of the anyon pair.4 We further discuss how
the result generalizes and changes in the presence of a gapped
boundary.

Let us consider the state with bulk string U (a,ā) and U (b,b̄)

acting on a ground state shown in Fig. 12(a). The subsystems
A, C, and ABC are of the same topology, i.e., the topology of
�1. According to the discussion in Sec. VI C, the density ma-
trices on A, C, and ABC are the following convex combination
of extreme points:

σ
(a,b)
�1

=
∑

c

P(a×b→c)σ
c
�1

, �1 = A,C, ABC, (38)

where P(a×b→c) = Nc
abdc

dadb
. In particular, let us consider b = ā

and a is non-Abelian. The fusion rule says

a × ā = 1 + · · · . (39)

For any non-Abelian anyon a, we always have da > 1 and
P(a×ā→1) = 1/d2

a < 1 and there must be fusion results other
than the vacuum 1. Thus,

I (A : C)
σ

(a,ā)
ABC

=
∑

c

P(a×ā→c)[I (A : C)σ c − ln P(a×ā→c)]

� −
∑

c

P(a×ā→c) ln P(a×ā→c) > 0. (40)

4This linear bound might be related to a property of the Wilson loop
operator in non-Abelian gauge theory [48]. This linear bound might
be related to a property of the Wilson loop operator in non-Abelian
gauge theory [48].

(a)

(b)

ᾱ α β β̄

l

l

A B C

A B C

ā a
b

b̄

FIG. 12. An illustration of the subsystem choices, unitary string
operators, and the anyons or boundary topological excitations the
string operators create. l > ε is the lattice distance between A and
C. (a) ABC and A, B, C are subsystems of �1 topology. They are in
the bulk. (b) ABC and A, B, C are subsystems of �2 topology. They
attach to a gapped boundary.

In the second line, we used �1. In the third line, we used I (A :
C) � 0 for any state.5 In the fourth line, we used the fact that
a is non-Abelian. On the other hand, G0 tells us

I (A : C)σ 1 = 0. (41)

Comparing Eq. (41) with Eq. (40), we find that the mutual
information I (A : C) is changed from zero to a positive num-
ber. This cannot be done by any quantum circuit with depth
smaller than (l − ε)/2. Here l is the minimal lattice distance
between A and C shown in Fig. 12(a). For a large separation
between a and ā, l can be approximately as large as the
separation.

To summarize, we have proved that the unitary operator
U (a,ā) has a circuit depth at least linear in the distance between
a and ā if the anyon a is non-Abelian.

In the presence of a gapped boundary, the above result has
a generalization. Meanwhile, one should be aware of a certain
difference.

First, for the case shown in Fig. 12(b), the unitary string
operator U (α,ᾱ) has a circuit depth at least linear in the distance
between α and ᾱ if the boundary topological excitation α is
non-Abelian. This fact follows from the same logic as above.

5In fact, it could be replaced by “=” since it is known that I (A :
C)σ c

ABC
= 0 for each extreme point (from topological field theory and

the replica trick [28], and it is also possible to verify this result in
lattice models). Nevertheless, we do not need this property in this
proof.
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(a)

(b)

a

ᾱ

a ā

l l
L

l
L

FIG. 13. String operators touching a gapped boundary. An
Abelian boundary topological excitation α is in the condensation
channel of a non-Abelian anyon a. (a) The string operator U (a,ᾱ).
(b) The string operator Ũ (a,ā).

Second, in the presence of a gapped boundary, e.g., the
configuration in Fig. 13(b), the linear bound for the circuit
depth of a string operator [creating a non-Abelian (a, ā)
pair] may be relaxed. This happens when the following two
conditions are satisfied:

(1) There is an Abelian boundary topological excitation α

in the condensation channel of a.
(2) The Abelian boundary topological excitation pair

(α, ᾱ) can be created with a constant-depth quantum circuit.
Under these two conditions, the minimal circuit depth of

U (a,ᾱ) and Ũ (a,ā) in Fig. 13 would scale with l instead of L.

E. Additional results based on the merging
of quantum Markov states

In this subsection, we derive some additional results us-
ing a deeper property of QMSs. The key technique comes
from [24], in which the authors show how to merge a pair
of QMSs into a global state. Recall that a density matrix ρABC

is a QMS if I (A : C|B)ρ = 0.
For the subsystems A, B1B2, C in Fig. 14, the ground-state

density matrix σ 1 satisfies

I (A : B2|B1)σ 1 = I (B1 : C|B2)σ 1 = 0,

σ 1
AB2

= σ 1
A ⊗ σ 1

B2
.

Then it follows from the construction in Ref. [24] that there
exists a state σ̃ABC (B = B1B2) such that

σ̃AB = σ 1
AB,

σ̃BC = σ 1
BC,

I (A : C|B)σ̃ = 0,

σ̃AC = σ 1
A ⊗ σ 1

C = σ 1
AC .

Note that the discussion applies to all three cases
Fig. 14(a)–14(c).

For the subsystems A, B, C in Fig. 15, for each boundary
superselection sector α, there exists a state σ̃

(α)
ABC , such that

σ̃
(α)
AB = σα

AB,

σ̃
(α)
BC = σ 1

BC,

I (A : C|B)σ̃ (α) = 0,

σ̃
(α)
AC = σα

A ⊗ σ 1
C .

(a)

(b)

(c)

A C

B1 B2

B1 B2

A C

B1 B2

B1 B2

A C

B1 B2

FIG. 14. A subsystem � is divided into ABC, B = B1B2. (a) � =
�1 is an annulus inside the bulk. (b) � = �2 attaches to a gapped
boundary by two connected components. (c) � = �3 is an annulus
covering a gapped boundary.

Because σ̃ABC looks like a ground state locally, we argue
that it is an element in a certain information convex.6 Then,
it has to be a certain maximal-entropy element. This leads to
the following results. (We omit the details of the derivations
because they are essentially the same as those shown in
Sec. III B.)

(i) Let ABC = �1 as shown in Fig. 14(a); we have

σ̃�1 =
∑

a

d2
a

D2
σ a

�1
. (42)

(ii) Let ABC = �2 as shown in Fig. 14(b); we have

σ̃�2 =
∑

α

d2
α(∑

β d2
β

)σα
�2

. (43)

(iii) Let ABC = �3 as shown in Fig. 14(c); we have

σ̃�3 =
∑

a

N1
a da(∑

b N1
b db

)σ
(a)max
�3

. (44)

Here, σ
(a)max
�3

is the maximal-entropy element of �(�3) which
has charge a on the entanglement cut.

(iv) Let ABC = �6 as shown in Fig. 15; we have

σ̃
(α)
�6

=
∑

a

Nα
a da(∑

b Nα
b db

)σ
(a,α)max
�6

. (45)

Here, σ
(a,α)max
�6

is the maximal-entropy element of �α
a (�6).

From these, one can further show the following:

6We do not have a proof of this argument based on the assumptions
shown in this paper, but the bulk version of this argument is proved
under Axioms A0 and A1 in Ref. [34].
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A

BB C

FIG. 15. Subsystem �6 is divided into ABC.

(v) The TEE [4,5] γ can be derived from any one of �1,
�2, and �3:

γ = lnD = ln

(∑
α

d2
α

)
= ln

(∑
a

N1
a da

)
, (46)

with a mild assumption that the universal piece depends solely
on the topology. Here D = √∑

a d2
a is the total quantum

dimension. This further implies√∑
a

d2
a =

∑
α

d2
α =

∑
a

N1
a da. (47)

(vi) The �6 case in Fig. 15 further implies∑
a

Nα
a da = dαD. (48)

In fact, Eq. (47) could be derived from Eqs. (31) and (48).
Both Eqs. (31) and (48) have been observed in some exam-
ples.7 We show that these results emerge from information-
theoretic considerations.

VII. SUMMARY AND DISCUSSION

We have presented a derivation of the ln da contribution to
the von Neumann entropy by looking into the information-
theoretic consistency of the information convex structure.
The information-theoretic consistency is from the strong sub-
additivity and the conditional independence in the ground
state of topologically ordered systems. A certain topologi-
cal way of encoding the fusion theory in the information
convex is assumed. Notably, we assume that fusion multi-
plicities are coherently encoded in the information convex
of a 2-hole disk. The proof generalizes to gapped bound-
aries. A derivation of the ln dα entropy contribution from
boundary topological excitation α is presented. Also fol-
lowing from this method are certain constraints of the fu-
sion theory, identifying the fusion probabilities and a linear
bound on the circuit depth of non-Abelian unitary string
operators.

7These results are obtained as theorems in Ref. [16], but the
physical context is different because the reference describes confined
boundary excitations.

This derivation points to a different perspective of the
origin of the universal properties of a topologically or-
dered system, namely the consistency with quantum me-
chanics of the many-body system. We believe that the ini-
tial steps presented in this work could be further devel-
oped in two directions. First, the assumptions may be sim-
plified. A new theoretical framework may emerge in this
direction. Second, we expect the key method to apply to
a broader physical context. We expect that this work will
extend our toolbox and provide us with a logic generaliz-
able to 3D topological orders which have potentially linked
or knotted looplike excitations. Because gapped boundaries
are special cases of gapped domain walls, it is natural to
think about a generalization of this method to the study
of gapped domain walls [9,42]. Furthermore, because the
generic gapped domain walls between two topologically or-
dered phases are closely related to anyon condensation [36],
this may further allow us to study properties of anyon
condensation.

Our method applies to topologically ordered systems with
both Abelian and non-Abelian anyons. It provides a certain
perspective on the density matrix structure of low-energy
states. We notice that quantum error correction with non-
Abelian anyons remains as a challenging problem [43,44]. It
might be interesting to see whether this work provides any
useful perspective on solving this problem.

The method in this paper requires the finiteness of cor-
relation length. This is why we have to restrict ourselves to
gapped boundaries. Moreover, only the fusion properties are
considered. It would be desirable to find ways to go beyond
these limitations so that one may study the boundary of a
2D system with a generic chiral central charge c− and to
handle the braiding properties, e.g., the topological spins (θa).
In particular, it is an intriguing question as to whether it is
possible to derive the formula e2π ic−/8 = D−1 ∑

a d2
a θa in a

suitable generalization of our method. We leave this for future
studies.

Note added. Recently a definition of the information con-
vex has been proposed [34] which takes a single quantum state
as the input. For a closed manifold, versions of G0, G1, S1,
ω1, �1, �4, F1, F2, F3, F4, F5 are derived from two local
entropic constraints originally proposed by Kim [45] (namely
axioms A0 and A1 of Ref. [34]). Therefore, the results in
this paper which are derived from these assumptions hold
whenever these simpler conditions hold.
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APPENDIX A: STRING OPERATORS VERSUS UNITARY
STRING OPERATORS

In the literature, there are discussions of string operators
and unitary string operators. For example, Ref. [19] defines an
excitation with a nontrivial superselection sector to be an exci-
tation which cannot be created by any local operator, and it is
argued that topological excitations could be moved or created
using operators acting on a string. While in known exactly
solvable models Abelian anyon strings are unitary (e.g., in the
toric code model), there are nonunitary string operators which
could create a pair of non-Abelian topological excitations
when acting on a ground state, e.g., the ribbon operators in
non-Abelian quantum double models [31,33] and the string
operators in string-net models [32]. On the other hand, some
references consider unitary string operators which create a
pair of generic topological excitations, e.g., [18,21]. This is
because unitarity is relevant to some information-theoretic
properties.

In this section, we make clear the relation between these
two seemingly different requirements. In particular, we prove
Proposition 4, which says that on a ground state satisfying G0,
any operator supported on a subsystem could be replaced by a
corresponding unitary operator supported on a slightly thicker
subsystem (thicker by the scale ε in G0).

Proposition 4. Let X be an operator supported on subsys-
tem A. Aε is a subsystem thicker than A by the length scale
ε required in G0. If X |ψ〉 �= 0, then there exists a unitary
operator U (X ) supported on Aε such that

c · X |ψ〉 = U (X )|ψ〉 (A1)

for a state |ψ〉 satisfying G0. Here c is a complex number
which fixes the normalization.

Proof. Let |ϕ(X )〉 ≡ c · X |ψ〉 and σ (X ) ≡ |ϕ(X )〉〈ϕ(X )|. It
follows from G0 that I (A : Āε )σ 1 = 0 and therefore σ

(X )
AĀε

=
σ

(X )
A ⊗ σ 1

Āε
, where σ

(X )
A ≡ |c|2Xσ 1

AX † is a reduced density
matrix and Āε is the complement of Aε . In other words,
|ϕ(X )〉 and |ψ〉 have the same reduced density matrix on
Āε . Therefore, there exists a unitary operator U (X ) supported
on Aε such that |ϕ(X )〉 = U (X )|ψ〉. The last step follows
from a general result [25]: if |ψAB〉 and |ϕAB〉 have the same
reduced density matrix on A, then there is a unitary operator
UB supported on B such that |ϕAB〉 = UB|ψAB〉. This completes
the proof. �

APPENDIX B: MONOTONICITY OF FIDELITY

We provide a short proof of the statement ρAB · σAB = 0
if ρA · σA = 0. In words, two density matrices are orthogonal
on AB if they are orthogonal on A. While this result could be
proved using straightforward calculation, we provide a proof
based on the monotonicity of fidelity [25]. The advantage of

this method is that it applies to the situation that two density
matrices are approximately orthogonal.

Given any two density matrices ρ and σ , the fidelity
F (ρ, σ ) is defined as

F (ρ, σ ) ≡ (
tr
√

ρ
1
2 σρ

1
2
)2

. (B1)

It follows that F (ρ, σ ) ∈ [0, 1]. Its value measures the overlap
between two density matrices ρ and σ . F (ρ, σ ) = 0 if and
only if ρ · σ = 0 and F (ρ, σ ) = 1 if and only if ρ = σ .

The monotonicity of fidelity states that

F (ρAB, σAB) � F (ρA, σA). (B2)

If ρA · σA = 0, then F (ρAB, σAB) � F (ρA, σA) = 0.
F (ρAB, σAB) = 0 is the only choice because it cannot be
negative. Therefore, ρAB · σAB = 0.

APPENDIX C: QUANTUM DIMENSIONS FROM FUSION

The general definition of a quantum dimension for a rel-
atively generic fusion category (without the assumption that
Nk

i j = Nk
ji) can be found in Appendix E of [19]. Note that we

do need to avoid this assumption since the category describing
the boundary theory does not have this property in general.
In this Appendix, we provide a self-contained proof of the
existence and uniqueness of the quantum dimension from a set
of assumptions listed below. This set of assumptions is general
enough to apply for bulk anyons and boundary topological
excitations. In this proof, a key step is the Perron-Frobenius
theorem for matrices with positive entries.

Let us first briefly review the Perron-Frobenius theorem.
Here an N × N matrix [A] is called a matrix with positive
entries if we have matrix element [A]i j > 0 for any i, j ∈
{1, . . . , N}.

Theorem 1 (Perron-Frobenius). Let [A] be an N × N matrix
with positive entries; then the following statements hold:

(i) There is a real and positive number r being an eigen-
value of [A] and |λ| < r for all other eigenvalues λ of [A].
Here λ can be complex.

(ii) r is simple. In other words, it corresponds to a single
1 × 1 Jordan block.

(iii) There exists a vector |v〉 = (v1, . . . , vN )T and |w〉 =
(w1, . . . ,wN )T , with real vi and real wi ∀i ∈ {1, . . . , N}, such
that

[A]|v〉 = r |v〉, [A]T |w〉 = r |w〉. (C1)

Such |v〉 and |w〉 are unique up to rescaling. Here T means
transpose.

(iv) |v〉 is the only non-negative eigenvector of [A]. Simi-
larly, |w〉 is the only non-negative eigenvector of [A]T . Here, a
non-negative eigenvector is an eigenvector with non-negative
entries.

Next, we list some standard assumptions in the fusion
theory, which are needed in order to derive the existence and
uniqueness of the quantum dimension. The last assumption is
not needed for the proof of existence and uniqueness but is
needed in order to show dj = d j̄ and d j � 1.

Assumption F1. There exists a finite set of labels C =
{i, j, k, . . .}. (This implies that we could take i = 1, . . . , N
for a positive integer N .) There exist coefficients Nk

i j which

033048-15



BOWEN SHI PHYSICAL REVIEW RESEARCH 1, 033048 (2019)

take non-negative integer values and we call them fusion
multiplicities.

Assumption F2. Fusion is associative:∑
m

Nm
i j Nl

mk =
∑

n

Nl
inNn

jk . (C2)

Assumption F3. There exists a unique vacuum sector 1 ∈ C
and

N j
1i = N j

i1 = δi, j . (C3)

Assumption F4. For each label i ∈ C, there exists a unique
antilabel ī ∈ C such that

N1
i j = N1

ji = δ j,ī. (C4)

Assumption F5.

Nk
i j = Nk̄

j̄ī. (C5)

We have finished the discussions about the fusion as-
sumptions. Note that we do not assume Nk

i j = Nk
ji since the

boundary theories do not satisfy this property in general. Next,
we provide a few definitions and some simple corollaries
which will be useful in the proof.

Let us define [Ni] to be the matrix with component [Ni] jk =
Nk

i j . We further define [N (p)] ≡ ∑
i pi[Ni], for any probability

distribution {pi} with pi > 0, ∀i. The following are some
corollaries:

(1) From F1, we know that each [Ni] is a matrix with non-
negative entries.

(2) It follows from F2 that∑
k

Nk
i j[Nk] = [Nj][Ni], (C6)

∑
k

[N (p)] jk[Nk] = [Nj][N (p)]. (C7)

(3) It follows from F3 and F4 that

1̄ = 1 and ¯̄i = i. (C8)

(4) From F1, F2, F3, and F4, one can show∑
i

Nk
i j > 0, ∀ j, k,

∑
j

Nk
i j > 0, ∀ i, k,

∑
k

Nk
i j > 0, ∀ i, j,

(C9)

and it follows that [N (p)] is a matrix with positive entries. In
other words, [N (p)] jk > 0, ∀ j, k.

(5) It follows from F1, F2, F3, and F4 that

Nk
i j = Nī

jk̄ . (C10)

(6) It follows from F1, F2, F3, F4, and F5 that

Nk
i j = N j

īk
= Nī

jk̄ = Nk̄
j̄ī = N j̄

k̄i
= Ni

k j̄, (C11)

and therefore

[Nī] = [Ni]
T . (C12)

Proposition 5. There exists a positive eigenvector |v〉 =
(v1, . . . , vN )T , with vi > 0, ∀i ∈ {1, . . . , N} such that it is the
common eigenvector of all the matrices [Ni] and [N (p)] for
any {pi}. The quantum dimension di > 0 can be defined from

[Ni]|v〉 = di|v〉. (C13)

The quantum dimension di is the largest eigenvalue of [Ni].
Furthermore, {di} is the unique set of positive numbers satis-
fying the following equation:

did j =
∑

k

Nk
i jdk . (C14)

The proof of Proposition 5 follows from F1, F2, F3, and F4.
In fact, these assumptions could be further relaxed if we just
want to have a unique positive solution of Eq. (C14).

Proof. Since [N (p)] is a matrix with positive entries, ac-
cording to the Perron-Frobenius theorem, there exists a unique
positive vector |v〉 = (v1, . . . , vN )T such that

[N (p)]|v〉 = rp|v〉. (C15)

Then by using Eq. (C7) we get∑
k

[N (p)] jk[Nk]|v〉 = rp[Nj]|v〉. (C16)

Define |v( j)〉 ≡ [Nj]|v〉. Then |v(1)〉 = |v〉 since [N1] = 1 is
the identity matrix (Assumption F3), and |v( j)〉 is positive
because of Eq. (C9) and that |v〉 has only positive entries.
Therefore, we can rewrite Eq. (C16) into∑

k

[N (p)] jk|v(k)〉 = rp|v( j)〉. (C17)

Then it is straightforward to show that |v( j)〉 ∝ |v〉 and the
proportional coefficient has to be positive; let us call it dj and
therefore

[Nj]|v〉 = d j |v〉, ∀ j. (C18)

It shows that |v〉 is a common eigenvector of all [Nj] and also
[N (p)] for an arbitrary probability distribution {pi}. In fact,
d j has is the largest eigenvalue since |v〉 is positive and [Nj]
could be obtained by taking a certain limit of [N (p)].

Next, we use Eq. (C6) to show that did j = ∑
k Nk

i jdk . Thus,
we have proved that there is at least one positive solution
to Eq. (C14). Now let us show that the positive solution
of Eq. (C14) is unique. This follows from the fact that if
Eq. (C14) holds, and d j is positive, then d j has to be the largest
eigenvalue of [Nj] and such largest eigenvalue is unique, given
the choice of Nk

i j .
We have finished the proof using Assumptions F1, F2, F3,

F4. �
With this proposition, one could define quantum dimension

di as the unique positive solution of Eq. (C14). Given that
the assumptions apply to both the bulk and the boundary, we
conclude that the bulk quantum dimension da can be defined
as the unique positive solution of dadb = ∑

c Nc
abdc, and the

boundary quantum dimension can be defined as the unique
positive solution of dαdβ = ∑

γ Nγ

αβdγ .
Proposition 6.

d1 = 1. (C19)
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Proof. Let us apply Eq. (C14) to the vacuum sector

d1d1 =
∑

k

Nk
11dk

= N1
11d1

= d1. (C20)

Thus, d1 = 1. We have finished the proof using Assumptions
F1, F2, F3, F4. �

Proposition 7.

di = dī. (C21)

Proof. It follows from two facts:
(1) The quantum dimension di is the largest positive eigen-

value of [Ni], and dī is the largest positive eigenvalue of [Nī].
(2) [Nī] = [Ni]T and therefore they have the same largest

positive eigenvalue. In this step, F5 is used.

We have finished the proof using Assumptions F1, F2, F3,
F4, F5. �

Proposition 8.

di � 1, ∀ i, (C22)

and di > 1 if and only if i and ī have a fusion channel other
than the vacuum 1.

Proof. It follows from Eq. (C14) that

didī =
∑

k

Nk
iī dk

� N1
iī d1

= 1. (C23)

Then applying Proposition 7, we get d2
i � 1 and therefore the

positive number di � 1. One could further observe that if 1 is
the only fusion channel of i and ī, then di = 1, and if there are
other fusion channels, we have di > 1.

We have finished the proof using Assumptions F1, F2, F3,
F4, F5. �
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