
PHYSICAL REVIEW RESEARCH 1, 033047 (2019)

Failure time in heterogeneous systems
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We show that the failure time τ f in the fiber bundle model, taken as a prototype of heterogeneous materials,
depends crucially on the strength of the disorder δ and the stress release range R in the model. In the mean-field
limit, the distribution of τ f is log-normal. In this limit, the average failure time shows the variation τ f ∼ Lα(δ),
where L is the system size. The exponent α has a constant value above a critical disorder δc (= 1/6), while it is an
increasing function of δ in the region δ < δc. On the other hand, in the limit where the local stress concentration
plays a crucial role, we observe the scaling τ f ∼ Lα(δ)�(R/L1−α(δ) ), where R is the stress release range. We find
that the crossover length scale Rc, between the above two limiting cases, scales as Rc ∼ L1−α(δ).
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I. INTRODUCTION

In amorphous and heterogeneous materials, fracture pro-
cesses involve a complex interplay of microcrack nucleation,
coalescence, and growth of the cracks, leading to eventual
failure of the materials [1]. In these materials, the process
of fracture exhibits typically the following three stages: (i)
initiation and formation of the microcracks at soft points of
the sample, (ii) nucleation and coalescence of the micro-
cracks, and (iii) the propagation of such microcracks [2].
Depending upon the disorder present in the material, however,
the nucleating tendencies of the cracks can be inhibited [3].
In the limit of very high disorder, the nucleation process
can be completely suppressed even up to the failure point,
as was seen in the random fuse model [4]. For moderate
disorder strengths, in spite of initial random failures, the final
breakdown occurs through nucleation [5]. If, however, the
timescale of nucleation is larger than that of the failure, the
system might appear to demonstrate a pseudocriticality in
these intermediate disorder strengths [5]. This pseudocritical-
ity (or finite-size criticality) vanishes in the large-system-size
limit, where the failure time overtakes the time required for
the nucleation to set in. It was conjectured that the failure
mode is essentially the outcome of the interplay between
the disorder strength and the range R up to which a local
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perturbation (failure) propagates within the system. A useful
way to understand this interplay is the random fiber bundle
model, where both of these parameters, the range of interac-
tion and disorder strength, can be tuned independently [6,7].
A phase diagram depicting various modes of failures and
the scaling criteria determining the different modes can be
numerically evaluated [7].

In this work, we are interested in the question of the even-
tual failure time τ f and its system-size scaling in the different
fracture modes mentioned above. While the mode of failure
is important information, the failure time is crucial from the
point of view of effective engineering design and reliability
[8–13] of structures. Many models have been proposed before
to predict the failure time [12,14–18] of disordered materials.
However, most models are concerned with the dependence
of τ f on applied load or on the macroscopic parameters like
temperature and pressure, while treating the crack growth as
an activation process [13,16]. The understanding of the failure
time from the microscopic fracture dynamics, especially in the
heterogeneous systems described above, has remained unclear
[19,20].

The time to failure of a mechanical system consisting of
parallel membranes has been studied in the past [21,22]. These
studies mostly have the order statistics of the failure time dis-
tribution for a single membrane. Damage evolution and time
to failure have been investigated in a model where the damage
formation is a stochastic event with the probability of failure
at a point i at time t proportional to σ

η
i (t ), where σi(t ) is the

local stress at i at time t [12]. The model predicts two regimes
of failure: percolation like a failure for η � 2 and failure with
precursory avalanches for η > 2. A numerical study of the
model on a two-dimensional triangular spring network model
shows that for η � 2, the failure time is independent of the
system size L, whereas for η > 2, the failure time scales as
(lnL)1−(η/2) [11].
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In the fiber bundle model [23] studied here, the number of
failure modes is more than the two modes mentioned above.
Here we look at the failure time and its scaling behaviors with
system size L for the different failure modes.

II. DESCRIPTION OF THE MODEL

The fiber bundle model [24,25] consists of a set of fibers
attached between two parallel bars. One bar is kept fixed while
the other one is pulled with external stress σ . Disorder is
introduced into the model in the form of randomness in the
failure strengths of the individual fibers. Here we consider a
uniform probability distribution of the failure thresholds, cen-
tered around 0.5 and having a half-width δ. When the applied
stress crosses the failure strength of a fiber, that fiber breaks
irreversibly. The stress on that broken fiber is then redis-
tributed among the remaining intact fibers. There are broadly
two schemes to redistribute the stress: the equal load sharing
(ELS) scheme and the local load sharing (LLS) scheme. In
the ELS scheme, the stress is redistributed uniformly among
all other surviving fibers [25,26]. In the LLS scheme, only the
nearest surviving neighbors of the broken fiber carry the extra
load [27–32]. There are several intermediate load sharing
schemes that interpolate between these two limiting cases,
such as a power-law load sharing [33] or load sharing within
a fixed range R [6,7]. After the redistribution, there might
be further breaking events, initiating an avalanche. When the
system eventually comes to a stable configuration, the applied
stress is increased again to break the next weakest fiber and
the process continues until all the fibers break.

In this study, however, we are solely interested in the
failure time τ f . In measuring that, first we find the critical
load σc, which a fiber bundle can just withstand. For every
configuration, the system is loaded marginally above this
critical load such that it eventually breaks down without any
further increase in the load. The number of redistribution steps
taken by the system, from the initial application of the load to
the final breakdown, is noted as the failure time τ f .

III. ANALYTICAL APPROACH: MEAN-FIELD LIMIT

In the mean-field limit, the effect of the disorder strength
on the time evolution of U (t, σ, δ) can be approximately
determined; U (t, σ, δ) is the the fraction of surviving fibers at
time t , at stress σ , and for the half-width δ of the threshold
distribution. Then U (t, σ, δ) satisfies the recursion relation
[34]

U (t + 1, σ, δ) = 1

2δ

(
(c + δ) − σ

U (t, σ, δ)

)
, (1)

where c is the mean of threshold stress distribution; c and δ

have dimensions similar to the stress. At the critical point,
σ will be replaced by the critical stress σc. A recent study
[35] shows that there exists a critical point at δc around
which the mode of failure changes from brittle (abrupt) to
quasibrittle (nonabrupt) with appropriate critical scalings. In
the quasibrittle region (δ � δc) we already have an expression
for σc [35]:

σc = δ

2

(
1 + c − δ

2δ

)2

. (2)

Then, at the critical point in the quasibrittle regime we get,
from Eq. (1),

U (t, σc, δ) − Uc =
(

1

2
+ 1

4δ

)
t−1, (3)

where Uc is the fraction of unbroken fibers at critical stress.
At δ = 0.5, Uc = 0.5 and the above result matches with the
behavior U (t, σc, δ = 0.5) − Uc ∼ 1/t observed before [34].
Also, this behavior is independent of δ, as long as δ � δc. In
the brittle region (δ < δc), the picture is quite different. The
disorder distribution is so narrow that the system fails as soon
as the weakest fiber in the system breaks. However, due to
sample to sample fluctuation, the weakest fiber in a system
does not necessarily have the lower bound of the threshold dis-
tribution as its failure strength. This difference also depends
on the system size. In this region we can write σc = σl + ε,
where σl is the lower bound of the threshold distribution and
is given by c − δ. In addition, ε is the term that takes care of
the finite-size effect reflected through deviation of the strength
of the weakest fiber from the lower bound of the threshold
distribution. As we go to higher system sizes, the magnitude
of ε decreases. The recursion relation in this case takes the
form

U (t +1, σc, δ) = 1+A

(
1 − 1

U (t, σc, δ)

)
− ε

2δU (t, σc, δ)
,

(4)

where A = σl
2δ

. As U (0, σc, δ) = 1 its easy to see that
U (1, σc, δ) = 1 − ε

2δ
. Repeating this recursively, we get

U (t, σc, δ) = 1 − ε

2δ − ε

1 − At

1 − A
, (5)

where the higher-order terms in ε are neglected. Using the
expression of A, we get

U (t, σc, δ) = 1 − 4δε

(2δ − ε)(6δ − 1)

[
1 −

(
1 − 2δ

4δ

)t]
. (6)

In Fig. 1 we have compared the analytical expression of
U (t, σc) with the numerical behavior generated for system
sizes ranging from 104 to 4 × 105 and with 104 configurations.
Here δ is kept constant at 0.14. The choice of δ is rather free
as long as the model remains in the brittle region (δ < δc).
We treat ε as a fitting parameter here, expecting it to decrease
as L is increased, making the difference between σc and σl

smaller. The points correspond to the numerical results where
the lines are drawn using Eq. (6) for certain δ and ε values,
as indicated. The envelope of the curve in Fig. 1 increases
as we go to higher system sizes, suggesting an increment
in failure time when the system size is increased. We also
observe that as the system size is increased, ε decreases as
ε ∼ 1/L. Such behavior is consistent with the weakest link of
chain approach [36]. As higher-order terms are neglected, the
analytical result does not tally with the numerical findings at
long times. For this reason Eq. (6) cannot be used to predict
the size dependence of τ f . For that we need to resort to
numerical simulations.
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FIG. 1. (a) Study of U (t, σc ) with increasing time steps for
system sizes ranging between 104 and 4 × 105. Disorder is kept fixed
at δ = 0.14. The points show the numerical results, while the lines
follow the analytical results given by Eq. (6). The value of ε is
adjusted depending on δ. The envelope of the curve increases and
ε decreases as we go to higher system sizes. (b) Plot of ε decreasing
with system size L as ε ∼ 1/L. Such scale-free behavior is observed
to be independent of the strength of the disorder δ.

IV. NUMERICAL RESULTS

With the analytical approach outlined above, we could not
find the correct system-size scaling of the failure time, nor
could we go beyond the mean-field limit. In this section, we
determine the system-size scaling of the failure time τ f in
different failure modes (controlled by changing δ) for both
the mean-field and finite-range interaction R.

The failure time τ f is the envelope of the U (t, σc, δ) vs t
curve. We have determined it numerically for different δ and
R. Numerically, τ f is estimated as the number of redistributing
steps that the fiber bundle goes through under a loading
slightly above the critical load, until its global failure. We
have followed the definition of the interaction range R as
the number of surviving fibers on both sides of the broken
one among which the extra stress of the broken fiber is
uniformly redistributed [6]. Numerical simulations are carried
out with a bundle of size ranging between 103 and 4 × 105 and
realizations between 102 and 105.

A. Failure dynamics in the mean-field limit

Here we have shown the evolution of the surviving fraction
of fibers U (t ) with time in the mean-field limit, when the
system is loaded with stress slightly higher than the critical
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FIG. 2. Time evolution of the unbroken fraction for δ = 0.5
while a critical stress σc(∞) is applied on it in the mean-field limit.
The main figure and the inset show the scaled and unscaled results,
respectively.

value. Under such a condition, the bundle will break in a
single avalanche and over time (or load redistribution steps)
τ f , which is the failure time of the bundle. We discuss results
for both the quasibrittle (δ > δc) and the brittle (abrupt failure)
(δ < δc) regions.

1. Quasibrittle region

We set δ = 0.5. For this strength of disorder, the system
is deep in the quasibrittle region (since δc = 1/6) and σc(∞)
and Uc(∞) are known exactly to be 0.25 and 0.5, respectively,
in the thermodynamic limit (L → ∞).

The inset of Fig. 2 shows the unscaled behavior of U (t )
where it starts from 1 and subsequently decays rapidly with
increasing time. The results are shown for four different sys-
tem sizes ranging between 104 and 105. The blue dotted line
compares the numerical results with the analytical findings in
the preceding section and it shows the similarities in the low-t
limit.

The scaling behavior of U (t ) is

[U (t ) − U (∞)]Lα ∼ 	1(tL−α ), (7)

where α = 1/3. The exponent α remains the same throughout
the region δ > δc (= 1/6). From the scaling equation (7), we
can study the behavior in two different limits.

(i) When t is small, we observe that the function 	1(x)
behaves as 1/x. In the limit t � L1/3 we get

U (t ) − U (∞) ∼ 1

t
. (8)

(ii) For large t , where t � L1/3, we observe 	1(x) ∼ −x
and in that limit U (t ) behaves as

U (t ) − U (∞) ∼ − t

L2/3
. (9)

The failure time τ f can be obtained by setting Eq. (7) to a
constant value as there will be no evolution of the unbroken
fraction with time. Setting the right-hand side of the same
equation to a constant value, we get

tL−α|t=τ f = const
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FIG. 3. (a) Time evolution of the fraction of unbroken U (t )
in the brittle region δ < δc. We have observed the scaling U (t ) ∼
tL−α . (b) Unlike the quasibrittle region, the exponent α increases
monotonically with the strength of disorder.

or

τ f ∼ L1/3. (10)

The results of Eqs. (8) and (10) are consistent with what was
observed in the fiber bundle model in the mean-field limit
[37].

2. Brittle region

In the brittle region (δ < δc), due to the abrupt nature of
the failure, U (t ) decreases very fast with time (see Fig. 3).
The critical stress in this region coincides with the threshold
value of the weakest fiber.

Simulations have been carried out for system sizes ranging
between 104 and 105 with disorder strength δ = 0.1. Here we
observe the scaling with system size

U (t ) ∼ 	2(tL−α ), (11)

where the exponent α increases monotonically with strength
of disorder δ. The scaling remains the same throughout the
region δ < δc (=1/6). As a failure criterion we can set the
right-hand side of Eq. (11) to a constant value. The scaling of
the failure time with size of the system can be expressed as

tL−α(δ)|t=τ f = const

or

τ f ∼ Lα(δ). (12)

The scaling of τ f with system size L at different disorder
strength values will be revisited numerically later in this paper.

Figure 4 shows the system-size effect of the average failure
time τ f at different disorder values. Here τ f ∼ Lα for all δ,
with α the exponent of the power law. Above δc, α remains
constant, independent of δ. In vanishingly small disorder, the
model is bound to fail in the redistributing step independent of
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FIG. 4. System-size effect of the maximum average relaxation
time τ f at different δ value. Here τ f shows a scale-free behavior
with system size L: τ f ∼ Lα . The value of the exponent α remains
constant at 1/3 for δ > δc, while it keeps decreasing below δc and
the system-size effect of τ f gradually vanishes. The inset shows the
variation of the scaling exponent α with a varying disorder value.
For δ > δc, α saturates at a value 1/3. Below δc the exponent value
decreases as we go to lower δ values.

system size (essentially in one single step, as all the fibers will
have the same failure threshold). As the model approaches
this vanishingly small disorder limit (δ → 0), the exponent
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FIG. 5. Distribution of the failure time for different δ fitted for
(a) the mean-field limit R > Rc and (b) extreme local stress con-
centration limit R = 1 (<Rc), with Rc the critical value of the stress
release range around which a transition from LLS to the mean field
was observed (see Ref. [6] as well as the next section for details).
The numerical results suggest a nice fit with a log-normal distribution
with mean μ and variance v.
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FIG. 6. Scaling of the failure time τ f with system sizes 103, 5 × 103, 104, and 105 for disorder (a) δ = 0.5, (b) 0.3, (c) δ = 1/6, (d)
δ = 0.13, (e) δ = 0.1, and (f) δ = 0.06. The inset shows the unscaled behavior of τ f . The scaling behavior shows τ f ∼ Lα(δ)�(R/L1−α(δ) ).
The value of α remains the same (1/3) in the region δ > δc. For δ < δc, the value of this exponent α behaves similarly to what was shown in
Fig. 3(b) and the inset in Fig. 4.

α decreases. The failure time τ f satisfies the scaling behavior

τ f ∼
{

L1/3 for δ > δc

Lα(δ) for δ < δc,

where α(δ) is an increasing function of δ.
In the mean-field limit, the relaxation time at critical stress

has been found before to diverge as L1/3 [37]. At the same
time, the relaxation time diverges as we approach δc as L1/3

[35]. The present study shows a similar scaling behavior in
the limit δ < δc as well with a disorder-dependent exponent
α.

Distribution of failure time. Figure 5 shows the distribution
of failure times τ f at different δ values for system-size L =
103 and 105 realizations. The distribution of τ f fits satisfac-
torily with the log-normal distribution. The behavior of the
fitting is discussed below in detail.

The log-normal distribution that we use for the fitting is
given by

P(τ f ) = 1

τ f v
√

2π
exp

[
− (ln τ f − μ)2

2v2

]
.

Here μ and v are, respectively, the mean and variance of the
distribution. The fitting of failure time for different δ values
is shown explicitly in Fig. 5 for both R > Rc (mean field) and
R < Rc (R = 1 to be specific), where Rc is the critical value
of the stress release range around which the model goes from
LLS to the mean-field limit. A more detailed discussion of Rc

can be found in the next section. The results are summarized
below.

(i) In the mean-field limit (R > Rc), the distribution for τ f

is log-normal irrespective of the strength of disorder.
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(ii) With local stress concentration (R < Rc), the distribu-
tion is log-normal only for δ > δc. For δ < δc, the distribution
is a δ function at L/2R (which is 500 in this case as R = 1
and L = 103). In this region δc changes with system size L, as
discussed in detail in a recent paper [38].

The two factors that mainly control the failure time are
how close the threshold values of the fibers are and what the
applied critical stress value is. The interplay between these
two factors determines the average position of the failure
time distribution. In the mean-field limit, the average failure
time reaches its highest value at an intermediate strength of
disorder where the applied stress is close to the threshold of
the weakest link and at the same time there is a moderate
fluctuation among the strength values from fiber to fiber. At
higher disorder, the critical stress is well inside the distribution
and breaks a large part of the bundle at the beginning, which
in turn leads to high redistribution stress. On the other hand,
at low disorder, the threshold values are very close to each
other, increasing the probability of multiple fiber breaking
at a single time step. Both of these cases eventually lead to
a shorter failure time [see Fig. 5(a)]. Such behavior is not
observed with local stress concentration as the long-range
interaction is absent here and a weak fiber will still survive
(after the redistribution) at a time t if it is not a neighbor of
the broken fiber. The average of the distribution moves to a
higher value with increasing strength of disorder in this limit
[see Fig. 5(b)].

In addition to the log-normal distribution, we have fitted
our numerical results with the Weibull distribution. The good-
ness of the fitting is determined from the χ2 deviation and the
fitting with the log-normal distribution is observed to be more
reliable (For further details, see the Appendix).

B. Failure dynamics with local stress concentration

Finally, we arrive at the point where we can study the
model with local stress concentration. For this purpose, we
consider that the stress of a broken fiber is redistributed among
R surviving nearest neighbors. For the one-dimensional fiber
bundle model, R = 1 corresponds to the LLS limit, while
R = L/2 leads to the mean-field limit of the model. Since the
perturbation due to a broken fiber cannot reach more than R
nearest surviving neighbors, the model will produce a failure
time τ f = L/R even if all the threshold values are the same.
Instead, we can observe here how the spatial correlation is
affected by the strength of disorder, while the stress release
range R is continuously varied. A recent study shows that

the failure process is nucleating or spatially correlated if the
stress redistribution is slower than a critical range Rc (∼L2/3)
[6]. The observation in that study was carried out while the
threshold values were chosen from a uniform distribution in
(0,1). In this section, we explore the behavior of such an
Rc in one dimension when the strength of disorder is varied
within a wide range, making the failure process both brittle
and quasibrittle. The study of the scaling of Rc in low disorder
values will tell how the rupture pattern is modified when the
strength of the disorder is low.

Figure 6 shows the scaling of τ f with the range R for dif-
ferent system sizes ranging from 103 to 105 and for different
disorder strengths. We observe the scaling of τ f with R and
system size L for all δ values,

τ f ∼ Lα(δ)�

(
R

L1−α(δ)

)
, (13)

where the scaling exponent α is a function of δ and behaves in
the same way observed in Figs. 3 or 4. The inset of Fig. 6
shows the unscaled variation of τ f /L with R at different
system sizes. The above scaling is consistent with the behavior
observed earlier [6]. The scaling function �(x) behaves as
1/x below the critical range Rc. This leads to τ f = L/R in
the regions R < Rc. On the other hand, beyond Rc, α = 1/3
and �(x) is just a constant. This gives us τ f ∼ L1/3 beyond
Rc. These two τ f values should agree with each other at Rc.
This condition offers us the scaling of Rc with the system size
L: Rc ∼ L1−α(δ). This suggests that, in the brittle region, as the
strength of disorder is decreased, we have to go to a higher
range of stress redistribution to achieve spatially uncorrelated
rupture events.

V. DISCUSSION AND CONCLUSION

We have studied the variation of failure time with disorder
strength, range of interaction, and system sizes in the fiber
bundle model. The system was first marginally overloaded
and the number of stress redistributions required for the entire
system to break was taken as the failure time. In this way,
even for the brittle region, there is a finite failure time. The
system-size scaling and the distributions of the failure times
show intriguing behavior for different disorder strengths and
interaction ranges. These are summarized in Table I. In
particular, for a very local interaction range (R < Rc), the
failure time is inversely proportional to R. This is the region
of damage nucleation, which eventually turns into a diffused

TABLE I. Behavior of the failure time distribution and size effect of τ f in all four regions: the brittle mean field (R > Rc and δ < δc), the
quasibrittle mean field (R > Rc and δ > δc), the brittle mean field with local stress concentration (R < Rc and δ < δc), and the quasibrittle
mean field with local stress concentration (R < Rc and δ > δc). The boundaries of these regions have been observed in recent papers. Here δc

demarcates the brittle and quasibrittle regions (see Ref. [35]), while Rc separates the mean-field limit from local load sharing (see Ref. [6]).
The scaling of δc with system size in the region R < Rc is discussed in Ref. [38].

Range δ > δc δ < δc

R > Rc distribution of τ f : log-normal distribution of τ f : log-normal
R > Rc τ f ∼ L1/3 τ f ∼ Lα(δ) where α increases with δ

R < Rc distribution of τ f : log-normal distribution of τ f : δ function at L/2R
R < Rc τ f ∼ L/R τ f ∼ L/R
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damage and avalanche dynamics when R is sufficiently large.
Consequently, the failure time distribution turns from a δ-
function to a log-normal distribution. The log-normal and
similar (e.g., Weibull) distributions have been found before
for failure time distributions in the case of creep rupture.
Creep failure has been studied [39–43] extensively both ex-
perimentally and theoretically from the point of view of
statistical mechanics. In Refs. [40–42], a log-normal and
a Weibull distribution were observed for 1/2Cr1/2Mo1/4V
steel (1Cr1Mo1/4V steel) and Ti-6246 alloy, respectively. The
same Weibull distribution was found for STS304 stainless
steel [43]. Generally, in creep rupture, the systems are loaded
below their critical point and the thermal (or other external)
noise takes the systems over the failure threshold. In our case,
however, there is no external noise. It is the external loading,
which is controlled to be slightly above the critical point, that
causes the eventual failure of the system. Notwithstanding
this difference in the mechanism for the failure initiations,
the behavior of the failure time distributions we find here
is very similar to that found for creep rupture experiments.
Our results are universal in the sense that the scalings are
valid for different forms of failure threshold distributions,
i.e., a uniform distribution (shown here) and a power-law
distribution with exponent −1.

In conclusion, we have found that microscopic parameters
such as the strength of the disorder and the range of stress
redistribution have a profound effect on the failure time of a
disordered sample. We have found the scaling relation of the
failure time for the full parameter space of the system size, the
strength of disorder, and the stress release range. A universal
scaling exponent was observed beyond the critical strength of
the disorder value. As a result of the extreme statistics of the
fracture dynamics, the distribution of failure time was found
to be log-normal at any strength of disorder, unless the range
of interaction was very low.

APPENDIX

Figure 7 shows the distribution of failure times τ f at dif-
ferent δ values for system size L = 103 and 105 realizations.
The distribution of τ f has been fitted satisfactorily with two
different distributions: Weibull and log-normal. The behavior
of the fitting is discussed below in detail.

The Weibull distribution that we have adopted is given by

P(τ f ) =
(

k

λ

)(
τ f − γ

λ

)k−1

exp

[
−

(
τ f − γ

λ

)k
]
,

where k, λ, and γ are, respectively, the shape, scale, and
position parameters of the distribution. In contrast, the log-
normal distribution is given by

P(τ f ) = 1

τ f v
√

2π
exp

[
− (ln τ f − μ)2

2v2

]
.

Here μ and v are, respectively, the mean and variance of the
distribution. The fitting of the failure time with these two
distributions is shown explicitly in Fig. 7. The goodness of
fit has been checked from the study of reduced χ2 values.

FIG. 7. Distribution of the failure time for different δ fitted
with (a) the three-parameter Weibull distribution and (b) the log-
normal distribution. The numerical results are fitted with different
parameters such as the shape, scale, and position parameter for the
Weibull distribution and the mean and variance for the log-normal
distribution.

Reduced χ2 (denoted by χ2
r ) is basically defined as the

χ2 value per degree of freedom ν (equal to the number of
observations minus the number of fitted parameters) defined
as

χ2
r = 1

ν

∑ (Oi − Ei )2

Ei
, (A1)

where Oi and Ei are observed and expected data, respectively.
In Table II we provide a comparison of reduced χ2

r for both
distributions. This comparison shows that, for both cases,
χ2

r has a lower value and the fit of the numerical data is
satisfactory. The log-normal distribution can be claimed to be
fitted more appropriately as χ2

r is an order lower than that of
the Weibull distribution.

TABLE II. Comparison of the reduced χ 2
r deviation for log-

normal and Weibull distributions as the distribution of the failure
time.

χ 2
r

δ Weibull distribution log-normal distribution

0.1 1.63 × 10−4 3.5 × 10−5

0.12 8.42 × 10−5 7.25 × 10−6

0.14 3.66 × 10−5 8.59 × 10−6

1/6 1.21 × 10−5 2.45 × 10−6

0.2 1.45 × 10−5 4.41 × 10−6
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