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The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the
complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are
sufficient to define a certain range of dynamics on complex graphs, higher-dimensional coins are necessary
to unleash the full potential of discrete-time quantum walks. In this work, we present an experimental realization
of a discrete-time quantum walk on a line graph that, instead of two-dimensional, exhibits a four-dimensional
coin space. Making use of the extra degree of freedom we observe multiple ballistic propagation speeds specific
to higher-dimensional coin operators. By implementing a scalable technique, we demonstrate quantum walks on
circles of various sizes, as well as on an example of a Husimi cactus graph. The quantum walks are realized via
time-multiplexing in a Michelson interferometer loop architecture, employing as the coin degrees of freedom the
polarization and the traveling direction of the pulses in the loop. Our theoretical analysis shows that the platform
supports implementations of quantum walks with arbitrary 4 × 4 unitary coin operations, and usual quantum
walks on a line with various periodic and twisted boundary conditions.

DOI: 10.1103/PhysRevResearch.1.033036

I. INTRODUCTION

During the past two decades, quantum walks [1–3], the
quantum mechanical analog of random walks, have be-
come an established basis for quantum algorithms [4–8] and
quantum simulations [9–13]. Quantum walks (QWs) have
been realized experimentally on various platforms, such as
photons [14–23], ions [24,25], atoms [26–28], and nuclear
magnetic resonance [29]. A detailed introduction to experi-
mental implementations of quantum walks can be found in
Ref. [30]. Discrete time quantum walks (DTQWs) have been
successfully implemented using time-multiplexing techniques
[18,19,31,32], offering flexibility and easy reconfigurability
accompanied by high efficiency and stability. A marked fea-
ture of the DTQW is an internal degree of freedom—the
coin space—that conditions the spatial shift of the walker, in
the same way as a coin toss determines the movement of a
classical random walker. It is the dynamics in the coin space
that is argued to provide the key ingredient to the complex
behavior of the DTQW [6].

While the initial definition of DTQWs assumed translation
invariant and time independent dynamics, more versatility can
be obtained by spatial and temporal control of the quantum
walk parameters. By varying the coin operation such systems
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have been used experimentally to observe Anderson local-
ization [21,23,33], dynamical localization [26], topological
phases [34–42], and other fundamental effects such as re-
currence [43] and revivals [44]. The dynamic control of the
coin operation can be extended to engineering the topology
of the graph on which the walk takes place: finite [31] and
percolation graphs [45], and lines with periodic boundary
conditions [46] have been demonstrated experimentally.

To have any effect on the walker dynamics, the minimum
required dimensionality for the coin space is two. In order
to reduce the required theoretical and experimental effort
associated with the study of higher-dimensional coins, many
of the above works employ multistep protocols, which use
only two-dimensional coins. These protocols simulate higher-
dimensional coins by splitting up each step into multiple coin
and shift operations acting on a two-dimensional coin space.
They have found use not only in realizing dynamics on graphs
embedded in higher dimensions, but also in 1D quantum
walks on more sophisticated graphs, such as on percolation
graphs or circles [45,46]. However, as the required doubling
or even triplication of the necessary step numbers for the
implementation of such multistep schemes is experimentally
disadvantageous in terms of losses, inaccuracies, and scalabil-
ity, these protocols significantly impact the efficiency of the
physical implementation.

Already on the one-dimensional (1D) line DTQWs with
higher-dimensional coins have been shown to exhibit unique
features not possessed by two-dimensional coins, among the
most striking the so-called trapping [47–49]. While due to
the simplicity of the 1D structure these may be regarded as
toy systems, they can be efficiently used to demonstrate sev-
eral fundamental differences between classical and quantum
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walks. Trapping can be used for instance in conjunction with
dynamically controlled coin operators to shape the profile of
the walker’s wave packet, having no counterpart in classical
random walks. In the case of more complex graph topolo-
gies (e.g., graphs embedded in higher-dimensional spaces,
or nonregular graphs), the dimensionality of the coin space
will provide the critical ingredient for more involved or
even unexpected applications. For example, DTQWs with
genuine four-dimensional coins on structures embedded in
the two-dimensional (2D) space admit phases analogous to
the quantum spin Hall (QSH) phases [50,51], offering sig-
nificantly new applications over the phases accessible in 1D
[50,52]. Another example is that of the Grover walk on a
2D grid, exhibiting dynamics composed of a spreading and
a localized part [53,54], of which only the spreading part can
be reproduced by two-dimensional coins [55]. These limita-
tions of two-dimensional coins provide a strong motivation
to achieve efficient implementations of quantum walks with
genuine higher-dimensional coin operators while maintaining
precise dynamic control. While there have been theoretical
proposals [56,57], and limited experimental realizations of
higher-dimensional coins [19,23,25,58], no universal scalable
platform has been demonstrated yet.

In this work, we present experimental implementations
of DTQWs on a line governed by programmably controlled
four-dimensional coins, reaching beyond the previous two-
dimensional definition and demonstrating QWs on new com-
plex graph topologies. At the heart of our time-multiplexing
scheme is an interferometer arranged in a Michelson-type
geometry, in contrast to earlier implementations based on a
Mach–Zehnder geometry. While offering identical stability
and versatility, the present setup introduces a new degree of
freedom for the coin, namely the direction of propagation
of two counter-propagating optical modes. Combining these
with polarization supports the four-dimensional coin. The
higher-dimensional coin space and the temporal control of
the coin operations enable us to efficiently realize DTQWs
on nontrivial graphs of different sizes and topologies.

The structure of the paper is as follows. In Sec. II, we intro-
duce the experimental apparatus we use for realizing quantum
walks with four-dimensional coins, point out its differences
to the earlier time-multiplexing setup and detail the principle
of operation. Section III formalizes the DTQW time evolu-
tion of the Michelson geometry and analyzes the attainable
dynamics. In Sec. IV, we present experimental results on
the realization of quantum walks on various graph structures.
First, we demonstrate the usual Hadamard quantum walks
by restricting the dynamics into an invariant two-dimensional
subspace with a suitable choice of the four-dimensional coin
operator. Next, we realize a quantum walk with a genuine
four-dimensional coin and observe the emergence of multiple
lobes in the probability distribution, characteristic of transla-
tionally invariant DTQWs with higher-dimensional coins. By
dynamically controlling the coin, we extend 1D DTQWs with
Hadamard and nonmixing coins onto circles of various sizes,
and demonstrate effects of periodic boundary conditions, in
particular the equidistribution of the quantum walker. Finally,
we present a quantum walk on a minimal example of a Husimi
cactus graph consisting of a pair of connected circles, resem-
bling a figure eight, with the connecting node characterized
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FIG. 1. Experimental realization of the Michelson geometry. The
three 2 × 2 polarization rotations forming the coin are realized by
electro-optic modulators (EOM) in combination with either half or
quarter waveplates (WP). We use single mode fibers of 328 and
338-m length in the arms; the other parts are in free space. A
waveplate in front of the incoupling mirror determines the input po-
larization of the pulse. After the outcoupling at the partially reflective
mirror the pulses are routed to four superconducting nanowire single
photon detectors enabling the resolution of all four internal states.

by a four-dimensional operator. We discuss the significance
of the results and provide an outlook in Sec. V.

II. EXPERIMENTAL APPARATUS

The layout of our experiment, depicted in Fig. 1, resembles
a Michelson interferometer closed by a loop. The coher-
ent laser pulse (wavelength 1550 nm) plays the role of the
quantum walker, using the mathematical equivalence between
wave dynamics and single particle quantum dynamics [59].
The input pulse is coupled into the loop by a beam splitter
with low reflectivity R ≈ 1% ensuring high transmittivity for
the traveling pulses. The loop allows two propagation direc-
tions, clockwise (c) and counter-clockwise (cc), and for each
direction we can distinguish two orthogonal polarizations,
horizontal (H) and vertical (V) [cf. Fig. 2(b)]. We label these
four orthogonal modes by cH, cV, ccH, and ccV. To control
the dynamics of the pulses, we insert polarization rotating
elements consisting of waveplates and fast-switching electro-
optical modulators (EOMs) in the arms A and B as well as
in the loop (cf. Fig. 1). The initial pulse with a well defined
polarization is coupled into the modes ccH and ccV by the
incoupler. The polarization of the pulse is rotated by the
waveplate and the EOM before it reaches the polarizing beam
splitter (PBS) and enters the arms A and B. After a reflection
in the arms the pulse re-enters the loop and is split into the four
available modes, depending on the arm’s polarization rotation.
For detection of the pulses, we place another weakly reflecting
beam splitter (R ≈ 2%) in the loop and use a pair of PBSs
and four superconducting nanowire single-photon detectors to
discriminate the four internal states. By using single mode
optical fibers of different lengths (328 and 338 m) in the
arms A and B, we can introduce a well-defined time delay
of τpos = 95 ns between pulses that took different arms. By
choosing the time delay to be longer than the pulse widths
(≈100 ps) and detector dead times (≈90 ns with 90% recov-
ery of the efficiency), we can resolve the outcoupled pulses
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FIG. 2. Schemes for a standard time-multiplexing quantum walk based on a Mach–Zehnder-type geometry (a) and for a Michelson
quantum walk with a four-dimensional coin (b). In both cases the walker is coupled into the loop via a partially reflective beam splitter
and is polarization rotated in the loop by optical elements realizing the operator CL . At the polarizing beam splitter (PBS) the pulse is split
according to its polarization and the two arms A and B with different lengths LA and LB introduce a well-defined time-delay between the
constituents. In the Mach–Zehnder interferometer the pulses travel in the counter-clockwise direction, while in the Michelson geometry, both
clockwise (denoted c) and counter-clockwise (cc) traveling directions are used. The optical elements placed in the arms of the Michelson-type
geometry realize the rotations CA and CB after the double passage. As a consequence, the walker can be characterized by four internal states
(the two polarizations and two traveling directions) in addition to its current location. Graph representations of the 1D quantum walks by the
Mach–Zehnder and Michelson-type geometries, respectively, are shown in (c) and (d), illustrating the role of the different polarization and
propagation modes.

with different delays and associate them to unique time bins.
The roundtrip efficiency (i.e., the transmission from one step
to another) in the looped interferometer is 63 ± 3%, which
significantly improves the performance of earlier setups with
efficiencies of ≈40% as presented in Ref. [31]. In order to
achieve a good signal-to-noise ratio for high step numbers
we perform measurements with two different initial power
levels, which are then concatenated. This concatenation of two
data sets is necessary since for a low power input the signal
becomes too small after a small number of steps, while the
high input powers cause detector saturation for the early steps
and make a reliable probability extraction impossible. In each
case, we normalize the total intensity per step to one which is
then equivalent to the walker’s probability distribution.

In Fig. 2, we illustrate the dynamics of the interferometer,
based on the time-multiplexing technique. For reference we
additionally provide the Mach–Zehnder-type geometry for the
visualisation of the standard principle of time-multiplexing
quantum walks as detailed in [18,31]. To understand the
dynamics of the Michelson interferometer, it is instructive
to follow what happens to pulses coming from the loop,
impinging on the PBS in all four modes cH, cV, ccH, and
ccV at once. The PBS guides the pulses from modes cH and
ccV into arm A, and from modes ccH and cV to arm B. In
each arm, the polarized pulses are rotated by optical elements
implementing CA and CB respectively, and a relative time
delay between the two different paths is introduced. Back at
the PBS, the pulses are reflected or transmitted according to
their polarization, such that, e.g., the originally horizontal and
clockwise traveling pulse, upon entering and leaving arm A,
is mapped onto modes ccH and cV for the next loop iteration.

A full roundtrip is thus defined by a rotation of the clockwise
and counter-clockwise propagating pulses by the elements in
the loop, followed by the mode-dependent rotation and delay
in the two arms A and B.

Particularly simple dynamics can be observed if the optical
elements in the arms A and B are set up such that the net effect
of the double passage and reflection is a rotation of the pulse
polarization by 90◦. In this case, an initially counter-clockwise
traveling pulse continues to travel in the counter-clockwise
direction after returning from the arms A and B. Here the only
role of the arms A and B is to provide a polarization dependent
delay, while mixing of polarizations depends solely on the
elements located inside the loop. By controlling the elements
inside the loop, a wide range of general 1D quantum walk
dynamics is accessible—limited only by the capabilities of the
available optical components.

III. MATHEMATICAL DESCRIPTION

A. Time evolution of pulses as a quantum walk

For the purposes of mathematical description, we use a
formal mapping between a wave mechanical superposition
of spatially or temporally separated optical pulses and a
quantum mechanical superposition of states of a photon [59]
representing the quantum walker, as employed in our previous
works [18,19,31,43].

The state of a discrete-time quantum walker is described
by |�〉, a vector in the corresponding tensor product Hilbert
space H = Hc ⊗ Hx. For a DTQW on a line, the posi-
tion Hilbert space Hx equals l2(Z), spanning all possible
positions x associated with the basis vectors {|x〉 | x ∈ Z}.

033036-3



LENNART LORZ et al. PHYSICAL REVIEW RESEARCH 1, 033036 (2019)

The coin Hilbert space, Hc, describes the internal degree
of freedom. For a 1D walk, a two-dimensional coin space
is usually assumed, which facilitated the use of polarization
for this purpose by a number of research groups (see, e.g.,
Refs. [17,18,20,44]). In a Michelson geometry [Fig. 2(b)] the
walker can additionally be in a superposition of the two trav-
eling directions in the loop, resulting in a four-dimensional
coin space for a 1D walk. We introduce four orthogonal basis
states Hc as {|cH〉 , |cV〉 , |ccH〉 , |ccV〉} representing the four
orthogonal modes introduced earlier:

|�〉 =
∑
x∈Z

(αcH,x |cH〉 ⊗ |x〉 + αcV,x |cV〉 ⊗ |x〉

+αccH,x |ccH〉 ⊗ |x〉 + αccV,x |ccV〉 ⊗ |x〉) (1)

with the complex coefficients αd,x obeying
∑

d

∑
x |αd,x|2 =1.

The unitary evolution of a DTQW is determined by the
coin operator Ĉ acting on the internal degree of freedom,
followed by the step operator Ŝ, which performs a conditional
shift in the position x; together we write |�t+1〉 = ŜĈ |�t 〉. In
the convention defined by the experimental setup [Fig. 2(b)],
Ŝ shifts the basis states |cH〉 and |ccV〉 (|ccH〉 and |cV〉)
one position to the left (right), which corresponds to earlier
(later) arrival times, and simultaneously reverses the traveling
direction; in quantum walk terminology such conditional shift
combined with a reverse in direction is commonly referred
to as a flip-flop step operator. Formally, the operator can be
expressed as

Ŝ =
∑

x

(|ccH〉〈cH| ⊗ |x − 1〉〈x| + |ccV〉〈cV| ⊗ |x + 1〉〈x|

+ |cH〉〈ccH| ⊗ |x + 1〉〈x| + |cV〉〈ccV| ⊗ |x − 1〉〈x|).
(2)

Since the position space is still one-dimensional but two
different coin states indicate a step to the left and two to the
right, the structure of the walk can be visualized as a line graph
with doubled edges as illustrated in Fig. 2(d).

The coin matrix describes the combined action of three 2 ×
2 polarization rotations defined by the three operations CL, CA,
and CB in the loop and the two arms, respectively. Note that
the elements in the arms A and B are passed twice by each
pulse entering the respective arm; by CA and CB we describe
the full rotation accumulated by the time it re-enters the loop.
To realize the desired polarization rotations, we use quarter-
wave plates (QWPs), half-wave plates (HWPs) and EOMs. In
the polarization basis {|H〉 , |V〉} the waveplates aligned at an
angle α are characterized by the matrices

CQWP(α) = −i√
2

(
cos 2α + i sin 2α

sin 2α − cos 2α + i

)
(3)

and

CHWP(α) =
(

cos 2α sin 2α

sin 2α − cos 2α

)
, (4)

respectively. The EOMs are aligned such that they are de-
scribed by matrices

CEOM(ϕ) =
(

cos ϕ −i sin ϕ

−i sin ϕ cos ϕ

)
, (5)

with the phase ϕ depending on the voltage applied to the
particular EOM during a particular time bin [31]. In all
cases involving dynamic EOM switches we always align the
quarter- and half-wave plates at α = 45◦, so that the matrices
(3) and (4) commute with (5) and it is inconsequential in
which order a pulse encounters them.

Since the elements in the loop do not mix counter prop-
agating pulses, their effect can be described in the basis
{|cH〉 , |cV〉 , |ccH〉 , |ccV〉} by the block diagonal matrix

CLL =

⎛
⎜⎝

CL,HH CL,HV 0 0
CL,V H CL,VV 0 0

0 0 CL,HH CL,HV

0 0 CL,V H CL,VV

⎞
⎟⎠. (6)

Due to the action of the PBS, the optical elements in the arms
A and B mix pulses from different traveling directions, so that
the total operation corresponds to the matrix

CAB =

⎛
⎜⎝

CA,HH 0 0 CA,HV

0 CB,VV CB,V H 0
0 CB,HV CB,HH 0

CA,V H 0 0 CA,VV

⎞
⎟⎠, (7)

transforming, e.g., |cH〉 into a superposition of |cH〉 and
|ccV〉. The coin matrix of the quantum walk arises as the
product of these two matrices

C = CABCLL. (8)

When the polarization rotations are static in time, we can
express the full coin operator as Ĉ = C ⊗ 1x. However, due
to the unique relation between time bins and position and step
number of the walker, we can program specific phase shifts
ϕt,x,A, ϕt,x,B, and ϕt,x,L to be realized for each time bin x by
the three EOMs, thus making the coin operator position and
time dependent, formulated as Ĉt = ∑

x Ct,x ⊗ |x〉〈x|. In this
work, we will only make use of the position dependence of
the coin, keeping the same operations for each step t .

B. Set of directly accessible coins, achieving universality
with a three-step protocol

The product (8) covers a useful subset of U(4), as demon-
strated by the experiments described in the following sections.
Suppose, we intend to realize a certain coin operator, how to
tell if this target coin can be decomposed into this form? It
turns out that there is a particularly simple condition, requiring
the pairwise linear independence of two appropriately chosen
pair of vectors formed from the elements of the 4 × 4 coin ma-
trix. We have included the proof in Appendix A 1. The proof is
constructive in the sense that it shows how to efficiently find
a decomposition Eq. (8) for a particular coin C, provided it
exists.

A larger class of coins can be covered by using operators
C′

LL without the restriction that they act the same on c and
cc-propagating pulses. This can be achieved, e.g., by altering
our setup such that counter-propagating pulses reach the loop
EOM with a sufficient time difference, allowing the program-
ming of different rotations.

The full U(4) can be recovered by employing a multistep
protocol [34,45,46] consisting of three steps. A crucial fact
that the protocol uses is that any four-dimensional unitary
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matrix can be written as a product of two matrices each of
the form CABC′

LL—this we prove rigorously in Appendix A 2.
Leveraging on the flip-flop nature of Ŝ, namely that two
successive applications of the step operator cancel each other
Ŝ · Ŝ = 1̂, we consider a sequence of coins C1, 1 and C2

leading to an overall transformation described by ŜĈ2Ĉ1.
Appendix A 2 contains additional details of these arguments.
We note that besides static coins of the form Ĉ = C ⊗ 1x,
the protocol is applicable also to position and time dependent
distributions.

C. Dynamical features of four-dimensional coins

Calculating analytically the evolution of a quantum walker
over many steps is generally a demanding task. However,
for translationally invariant systems, it is possible to char-
acterize the long time asymptotic dynamics in a simple way
by analyzing the dispersion relation, i.e., the k-dependent
quasienergies ω(k) of the unitary evolution operator obtained
after performing the spatial Fourier transform [60,61]. By
locating all local extrema of the group velocities defined
as the derivative vg(k) = dω(k)/dk we can determine the
number and propagation speeds of wavefronts emerging from
an initially localized state. In the case of a standard 1D quan-
tum walk with a two-dimensional coin, this analysis yields
the well-known double-lobed position distribution (see, e.g.,
Fig. 4), with the two wavefronts moving away from the origin
at speeds equal to the absolute value of the diagonal elements
of the coin matrix, i.e., ±1/

√
2 for the Hadamard walk. While

split-step walks exhibit a richer dynamics in many respects,
their asymptotic dynamics is still characterised by a double-
lobed distribution owing to the similarity of their dispersion
relation with the standard 1D walk (see Appendix A 3 for
details). DTQWs with higher-dimensional coins, however,
have been shown to feature additional ballistically propagat-
ing or trapped wavefronts [62]. We would like to note that the
simple analysis of the dispersion relation cannot account for
the effect of the initial coin state, which generally influences
the relative intensities of the ballistic wavefronts, and neither
does it provide a characteristic time after which the asymptotic
dynamics is guaranteed to set in.

We have found that four-dimensional coins can give rise up
to eight wavefronts in the position distribution of the walker,
see Appendix A 4 for additional remarks. When the coin
operators CA, CB, and CL are restricted to quarter- and half-
wave plates the symmetries of the system permit degeneracies
allowing crossings between different quasienergy branches, as
illustrated on Fig. 3(a). Under these restrictions, we observe a
behavior similar to a standard 1D walk, exhibiting the usual
double-lobe distribution. By considering coin operators built
up from several waveplates, we can lift these degeneracies and
turn the level crossings between the branches of quasienergies
into avoided crossings [see Fig. 3(b)]. The level repulsion
introduces additional bends and thus additional inflection
points to the dispersion curves. The new inflection points can
give rise to additional wavefronts associated with each distinct
propagation velocities. The particular propagation velocities
can be controlled by the appropriate choice of the coin oper-
ator. With the correct choice, the different propagation speeds
may be discerned even within a limited number of steps of the
QW evolution.

FIG. 3. Quasienergies ω(k) as functions of k (up to irrelevant
phase factors) for quantum walks on infinite one-dimensional lines
with the coin operators being (a) CA = CB = CQWP(12◦), CL =
CHWP(27◦) and (b) CA = CB = CQWP(27◦)CHWP(0◦)CQWP(27◦), CL =
CHWP(20◦). The first example exhibits level crossings, the second ex-
ample features level repulsions, and together illustrate how avoided
crossings result in additional bends and inflection points. (c) and
(d) show the group velocities vg(k) = dω(k)/dk calculated from
two branches of the spectra plotted in (a) and (b), respectively. The
local extremal points of vg(k) yield the experimentally observable
wavefront velocities.

IV. EXPERIMENTAL RESULTS

The experimental results we present in this section can
be divided into two groups. The experiments reported in
Secs. IV A and IV B explore the translationally invariant
dynamics of a quantum walker with a four-dimensional coin
operator, using a (static) WP to implement the coin operators
CLL and CAB. In Secs. IV C and IV D, we study dynamics
on finite cyclic graphs of various topologies, using three
dynamically controlled EOMs as shown on Fig. 1.

A. Hadamard walk

To demonstrate the coherence properties of the setup in
a simple manner, we present dynamics equivalent to a con-
ventional DTQW on a line with a two-dimensional coin.
By appropriate choices of the initial state and the waveplate
parameters we restrict the dynamics to an invariant subspace
corresponding to the coin states |ccH〉 and |ccV〉, representing
a conventional DTQW in the cc traveling direction of light
pulses. In particular, we set CL to a Hadamard operation,
realized by a HWP at α = 22.5◦, yielding

CLL = 1√
2

⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎠. (9)

The polarization rotations CA and CB in the arms are set to a
polarization swap by introducing QWPs at the angle α = 45◦
which are passed twice. Thus, up to an irrelevant global −i
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FIG. 4. Experimentally obtained intensity evolution in the cc
traveling direction of a Hadamard walk initialized in |ccA〉, after
summation over the polarization degree of freedom. The intensities
in the c direction are zero. A pair of solid lines indicate the wavefront
trajectories at the speeds of ±1/

√
2 expected from the asymptotic

analysis of Sec. III C. The expected double peak structure and
propagation speeds are clearly observable within the experimentally
attainable steps.

phase, the corresponding coin operator is

CAB =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠. (10)

This maps |ccH〉 to |cV〉 and |ccV〉 to |cH〉, and the subsequent
step operator (2) brings the traveling direction back to cc. Due
to the absence of mixing of traveling directions, the pulses
only ever travel in the loop in the counter-clockwise direction,
in which the walk was initiated.

The system reduces to a quantum walk with a two-
dimensional coin, and can be described by the effective step
and coin operators as

Ŝ2 =
∑
x∈Z

(|R〉〈R| ⊗ |x + 1〉〈x| + |L〉〈L| ⊗ |x − 1〉〈x|),

C2 = 1√
2

(
1 1
1 −1

)
, (11)

where we use |R〉 and |L〉 to follow the conventional notation
for the right and left shifted components, respectively. The
abstract states |R〉 and |L〉 correspond to |ccH〉 and |ccV〉 in
the experiment.

As a figure of merit we use the polarization resolved
similarity between experimental and numerical probabilities
defined as

S (t ) =
∣∣∣∣∣∣
∑
d,x

√
P(exp)

d,x (t )P(num)
d,x (t )

∣∣∣∣∣∣
2

, (12)

for the relevant positions x and the coin states d at a certain
step t . We also make use of average similarity (over T steps)
defined as S̄ = 1

T

∑T
t=1 S (t ).

The measured standard Hadamard walk over T = 25 steps
exhibits similarity of S̄ = 91.2% to the theoretical expectation
(Fig. 4), demonstrating the outstanding coherence properties
within the polarization degree of freedom of each propagation
direction.

FIG. 5. Numerically calculated intensity distributions for the
walk corresponding to Fig. 3(b) started from the initial state |ccD〉,
with all internal degrees of freedom summed up. The solid lines
have slopes ±0.1655 and ±0.5538 corresponding to the predicted
asymptotic velocities of the wavefronts, and the dashed line indicates
our experimental limit on the number of steps. The plot confirms the
validity of the asymptotic results for longer times, and also indicate
a transient regime longer than for the Hadamard walk (see Fig. 4).

To test the robustness of coherence between the two prop-
agation directions additional measurements were performed,
where we have implemented dynamics alternating between
the |cc〉 and |c〉 associated subspaces at every DTQW iteration
(see Appendix B 1 for the details). The obtained similar-
ity of S̄ = 93.1% between numerical and experimental data
confirmed the high overall coherence properties of the setup
indicating a good basis for implementing more advanced
quantum walk dynamics.

B. Walk with a genuine four-dimensional coin

In this section, we report on a dynamical feature genuine
to four-dimensional coins. As pointed out in Sec. III C, such
coins can give rise to multiple wavefronts in the position
distribution of the quantum walker, i.e., after tracing out
for the coin degrees of freedom. Since dispersion analysis
providing the wavefront structure and dynamics is accurate
only in the long-time limit, the DTQW parameters has to be
chosen carefully to allow sufficient resolution of the peaks
within the experimental timescale. Our strategy is to tune the
coin parameters such that the we obtain the largest difference
in propagation speeds.

We consider the four-dimensional coin operator imple-
mented by placing a HWP in the loop, corresponding to CL =
CHWP(20◦), and two quarter-wave plates in each arm, aligned
at 27◦ and 0◦, respectively, corresponding to CA = CB =
CQWP(27◦)C2

QWP(0◦)CQWP(27◦). The dispersion spectrum of
the DTQW with these parameters is depicted in Fig. 3(b),
where we can clearly resolve the effect of level repulsions.
With this choice we have reduced the number of distinct prop-
agation velocities from eight to four (±0.1655 and ±0.5538),
due to degeneracies. While experimentally only 18 steps are
reachable, we have numerically calculated evolution of the
intensities for 50 steps to compare to the results of the asymp-
totic analysis. The results of this calculation are presented on
Fig. 5, with solid green lines indicating the peak positions
given by the asymptotic analysis. While the two faster peaks
separate quickly within the experimentally achievable domain
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FIG. 6. (a) Intensity distribution of the experimentally realized
quantum walk corresponding to Fig. 5, summed over all internal
degrees of freedom. The indicated solid lines correspond to the
asymptotic peak trajectories and are displayed to guide the eye. The
average similarity to the corresponding portion of the numerical
results is S̄ = 80.1%. (b) Bar chart presentation of the position
distribution at step number 15 extracted from the numerical data of
Fig. 5 (blue) and the experimental data of Fig. 6(a) (red). The arrows
indicate the positions and the relative intensities expected from the
asymmetric input state of the walk. The observed central peak is a
result of the overlap and interference of the two slower wavefronts,
marking a clear distinction from the double-lobed distribution of any
standard or split-step quantum walk. Error bars were obtained by a
Monte Carlo simulation of the effects of uncertainties of ±1◦ in the
three coin angles, and uncertainties of ±2.5% of the four detection
efficiencies (see Appendix B 3).

(indicated by a horizontal dashed line), the two slower peaks
separate only after about 35 steps. Therefore we can expect
to be able to resolve three peaks in the experimental data: the
two outer peaks corresponding to the faster wavefronts, and a
single peak in the middle resulting from the transient overlap
and interference between the two slower wavefronts.

The experimental results for the complete evolution are
depicted in Fig. 6(a). We can observe that the propagation
velocities of the two outer peaks closely match the asymp-
totically expected values. To offer a direct comparison of the
numerical and experimental data we present the respective
probability distributions after 15 steps as a bar chart plot
in Fig. 6(b). In addition to the numerical distribution, we
have indicated the peak positions yielded by the asymptotic
analysis by vertical arrows. The positions and intensities
of the outer peaks appear to be robust to the unavoidable

experimental imperfections (affecting both the evolution and
the initial state). The central peak structure shows greater sen-
sitivity: while the numerical results display a more dominant
right wavefront, in the experiment, the left propagating one
appears to be dominating.

While the overlap and interference prevent the resolution
of the positions and intensities of the two inner peaks, the
presence of more than two wavefronts proves the realization
of a DTQW with a genuine four-dimensional coin.

C. Quantum walks on circles

With the large degree of coherence provided by the Michel-
son loop for static coins confirmed, we focus on harnessing the
possibilities offered by dynamically control of all three EOMs
shown on Fig. 1. We have developed a scalable technique
to use the additional control and the higher-dimensional coin
space to efficiently realize DTQWs on cyclic graphs of various
topologies.

A circle graph, while locally appearing as one-
dimensional, requires the 2D Euclidean space to be embedded
into. However, DTQWs on circles can still be implemented
using well-chosen dynamics on a 1D line graph, either by
exploiting the bipartite structure [46], or as we explain below,
using additional coin degrees of freedom. Separating the two
halves of the coin space based on the propagation directions
enables the implementation of DTQWs on two parallel 1D
lines (see Sec. IV A). By pairwise connecting the ends of
these lines at appropriately chosen positions with the help of
controlled operations the 1D positions can be mapped to the
upper and lower arcs of a circle. The general and scalable
technique can be used to implement DTQW dynamics on
circles with position dependent coin operators and arbitrary
sizes. In the experiments reported here, the DTQW dynamics
on circles satisfy periodic boundary conditions. However,
with the mapping to an underlying periodic spatial structure
more general, twisted boundary conditions can be realized as
well [63].

The technique to realize circles involves position de-
pendent coins which we have implemented by three fast-
switching EOMs, each realizing a specific polarization ro-
tation according to Eq. (5). EOMs are placed in the loop
and each of the two arms, along with the static waveplates.
In Fig. 7(a), we demonstrate how a circle can be formed
in the graph of Fig. 2(d) by choosing two end points (here,
x = −1 and x = 4), allowing no coupling between c and cc
components in the inner positions and no coupling from the
end positions outwards. This leaves an effective walk on a
circle of 2N sites if the two endpoints are N positions apart.
In the following, we label the sites using a coordinate m = 0
through m = 2N − 1. We can describe this walk using a two-
dimensional coin and a step operator as in Eq. (11), but with
an additional periodic boundary condition |m〉 ≡ |m + 2N〉.

We have measured the results of applying both mixing and
nonmixing operations on the circle. Note that instead of the
conventional Hadamard operation as given in Eq. (11) we here
use another balanced matrix with different complex phases,

H ′ = CEOM(45◦) = 1√
2

(
1 −i
−i 1

)
. (13)
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(a)

(b)

(c)

FIG. 7. (a) Configuration of an asymmetric circle walk on 10
sites. The walk is started at x = 0 (orange arrow), which corresponds
to position m = 2 on the circle and in the chessboard plot axes.
The input state is |ccV〉 and (b) shows the step evolution of a
nonmixing walk (similarity averaged over 19 steps: S̄ = 88.9%),
while (c) displays the evolution of an effective Hadamard walk in
such a configuration (similarity: S̄ = 79.9%).

This is because the coin matrix in Eq. (11) cannot be di-
rectly realized by an EOM, which we need for the position
dependence. Note that this gives the same 50:50 splitting
and as such we refer to (13) as Hadamard-like coin. For the
different settings and the associated physical implementation
see Table I. In Fig. 7, we plot the intensity evolution of the
walk on an 10-node circle for both the nonmixing and the
H ′ operation, for which we need to employ all three EOMs

TABLE I. Experimental realization of the coin settings for QWs
on circles for nonmixing and Hadamard-like operation. The static
elements act the same way in every position, while the dynamic
EOM can perform distinct operations for the inner and end positions.
The total action can be computed by taking the products of static
WP and EOM matrices given in Eqs. (3)–(5). Each WP needs to
be considered once in the loop, and twice in the arms due to the
reflection, giving rise to the square of the operators. Note that the
EOM is only switched on for one direction (when the pulses pass
it after the reflection at the mirror) in order to keep the number
of overall switches low. The resulting operations are indicated with
identity 1, the Pauli X gate and H ′ as given in Eq. (13).

(a) Nonmixing

arms loop

inner positions
static elements [CQWP(45◦)]2 CHWP(45◦)
EOM CEOM(0◦) CEOM(0◦)
resulting action CA = CB = −iX CL = X

end positions
static elements [CQWP(45◦)]2 CHWP(45◦)
EOM CEOM(−90◦) CEOM(−90◦)
resulting action CA = CB = 1 CL = i1

(b) Hadamard-like

arms loop

inner positions
static elements [CQWP(45◦)]2 CQWP(45◦)
EOM CEOM(0◦) CEOM(0◦)
resulting action CA = CB = −iX CL = H ′

end positions
static elements [CQWP(45◦)]2 CQWP(45◦)
EOM CEOM(−45◦) CEOM(−45◦)
resulting action CA = CB = H ′ CL = 1

for the dynamic switchings, discriminating between inner
and boundary positions of the graph. We plot only over the
relevant positions m = 0, . . . , 9 and find a high agreement
between experiment and numerics.

A characteristic effect observable in walks on certain cir-
cle graphs is the so-called equidistribution or equalization,
meaning that the probability distribution corresponding to the
wave function becomes close to uniform. In an earlier work
a similar effect has been studied in QWs on the line [64],
where the term mixing was used. We, however, find it more
appropriate to reserve the use of the term mixing for a property
that arises as a time average [53,65,66], acknowledging that
unitary processes generally do not converge to a stationary
distribution. We analyze the equidistribution in detail in Fig. 8,
where we present the intensity histogram for roundtrip 11
in which the experimental data from an 8-node circle shows
nearly equal intensity at all four occupied positions [see
Fig. 14(b) for the complete evolution]. We note that the
equidistribution effect is not universal, and is exhibited only
be circles of certain sizes, among which the 8-node circle is
the largest [67].

In the second panel, we track the similarity of the walker’s
probability distribution (summed over the coin degrees of
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FIG. 8. Equidistribution for a QW on an 8-site. (Top) Intensity
distribution in step 11 of the experimental (red) and numerical
(blue) data for almost ideal mixing (polarization is traced out).
(Bottom) Similarity to the flat distribution on the relevant positions
1,3,5,7 of the experimental (red dots) and numerical (blue dots) data,
plotted versus the roundtrip number. In both cases, the deviation of
the experimental data from the numeric can be explained through
imperfect switchings at the boundaries such that a small part of the
intensity leaves the circle sites. Since we present the data without
renormalization over the circle sites only, but take the “lost” intensity
into account, the walker’s overall intensity over the circle positions
only is less than 1. For original data and description of the error bars
see Fig. 14 and Appendix B 3.

freedom) to the uniform distribution, as the function of the
roundtrip number. Similarity of position distributions is de-
fined analogous to the similarity S defined Eq. (12), just with
the d indices dropped. We can extract an equidistribution
time of approximately 10–12 roundtrips in agreement with
the numerical model. This equidistribution effect is likely
linked to the perfect state revival after 24 steps for a 8-node
circle [68]: an initially localized state goes through a uniform
distribution at half of the period, along with some neighboring
steps. An example of a smaller circle with four sites showing
the revival of the initial state in eight repetitions is presented
in Appendix B 2.

The technique used for implementing circle graphs is in-
herently scalable to realizing any circle with an even number
of nodes, since the size is set by choosing the switching times
of the EOMs, without needing any extra resources. We present
results for circles of sizes 8 and 16 in Appendix B 2.

(b)

(c)

(a)

FIG. 9. (a) Modified ladder graph, equivalent to a walk on a
figure-eight, shown here for a graph with 15 nodes. Note the coupling
at x = 0, which involves all four possible links. (b) Numerics and
experimental data of the intensity evolution of a figure-eight quantum
walk with a nonmixing coin and |ccV〉 input. The polarization
resolved similarity averaged over 15 steps is S̄ = 90.3%. (c) Same
as (b) but with effective Hadamard splitting. (Similarity S̄ = 90.5%)

D. Walks on figure-eight graphs

The circle graphs presented in the previous section rep-
resent a significant advance, offering a basis for simulation
of systems obeying periodic boundary conditions. Our setup,
however, is capable of realizing graphs more complex than
these rank-two regular graphs. As an example, we realize
DTQWs on simple instance of a Husimi cactus graph having
the shape of a figure eight, depicted on Fig. 9(a), both with
nonmixing and Hadamard-like coin dynamics on the circle
arcs. Due to the coupled loops, Husimi cactus graphs are
studied in the context of polymer networks in solution in the
field of chemical physics [69], and for the interplay of search
probability and centrality of the marked vertex in quantum
search algorithms [70].

To implement novel dynamics, the coin at the central
rank-four node where the two circles are joined must be a
genuine four-dimensional operator. Dynamics on the nodes
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of the circle are experimentally implemented by dynamically
controlled elements analogously to that of the circles (listed in
Table I). In order to implement the additional links at position
x = 0 (equivalently, m = 7), we perform in the nonmixing
setting an extra switch with the EOMs in the arms by −90◦
compensating the polarization swap by the static elements√

CA = √
CB = CQWP(45◦), while the loop operation is given

only by the passive HWP swapping the polarization CL =
CHWP(45◦), thus, e.g., the mode |ccH〉 is mapped to |cV〉 and
vice versa. In the Hadamard-like setting, the static mixing coin
in the loop CL = CQWP(45◦) is accompanied by the arm coin
operations H ′ = C2

QWP(45◦) · CEOM(−45◦) employing again
an additional EOM switch. In the latter case, the resulting
CA = CB = H ′ combines with the rotation CL = H ′ in the loop
to form a full-rank four-dimensional coin matrix [see Eq. (8)]

C = 1

2

⎛
⎜⎝

1 −i 1 i
−i 1 i 1
1 i 1 −i
i 1 −i 1

⎞
⎟⎠. (14)

The results for both of the settings are presented in Figs. 9(b)
and 9(c), respectively. One can clearly observe the light
reappearing at node 7 after one cycle around the right and the
left half of the figure eight. Again, the coherence properties
ensure a high agreement of experimental and numerical data
even on such a complex graph structure. This proves the
versatility of the four-dimensional coin operation compared
to its two-dimensional counterpart for tailoring the ballistic
spreads of a translation invariant system and the flexibility in
designing nontrivial graphs. We note that the lengths of the
left and right loops could have had been chosen arbitrarily, and
the present choice was made such that we can observe inter-
ference between pulses within the experimentally attainable
steps. Our work opens the route to experimental simulation
of energy transport in biological structures, for example in
the photosynthetic apparatus of the purple bacterium, which
are modelled by coupled circular and figure-eight shaped light
harvesting structures [71–73].

V. CONCLUSION AND OUTLOOK

Fully exploiting the potential of discrete time quantum
walks requires a reliable and comprehensive implementation
of higher-dimensional coin operators. To realize DTQW dy-
namics with genuine four-dimensional coin operators, we
have developed a novel experimental platform based on a
looped Michelson interferometer. We have carried out several
experiments with increasing complexity, demonstrating the
accuracy, stability and capacity of our setup to realize four-
dimensional coins. We started from a conventional Hadamard
walk on the line, which shows high coherence over many
steps, but essentially uses only a two-dimensional subspace
of the available coin operations. Next we presented a coin im-
plementation that exhibits multiple distinct propagation wave-
fronts, precluding any description as a walk with an effectively
two-dimensional coin. Based on the four-dimensional coin
degree of freedom, we developed a scheme to realize quantum
walks on circles with programmable sizes over many steps by
dynamic coin operations, without resorting to experimentally
costly multistep schemes. Finally, we presented a QW on an
example of a Husimi cactus graph, resembling a figure eight

that involved realizing periodic boundary conditions at both
ends and a central node with a coin equivalent to having
links to four neighbors. Realization of this structure required
the simultaneous implementation of genuine four-dimensional
and effectively two-dimensional coins during the evolution.
The flexibility of the existing setup has been demonstrated by
two experiments, with dynamics on the arcs of the figure eight
corresponding to a nonmixing, and a Hadamard-like coin,
respectively.

The experimental platform in principle allows the real-
ization of DTQWs with arbitrary four-dimensional coin op-
erators, limited only by the polarization rotating elements
available to the experiment. We have proposed an explicit
three-step protocol that makes use of the property that every
4 × 4 unitary can be expressed as a product of two coin
operators from the class achievable in a single roundtrip.
Therefore any coin, such as the Grover and Fourier coins,
is achievable, reaching far beyond the capacities of previous
experiments relying on multistep protocols based on two-
dimensional coins [34,45,46].

Losses of the optical signal at each round trip play a critical
role in the applicability of the setup. Implementing deter-
ministic incoupling and outcoupling instead of the partially
reflecting mirror has been recently employed in the Mach–
Zehnder geometry yielding nearly 40 steps [43], by reducing
the roundtrip losses below 20%. This approach applied to
the present geometry would be necessary for more advanced
applications requiring long evolution times and multiple
walkers.

The present experiment makes use of three EOMs each
with limited switching capabilities. If polarization com-
ponents with sufficiently versatile dynamical control are
available, as our theoretical results indicate above, arbitrary
dynamically controlled 4 × 4 coin operators are reachable.
Such technology would enable the implementation of DTQW
on a line with effective three-dimensional coins, such as lazy
walks [47–49,74], and a simple quantum game [75]. Appro-
priate switching of coins would also enable the realization of
DTQW dynamics with arbitrary twisted boundary conditions
[63] by implementing the underlying periodic structures, or
more generally quivers [76].

The setup could be extended to realize dynamics on 2D
lattices by adding additional delay lengths, similarly to how
it has been implemented in the Mach–Zehnder geometry
[19,32]. The availability of arbitrary coin operators would al-
low for the first time the experimental study of magnetic walks
[77] and the QSH topological phase of quantum walks [50]. In
addition, studies with four-dimensional coins enable possible
observation and applications of an Anderson transition on a
2D lattice, an effect that could not be observed in split-step
walks [78], by providing a mechanism analogous to spin-orbit
coupling [79]. Higher-dimensional coined DTQWs in 2D
lattices could be combined to implement wrapped geometries
allowing the experimental study of search protocols requir-
ing periodic boundary conditions [6,80,81], and dynamics
on Möbius-strip-like graphs [82]. Additionally, implement-
ing DTQWs on other nontrivial graph structures involving
distinguished nodes with several neighbors would provide
a basis for search algorithms [70] and graph isomorphism
testing [83].
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The above examples rely on four-dimensional coin op-
erators providing a structure to the dynamics not attainable
using lower-dimensional coin space dynamics. Our platform
provides the first instance of an extensible realization of
a quantum walk with four-dimensional coin operators with
precise dynamic control, paving the way to experimental
implementations of many important applications relying on
genuine higher-dimensional coins.
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APPENDIX A: THEORETICAL DETAILS

1. Coins achievable in one round trip

Here we prove the following related to Sec. III.
Theorem 1. A unitary matrix

C =

⎛
⎜⎝

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

⎞
⎟⎠ (A1)

can be written in the form [see Eq. (8)]

C =

⎛
⎜⎝

aHH 0 0 aHV

0 bVV bV H 0
0 bHV bHH 0

aV H 0 0 aVV

⎞
⎟⎠

·

⎛
⎜⎝

lHH lHV 0 0
lV H lVV 0 0
0 0 lHH lHV

0 0 lV H lVV

⎞
⎟⎠, (A2)

where(
aHH aHV

aV H aVV

)
,

(
bHH bHV

bV H bVV

)
,

(
lHH lHV

lV H lVV

)
(A3)

are unitary matrices, if and only if the matrices⎛
⎜⎝

c11 c12

c41 c42

c23 c24

c33 c34

⎞
⎟⎠,

⎛
⎜⎝

c13 c14

c43 c44

c21 c22

c31 c32

⎞
⎟⎠ (A4)

both have rank one (i.e., linearly dependent rows or columns).

The implication from (A2) to the latter property follows
trivially from performing the matrix multiplication, but it’s
instructive to have an explicit expansion:

⎛
⎜⎝

c11 c12

c41 c42

c23 c24

c33 c34

⎞
⎟⎠ =

⎛
⎜⎝

aHH lHH aHH lHV

aV H lHH aV H lHV

bV H lHH bV H lHV

bHH lHH bHH lHV

⎞
⎟⎠,

⎛
⎜⎝

c13 c14

c43 c44

c21 c22

c31 c32

⎞
⎟⎠ =

⎛
⎜⎝

aHV lV H aHV lVV

aVV lV H aVV lVV

bVV lV H bVV lVV

bHV lV H bHV lVV

⎞
⎟⎠. (A5)

Let us now treat the opposite implication, i.e., assume that
the two matrices in (A4) are of unit rank, so their elements
must be of the form

⎛
⎜⎝

c11 c12

c41 c42

c23 c24

c33 c34

⎞
⎟⎠ =

⎛
⎜⎝

α1β1 α2β1

α1β2 α2β2

α1β3 α2β3

α1β4 α2β4

⎞
⎟⎠,

⎛
⎜⎝

c13 c14

c43 c44

c21 c22

c31 c32

⎞
⎟⎠ =

⎛
⎜⎝

γ1δ1 γ2δ1

γ1δ2 γ2δ2

γ1δ3 γ2δ3

γ1δ4 γ2δ4

⎞
⎟⎠ (A6)

for some αi, βi, γi, δi ∈ C. Any matrix formed by such ele-
ments can be written in the following product form:

C =

⎛
⎜⎝

β1 0 0 δ1

0 δ3 β3 0
0 δ4 β4 0
β2 0 0 δ2

⎞
⎟⎠ ·

⎛
⎜⎝

α1 α2 0 0
γ1 γ2 0 0
0 0 α1 α2

0 0 γ1 γ2

⎞
⎟⎠. (A7)

This is already close to the desired form (A2) but nothing so
far guarantees that the two matrices forming the right-hand
side are also unitary and thus realizable by separate physical
transforms.

It is easy to show that if α1 and α2, or γ1 and γ2, were
simultaneously zero, C would be singular. In all the other
cases, there is some freedom in decomposing the left-hand
sides of (A6), so without loss of generality we can assume
that |α1|2 + |α2|2 = |γ1|2 + |γ2|2 = 1.

The unitarity of C postulates that the norm of its first and
last row must be equal to 1 and their scalar product must
vanish. With the above assumption these equations take the
forms

|β1|2 + |δ1|2 = 1, |β2|2 + |δ2|2 = 1,

β1β2 + δ1δ2 = 0. (A8)

This simply says that the matrix

(
β1 δ1

β2 δ2

)
(A9)

is unitary. In (A7), these four elements take positions of the
elements ai j of (A2). Similarly from the middle two rows of
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(A7) we derive the unitarity of(
β3 δ3

β4 δ4

)
(A10)

or (bi j ).
We also require that the first and second column of C are

normalized and orthogonal vectors. Note that the unitarity of
(A9) and (A10) also implies

|β1|2 + |β2|2 = |β3|2 + |β4|2 = |δ1|2 + |δ2|2
= |δ3|2 + |δ4|2 = 1. (A11)

Using the last equality, the row orthonormality condition gives
the following equations:

|α1|2 + |γ1|2 = 1, |α2|2 + |γ2|2 = 1,

α1α2 + γ1γ 2 = 0,
(A12)

which again are nothing else than the conditions on unitarity
of (

α1 α2

γ1 γ2

)
, (A13)

forming the blocks of the latter matrix in (A7).
In conclusion, the conditions stated by the theorem only

allow matrices exactly of the form (A2) where the submatrices
corresponding to CA, CB, CL are all unitary. Their elements can
easily be reconstructed using the following algorithm.

(1) Build the matrices (A4) and take any decomposition of
the form (A6), the existence of which is guaranteed by the
assumptions.

(2) Multiply the vectors (α1, α2) and (γ1, γ2) by some
constants to achieve norms of one, dividing (β j ) and (δ j ) by
the same constants to keep products invariant.

(3) Compare (A6) with (A5) to find correspondence be-
tween α j, β j, γ jδ j and ai j, bi j, li j .

Note that the same derivation can be repeated with min-
imal changes when the two diagonal blocks of the latter
matrix of (A2) are not required to be equal, only unitary (as
would correspond to transforming the clockwise- and counter-
clockwise-propagating pulses in the loop independently). The
two matrices in (A4) then need to be replaced by four matrices(

c11 c14

c21 c24

)
,

(
c12 c13

c22 c23

)
,

(
c31 c34

c41 c44

)
,

(
c32 c33

c42 c43

)
. (A14)

2. Universality of available coins

The three-step protocol consists of (step 1) apply a coin C1,
evolve over one round trip, (step 2) let the wave packets finish
one full round trip with a trivial coin, (step 3) apply another
coin C2, finish the round trip. Here we rigorously prove that
any C ∈ U(4) is experimentally attainable using this protocol.

Firstly, we point out the flip-flop nature of the step opera-
tor: two applications thereof amount to the identity map. So
if the coin is left trivial (CA = CB = CL = 1) in step 2, the
application of Ŝ in step 2 negates any displacement made in
step 1 and returns the internal state to what it was immediately

after the application of Ĉ in step 1. The state after 3 steps can
be described as

|�t+3〉 = ŜĈ2Ŝ1ŜĈ1 |�t 〉 = ŜĈ2Ĉ1 |�t 〉 , (A15)

thus the internal state is effectively transformed by the product
C2C1 and subject to just one flip-flop displacement, according
to the final coin state. The total action of these three round
trips thus can be perceived as a single step of a quantum walk
with a more general coin.

This coin becomes indeed completely general, if we allow
the blocks of CLL [Eq. (6)] to be controlled separately for the
c and cc polarizations (upper-left and lower-right blocks).

Theorem 2. Let C be a generic U(4) matrix. Then two
transforms of the form

Ct =

⎛
⎜⎝

aHH,t 0 0 aHV,t

0 bVV,t bV H,t 0
0 bHV,t bHH,t 0

aV H,t 0 0 aVV,t

⎞
⎟⎠

·

⎛
⎜⎝

lHH,t lHV,t 0 0
lV H,t lVV,t 0 0

0 0 l ′
HH,t l ′

HV,t
0 0 l ′

V H,t l ′
VV,t

⎞
⎟⎠ (A16)

can be found, C1,C2, such that C = C2C1, with the individual
submatrices a, b, l, l ′ in U(2). Moreover, up to a global phase
correction factor, the four submatrices can be sought in SU(2).

We will prove this theorem constructively, using bra-ket
notation on C2: let in this section ket denote a two-element
column vector and a bra with the same symbol its conju-
gate, a row vector composed of complex conjugate elements.
Namely, we pair the unknowns of the decomposition in the
following objects:

|p〉 :=
(

lHH,2

lV H,2

)
, |q〉 :=

(
lHV,2

lVV,2

)
,

|r〉 :=
(

l ′
HH,2
l ′
V H,2

)
, |s〉 :=

(
l ′
HV,2
l ′
VV,2

)
,

〈P| := (lHH,1 lHV,1), 〈Q| := (lV H,1 lVV,1),

〈R| := (l ′
HH,1 l ′

HV,1), 〈S| := (l ′
V H,1 l ′

VV,1). (A17)

The condition on unitarity of CLL then translates into the re-
quirement that (|p〉 , |q〉), (|r〉 , |s〉), (|P〉 , |Q〉), and (|R〉 , |S〉)
are four (not necessarily different) orthonormal bases.

We will show that the decomposition stated by Theorem 2
exists even with a further restriction

ai j,2 = bi j,2 = δi j, (A18)

i.e., the CA, CB matrices in step 2 being trivial. In the following
ai j and bi j will thus denote ai j,1, bi j,1 for brevity.

If we split the required coin matrix C into 2 × 2 blocks as

C =
(

CT L CT R

CBL CBR

)
, (A19)

the equation

C = C2C1 (A20)
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can be expanded blockwise and written as a system of four
separate block equations:

CT L = aHH |p〉〈P| + bVV |q〉〈Q| ,
CT R = aHV |p〉〈S| + bV H |q〉〈R| ,
CBL = aV H |s〉〈P| + bHV |r〉〈Q| ,
CBR = aVV |s〉〈S| + bHH |r〉〈R| . (A21)

We are also given the unitarity conditions of C:

C†C = 1, CC† = 1. (A22)

In the block form (A19), the former becomes(
C†

T LCT L + C†
BLCBL C†

T LCT R + C†
BLCBR

C†
T RCT L + C†

BRCBL C†
T RCT R + C†

BRCBR

)
=

(
1 0
0 1

)
(A23)

and the latter(
CT LC†

T L + CT RC†
T R CT LC†

BL + CT RC†
BR

CBLC†
T L + CBRC†

T R CBLC†
BL + CBRC†

BR

)
=

(
1 0
0 1

)
.

(A24)

Plugging in (A21), we find that if such decomposition
exists, it must satisfy

|aHH |2 = |aVV |2 = 1 − |aHV |2 = 1 − |aV H |2,
|bHH |2 = |bVV |2 = 1 − |bHV |2 = 1 − |bV H |2. (A25)

Along with the orthonormality of (|p〉 , |q〉) etc.,
Eqs. (A21) strongly resemble singular value decompositions
(SVDs): indeed, they would become SVDs of the left-hand
side matrices if, furthermore, the ai j and bi j coefficients were
real and nonnegative. Without loss of generality, we can thus
postulate that the first line is the actual SVD, i.e. that |p〉 and
|q〉 are left-singular vectors, |P〉 and |Q〉 right-singular vectors
and aHH and bVV the singular values of CT L, and see if we
can satisfy the other three lines with this choice.

Given |P〉 and |Q〉, we can apply both sides of the third line
of (A21) on them, obtaining

CBL |P〉 = aV H |s〉 , CBL |Q〉 = bHV |r〉 , (A26)

If the magnitude of at least one of the coefficients aV H or
bHV is known to be nonzero (that is, per (A25), unless the
singular values of CT L were both 1), the corresponding |s〉 or
|r〉 is determined up to a complex phase. If both are, they are
guaranteed to be orthonormal by (A24) and (A25). If aV H or
bV H is zero, we complement |s〉 as an orthonormal partner
of |r〉 or vice versa, respectively, with an arbitrary phase. In
either case, the choice of the phase of the two vectors leaves
aV H and bHV completely determined. The case aV H = bHV =
0 will be handled separately near the end of the proof.

Taking the Hermitian conjugate of the second equation of
(A21) we find the vectors |r〉 and |s〉 and the numbers aHV ,
bV H in a complete analogy to the above, leaving the same
exceptional case.

After these steps, the last equation does not contain any
undetermined vectors, so we need to prove that it is not a
contradiction.

Assume aHH < 1. Then both aV H and aHV are nonzero and
|s〉 and |S〉 satisfy

|s〉 = 1

aV H
CBL |P〉 , |S〉 = 1

a∗
HV

C†
T R |p〉 . (A27)

We can then study

CBR |S〉 = 1

a∗
HV

CBRC†
T R |p〉 = − 1

a∗
HV

CBLC†
T L |p〉

= −a∗
HH

a∗
HV

CBL |P〉 = −a∗
HH aV H

a∗
HV

|s〉 , (A28)

where from step to step we used (A27), (A24) (lower-left
block), (A21) (first line), and (A21) (third line). This shows
that CBR indeed maps |S〉 to a multiple of |s〉, as (A21)
requires, but also gives a concrete value to aVV and shows,
along with (A25) that ai j together form a U(2) matrix.

If aHH = 1 (but bVV < 1), we ca not use (A27), but we
have

|r〉 = 1

bHV
CBL |Q〉 , |R〉 = 1

b∗
V H

C†
T R |q〉 . (A29)

We can still prove that CBR acting on |S〉 produces some vector
orthogonal to |r〉, which in turn is a multiple of |s〉: for this,
we consider

〈r|CBR|S〉 = 1

b∗
HV

〈Q|C†
BLCBR|S〉

= − 1

b∗
HV

〈Q|C†
T LCT R|S〉 = 0. (A30)

The last step follows from the fact that for aHH equal to 1,
aHV = 0 and thus CT R |S〉 = 0. We don’t learn the phase of
aVV , as it depends on the arbitrary phases of both |S〉 and
|s〉, but with aHV = aV H = 0 the ai j matrix is unitary for any
choice.

The emergence of the last term of the last equation of (A21)
and the value of bHH are handled similarly, resulting in bi j

being unitary and the system (A21) being consistent with our
solution. Since the properties of |p〉 , |q〉 , . . . , |R〉 , |S〉 also
guarantee unitarity of li j,1, l ′

i j,1, li j,2, and l ′
i j,2, this completes

the decomposition.
We left out only one special case, aHH = bVV = 1. How-

ever, this case is trivial: now CT L is of the form

CT L = |p〉〈P| + |q〉〈Q| (A31)

and so is unitary, CT R and CBL are zero, and CBR is unitary
again. Matrices of this block form can be realized in a single
round trip; if necessary, a three-step protocol can be made
trivially by taking C1 = C, C2 = 1. This last remaining case
finishes the main part of the proof.

Restricting the a, b, l , l ′ submatrices to be special unitary
is easy by the degrees of freedom encountered throughout the
construction above. We will first consider the generic case
where the off-diagonal blocks of C are nonzero.

We can follow closely the same algorithm as above but in
the beginning, instead of using the SVD of CT L directly, we
fix the phases of the basis vectors so that the matrices li j,2 =
(|p〉 |q〉) and l ′

i j,1 = (|R〉 |S〉)† become unimodular. This in
general changes the complex phases of aV H and of bHV . In
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the next steps we also choose the new base pairs so that they
form matrices of determinant 1.

This only leaves the choice of balancing the phase between
the two vectors in each of the four pairs. For example, multi-
plying |p〉 by eiϕ and |q〉 by e−iϕ leaves (li j,2) unimodular and
becomes a no-operation if compensated by simultaneously
multiplying aHH and aHV by e−iϕ and bV H and bVV by eiϕ .
However, this amounts to a phase change in one row of the
matrix ai j and the opposite phase change in one row of bi j .
In such a transform, all the matrices keep their determinants
except the latter two, whose determinants are modified by
mutually opposite phases. At a certain phase the determinants
become equal, and the common phase of the two matrices can
be factored out of the decomposition as a unphysical complex
prefactor.

In the special case

C =
(

CT L 0
0 CBR

)
, (A32)

we find angles α, β such that

det CT L = e2i(α+β ), det CBR = e2i(α−β ). (A33)

Then

C = eiα diag{eiβ, eiβ, e−iβ, e−iβ}
(

e−iβCT L 0
0 eiβCBR

)
,

(A34)

which corresponds to choosing(
lHH,1 lHV,1

lV H,1 lVV,1

)
= e−iαCT L,

(
l ′
HH,1 l ′

HV,1
l ′
V H,1 l ′

VV,1

)
= e−iβCBR,

(
aHH aHV

aV H aVV

)
= diag{eiβ, e−iβ},

(
bHH bHV

bV H bVV

)
= diag{e−iβ, eiβ},

(
lHH,2 lHV,2

lV H,2 lVV,2

)
= 1,

(
l ′
HH,2 l ′

HV,2
l ′
V H,2 l ′

VV,2

)
= 1, (A35)

all of which are unimodular, as required.

3. Split-step walks feature only two wavefronts

In this section we show that split-step walks are limited
to exhibit two counter-propagating wavefronts. The analysis
is based on the dispersion relation of the quantum walk
operator U . The relation can be obtained for translation
invariant DTQW considering the Fourier transform U (k) of
the walk operator, and calculating the eigenvalue spectrum
λ j (k) = eiω j (k) for each k ∈ [−π, π ). The group velocity de-
fined as vg(k) = ω′(k) = dω(k)/dk plays an important role in
determining the propagation speeds of the wavefronts [60].
The wavefront velocities are given by the set {vg(k) | k ∈
[−π, π ) s.t. ω′′(k) = 0}, therefore, the number of distinct

wavefronts strongly depends on the number of solutions to
the equation

ω′′(k) = 0. (A36)

Split-step walks are defined by a walk operator of the form

U = S+C2S−C1, (A37)

where S+ and S− respectively shift the |R〉 component to the
right, and the |L〉 component to the left, while leaving the
other component unchanged. The two coin operators can be
taken to be SU(2) matrices, thus described by pairs of com-
plex parameters satisfying |u1|2 + |v1|2 = |u2|2 + |v2|2 = 1,
as usual. The eigenvalues of the operator in Eq. (A37) obey
the equation

cos ω±(k) = ± cos(k + ϕ)ũ + ṽ, (A38)

where ϕ = arg(u1u2), ũ = |u1u2| and ṽ = �(v1v
∗
2 ). Formally

solving Eq. (A36) yields

cos(k + ϕ) = a ±
√

a2 − 1, (A39)

with a = (ũ2 + ṽ2 − 1)/2ũṽ being a real number. To obtain a
real solution for k, the right-hand side of the equation must
be real. This is fulfilled only if |a| � 1 holds. However, the
right-hand side must also be between −1 and 1. Therefore,
for negative a, the only valid equation is cos(k + ϕ) = a +√

a2 − 1, while for positive a it’s cos(k + ϕ) = a − √
a2 − 1.

This still yields two solutions for k due to the cosine function
being even. However, as we shall see, this symmetry does not
yield any additional wavefronts. Indeed, the group velocities
for the two bands ω± are given by the equation

v(±)
g (k) = ±ũ sin(k + ϕ)

1 − (ũ cos(k + ϕ) − ṽ)2
, (A40)

thus while formally there are four solutions, they are pairwise
degenerate since the sine function is odd.

4. Wavefronts with four-dimensional coins

As mentioned above, calculations of DTQWs with ex-
perimentally relevant four-dimensional coin operators, given
by Eq. (8), reveals that these walks may exhibit up to eight
wavefronts (i.e., four in each direction) in their position distri-
bution. Here we supply some remarks on how to interpret the
band structure plots and the conclusions drawn from them.

The analysis of the dispersion spectrum, analogously to
the case of split-step walks in Appendix A 3, can be greatly
simplified by observing that the symmetries of the evolution
operator guarantee that each branch is related to each other
by combinations of displacements or reflections. Since these
transformations do not affect the number of inflection points
and the absolute value of the associated group velocities,
a single branch can provide information about the entire
structure. Due to the vertical reflection relation, wavefronts
will always appear in counter-propagating pairs, each with the
same speed.

We emphasize that the dispersion analysis merely provides
the velocities of the wavefronts, and does not provide infor-
mation about their characteristic widths or relative intensities,
partly because these parameters depend strongly on the initial
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(a) (b)

(c) (d)

FIG. 10. Numeric and experimental evolution of intensities of each traveling direction in a Hadamard walk with partial reversal of the c
and cc traveling directions, initialized in |ccA〉. The sum of the two intensity distributions yields the distribution of a standard Hadamard walk.
The averaged similarity between numeric and experimental results over 22 steps is 93.1%.

coin state. To be able to experimentally resolve two wave-
fronts, the difference in their velocities must be large enough
so that their relative distances exceed their characteristic
widths within the experimental time frame.

APPENDIX B: ADDITIONAL EXPERIMENTS

1. Partial reversal of traveling directions

Here we describe an experiment testing the coherence
properties of statically coupling the traveling directions in a
situation where the results have a clear intuitive interpretation.
We have set the QWP implementing operator CA to swap
the polarizations, resulting in the preservation of the traveling
directions as explained earlier. The operation CB in the other
arm is implemented by a QWP at 0◦, thus reversing the
traveling directions in the subsequent step operation [Eq. (2)].
The situation is described by the coin operation

CAB =

⎛
⎜⎝

0 0 0 −i
0 −i 0 0
0 0 i 0
−i 0 0 0

⎞
⎟⎠. (B1)

The coin operator CLL in the loop is set to a Hadamard
operation by using a HWP at 22.5◦ as in Eq. (9), having
no effect on the traveling direction. The obtained results are
presented in Fig. 10, along with numerical simulations for
reference. The strong similarity of 93.1% between simulation
and experiment proves excellent coherence properties even
when both traveling directions are involved.

2. Circles with 4 and 16 sites

In this section, we present data from experiments realizing
walks on circles. We recall that the inner and boundary

positions are distinguished by employing all three EOMs to
perform the appropriate coin operators.

In our first example, we realize dynamics on a circle
of size 16. For this graph, the boundaries are implemented
at x = ±4. With a nonmixing coin, the input polarization
|D〉 = 1√

2
(|H〉 + |V 〉) in the cc direction initiates two counter-

propagating localized components in the walker’s wave func-
tion. In Fig. 12, we present the experimental and numerical
data showing how the walker is initially in the cc subspace
corresponding to the upper semicircle (see Fig. 11 for the
convention). In the fourth step it is transferred to the lower
semicircle and the two components meet again at x = 0
corresponding to m = 8. The high extinction of the intensity
at the ideally unoccupied positions witnesses the quality of
switchings at the inner and the boundary positions. Results for
the mixing H ′ operation [cf. Eq. (13)] are presented in Fig. 13,
displaying similar features, however, with visible effects of
dispersion and slower propagation speeds on the propagating
waves. Note that we applied a different plotting convention
here and just display the relevant positions m of the circle, see
Fig. 11.

4 3

7 1

26

5

0
1

2

3
4

5

6

7

1 20-1-2

FIG. 11. Modified ladder graph, equivalent to a walk on a cir-
cle, here shown for a circle with eight nodes. The coordinate x =
−2, . . . , 2 denotes the position on the line graph as used before while
m = 0, . . . , 7 are the renumbered coordinates associated with the
sites on the circle.
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FIG. 12. Walk on a circle with 16 nodes, i.e., with boundaries at
x = ±4 (nonmixing operation on the circle, |ccV〉 input), displayed
separately for clockwise and counter-clockwise propagating compo-
nents in numerics and experiment. One can immediately see the jump
from cc to c (and vice versa) at x = ±4 in step 4 to 5 (step 11 to 12).
Since all the outer positions are unoccupied up to small switching
inaccuracies, we restrict the plot range in the other figures to the
relevant positions numbered as sites on the circle m = 0, . . . , 15 (as
exemplified in Fig. 11). The polarization resolved similarity averaged
over 19 steps is 87.1%.

FIG. 13. Hadamard walk on an 16-site circle with |ccV〉 input.
The polarization resolved similarity averaged over 19 steps is 89.1%.

FIG. 14. 8-site circle (see Fig. 11): (a) free passage walk with
a similarity S̄ = 85.5% and (b) Hadamard-like H ′ walk with S̄ =
78.8% (both averaged over 19 steps) with |ccV〉 input.

The equidistribution effect can be observed in the results
presented in Fig. 14(c) for the dynamics on a circle of eight
sites between steps 10 through 14. Note that even (odd)
positions are unreachable in odd (even) step numbers with a
localized initial state, thus it is understood that the distribution
is uniform over the set of positions that are allowed by the
dynamics.

Implementation of a smaller circle of size 4, in which
the boundary positions are at x = 0 and x = 1, involves a
significantly higher number of EOM switchings resulting
in higher overall error, but still a similarity of more than
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FIG. 15. Hadamard walk (b) numerics and (c) experimental data
of the intensity evolution for a four-site circle (a) with |ccD〉 input
complementing Figs. 7, 13, and 14. Polarization resolved averaged
similarity over the first 12 steps is S̄ = 82.1%. The decrease in
similarity is due to the high number of necessary EOM switches.

80%. The observed dynamics is presented in Fig. 15. In this
case, an initially localized state also goes through phases of
equidistribution and revival. The period of revival is 8 [67,68],
but contrary to the previous case the equidistribution does not
happen at one half of that time, but earlier at steps 2 and 3. At
step 4 we instead observe a phenomenon where the probability
distribution of the initial state reappears, but shifted to a node
opposite the starting node. The equidistribution time, then, is
one half of the first time of occurrence of this “shifted revival.”

3. Error discussion

In this section, we describe the method used for determin-
ing the extent of the error bars in Figs. 6 and 8.

The measurements of intensity distributions are subjected
to inhomogeneities in the detection efficiencies for each of
the four internal basis state and inaccuracies in the angles of
the statically and dynamically implemented coins. Assuming
errors of the detection efficiencies of ±2.5% and of the
coin angles of ±1◦, we conduct a Monte Carlo simulation
in which we randomly generate 1000 different settings for
these quantities within the assumed error range. For each
of these settings we calculate the deviation of the resulting
numeric intensity distribution from a reference intensity distri-
bution. This reference is obtained when running the numerical
simulation with the fit parameters allowing for the closest
approximation of the experimental results. The error for the
individual positions and polarizations is then calculated as the
standard deviation of the randomly generated samples from
the reference distribution.

The errors of the similarity to an equidistribution are deter-
mined via error propagation from the errors of the intensities,
resulting in the error bars visible in Fig. 8.
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Potoček, C. Hamilton, I. Jex, and C. Silberhorn, Science 336,
55 (2012).

[20] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi,
R. Ramponi, and R. Osellame, Phys. Rev. Lett. 108, 010502
(2012).

[21] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio,
L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, Nat.
Photonics 7, 322 (2013).

033036-17

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1016/S0375-9601(96)00745-1
https://doi.org/10.1016/S0375-9601(96)00745-1
https://doi.org/10.1016/S0375-9601(96)00745-1
https://doi.org/10.1016/S0375-9601(96)00745-1
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1126/science.1229957
https://doi.org/10.1126/science.1229957
https://doi.org/10.1126/science.1229957
https://doi.org/10.1126/science.1229957
https://doi.org/10.1103/PhysRevA.73.054302
https://doi.org/10.1103/PhysRevA.73.054302
https://doi.org/10.1103/PhysRevA.73.054302
https://doi.org/10.1103/PhysRevA.73.054302
https://doi.org/10.1103/PhysRevA.82.033602
https://doi.org/10.1103/PhysRevA.82.033602
https://doi.org/10.1103/PhysRevA.82.033602
https://doi.org/10.1103/PhysRevA.82.033602
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1103/PhysRevA.92.052336
https://doi.org/10.1103/PhysRevA.92.052336
https://doi.org/10.1103/PhysRevA.92.052336
https://doi.org/10.1103/PhysRevA.92.052336
https://doi.org/10.1103/PhysRevA.61.013410
https://doi.org/10.1103/PhysRevA.61.013410
https://doi.org/10.1103/PhysRevA.61.013410
https://doi.org/10.1103/PhysRevA.61.013410
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1126/science.1193515
https://doi.org/10.1126/science.1193515
https://doi.org/10.1126/science.1193515
https://doi.org/10.1126/science.1193515
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1103/PhysRevLett.104.050502
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26


LENNART LORZ et al. PHYSICAL REVIEW RESEARCH 1, 033036 (2019)

[22] F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D.
Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and
L. Marrucci, Sci. Adv. 1, e1500087 (2015).

[23] P. Xue, R. Zhang, Z. Bian, X. Zhan, H. Qin, and B. C. Sanders,
Phys. Rev. A 92, 042316 (2015).

[24] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M.
Enderlein, T. Huber, and T. Schaetz, Phys. Rev. Lett. 103,
090504 (2009).

[25] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt,
and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010).

[26] M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner,
D. Meschede, and A. Alberti, Phys. Rev. Lett. 110, 190601
(2013).

[27] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D.
Meschede, and A. Widera, Science 325, 174 (2009).

[28] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.
Zupancic, Y. Lahini, R. Islam, and M. Greiner, Science 347,
1229 (2015).

[29] J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Phys.
Rev. A 67, 042316 (2003).

[30] J. Wang and K. Manouchehri, Physical Implementation of
Quantum Walks (Springer, Berlin, 2013).

[31] T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen,
and C. Silberhorn, New J. Phys. 18, 063017 (2016).

[32] C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu,
X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W.
Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, Phys. Rev. Lett.
121, 100502 (2018).

[33] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex,
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