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Measuring coherence of quantum measurements
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The superposition of quantum states lies at the heart of physics and has been recently found to serve
as a versatile resource for quantum information protocols, defining the notion of quantum coherence. In
this contribution, we report on the implementation of its complementary concept, coherence from quantum
measurements. By devising an accessible criterion which holds true in any classical statistical theory, we
demonstrate that noncommutative quantum measurements violate this constraint, rendering it possible to
perform an operational assessment of the measurement-based quantum coherence. In particular, we verify that
polarization measurements of a single photonic qubit, an essential carrier of one unit of quantum information,
are already incompatible with classical, i.e., incoherent, models of a measurement apparatus. Thus, we realize
a method that enables us to quantitatively certify which quantum measurements follow fundamentally different
statistical laws than expected from classical theories and, at the same time, quantify their usefulness within the
modern framework of resources for quantum information technology.
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I. INTRODUCTION

Quantum interference phenomena are a key property that
enable us discern classical physics from the quantum realm
[1–5]. Different forms of quantum coherence constitute the
basis for a variety of notions of nonclassicality, such as en-
tanglement, that are results of nonlocal superpositions [6–10].
The application of quantum coherence as a resource for quan-
tum information protocols recently gained a lot of attention
(see Refs. [11–13] for introductions) because it connects
fundamental question about the physical nature with practical
aspects of upcoming quantum technologies.

In order to show how classical expectations are superseded
by quantum physics, a number of measurable criteria have
been proposed. Most prominently, Bell’s inequality [14] en-
ables us to show that local hidden-variable models do not
sufficiently describe general correlations between quantum
systems. More generally, the concept of contextuality pro-
vides a broadly applicable approach which demonstrates the
superiority of quantum-mechanical joint probabilities over
their classical counterparts [15,16]. The underlying con-
straints for both examples provide criteria which were derived
in a classical picture to demonstrate how quantum physics
overcomes classical limitations; see Ref. [17] for a recent
experiment.
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Conversely, the resource-theoretic framework of quantum
coherence is already formulated in the quantum formalism
and quantifies the operational usefulness of superpositions
when compared to quantum-statistical ensembles [11–13]. In
fact, quantum superpositions themselves can directly serve
as a measure of quantum coherence [18–20]. Moreover, the
general concept of quantum coherence encompasses previ-
ous notions of quantumness, e.g., quantum-optical nonclas-
sicality as formulated by Glauber and others [21–25], and
thereby renders it possible to distinguish classical interfer-
ence phenomena from coherence effects genuine to quantum
physics.

Except for some recent approaches with remarkable impli-
cations [26–31], the state-based approach to quantum coher-
ence does not address the quantumness of measurement itself
[32]. However, there can be no doubt that the understanding
of the nature of measurements is vital to the fundamentals of
physics and its practical applications, e.g., allowing us to im-
plement measurement-based quantum computation [33,34].
Other scenarios in which the coherence of measurements
becomes essential relate to the manipulation and preparation
of quantum states [35–38], conditional quantum correlations
[39,40], and questions concerning the collapse of the wave
function [26,41–44]. The other way around, Heisenberg’s
seminal uncertainty relation [45] poses a fundamental preci-
sion limitation to quantum measurements of multiple observ-
ables [46–48], which is not the case in classical models. Thus,
an experimentally accessible distinction between classical and
quantum statistics, based on the outcomes of measurements, is
vital for many applications. While some measurements have
been performed, for example, to confirm the noncommutativ-
ity of certain observables [49,50], a general connection be-
tween the quantumness of measurements and the state-based
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notion of quantum coherence, together with its experimental
certification, is still missing.

In this contribution, we close this gap between the theory
of quantum coherence of states and experiments with incom-
patible quantum measurements. To derive our experimentally
accessible and generally applicable criteria, we first perform a
derivation in a purely classical framework; second, we relate
our findings to quantum coherence of measurements. Then,
we apply our technique to data obtained in our experiment
of polarization measurements of photons, detecting one qubit
of information. Our results not only verify with high sta-
tistical significance if and when a classical interpretation of
a measurement ultimately fails in quantum systems but it
also provides a quantifier of the measurement-based quantum
coherence. Thus, we provide and implement a practical tool
to study the fundamentals and application-oriented properties
of quantum measurements.

II. CLASSICAL LAW OF TOTAL PROBABILITIES

Like the approach by Bell and others, let us formulate our
classical constraints solely based on universally valid features
of classical statistics. For this reason, we consider a probabil-
ity distribution P, where P(x) and P(y) are the probabilities
to measure the outcomes x and y for two random variables.
Further, the probability to measure y after a measurement of x
is given by the conditional probability P(y|x) = P(y, x)/P(x),
where P(y, x) is the joint probability for the given outcomes.
Consequently, the probability to detect y regardless of the
prior outcome x is given by P′(y) = ∑

x P(y|x)P(x). Accord-
ing to the law of total probability [51,52], we have

P(y)
cl.= P′(y) (1)

for any classical system. It is worth emphasizing that the law
of total probability applies to any classical model even if the
measurement is not an ideal one.

Using the classical identity (1), we can now formulate a
variance-based constraint for classical statistics,

VP(y)[y]
cl.= VP′(y)[y], (2)

where V denotes the variance. This classical relation is known
as the law of total variance [51,52] and follows from the de-
composition VP′(y)[y] = EP(x)[VP(y|x)[y]] + VP(x)[EP(y|x)[y]],
which is based on the construction of P′ via conditional
probabilities and where E denotes the mean value. A violation
of the classically universal law in Eq. (2) certifies the incom-
patibility of the measurement with classical statistics. It is
worth emphasizing that beyond the second-order criterion (2),
more sophisticated generalizations are possible using Eq. (1).

III. RELATION TO QUANTUM COHERENCE

Let us now establish the relation of the above criterion to
the notion of quantum coherence. For this reason, we identify
an observable, represented through the operator x̂, to serve
as our incoherent gauge when compared to a second, general
observable ŷ. The decomposition of those observables reads
x̂ = ∑

x x �̂x and ŷ = ∑
y y �̂y, using the positive operator-

valued measures {�̂x}x and {�̂y}y.

Measuring the outcome x is achieved with the probability
P(x) = tr(ρ̂�̂x ) = 〈�̂x〉ρ̂ and leaves us with a postmeasure-
ment state ρ̂x = �̂1/2

x ρ̂�̂1/2
x /P(x). In analogy to the classical

case, we now ignore the first outcome, resulting in

ρ̂ ′ =
∑

x

P(x)ρ̂x =
∑

x

�̂1/2
x ρ̂�̂1/2

x . (3)

For our purpose, it is now convenient to define that a state is
incoherent if the map in Eq. (3) leaves the state unchanged,
i.e., ρ̂ �→ ρ̂ ′ = ρ̂. Conversely, quantum coherence is given by
ρ̂ ′ �= ρ̂. In this sense, ρ̂ �→ ρ̂ ′ is a so-called strictly incoherent
operation [2,53]. In general, assessing coherence demands a
choice of a preferred basis on grounds of physical considera-
tions. Here, it is motivated through a detection of x̂ because,
in itself, it does have a completely classical model in terms of
the measured statistics P(x).

For comparing the two cases, the measurement of ŷ without
and with a prior measurement of x̂ yields

VP(y)[y] = 〈(�ŷ)2〉ρ̂ and VP′(y)[y] = 〈(�ŷ)2〉ρ̂ ′ , (4)

respectively, corresponding to the variances for the previously
discussed classical case. Here, however, the classical law of
total variances does not apply, and we can find 〈(�ŷ)2〉ρ̂ �=
〈(�ŷ)2〉ρ̂ ′ in the presence of quantum coherence, ρ̂ �= ρ̂ ′.

It is worth emphasizing that our approach does indeed
measure the incompatibility of the performed measurements
because [�̂x, �̂y] = 0 (∀x, y) implies P(y) = P′(y), regardless
of the coherence of the initial state ρ̂ [54]. Therefore, when
the classical constraint (2) is violated, we can directly infer
that the quantum measurement ŷ exhibits quantum coherence
with respect to the detection of x̂. In an ideal scenario,
where the measurements are represented through orthonor-
mal bases, i.e., �̂x = |x〉〈x| and �̂y = |y〉〈y|, this means that
the measurement of ŷ is not described through incoherent
mixtures (�̂y �= ∑

x qy,x|x〉〈x|); rather, it requires quantum
superpositions (|y〉 = ∑

x cy,x|x〉), i.e., quantum coherence in
the measurement operators. More specifically, our interme-
diate definition of the coherence of the states, based on the
measurement of x̂ [cf. Eq. (3)], actually serves as a proxy
to infer the quantum coherence of the second measurement
ŷ when compared to x̂. Consequently, we have formulated an
observable criterion that assesses the quantum coherence of
measurements and which is based off of the classical law of
total probabilities.

IV. IMPLEMENTATION

We explore the previously devised concepts for qubits.
While our approach applies to arbitrary system, qubits are
fundamental quantum objects as they represent the basic
unit of quantum information science [33,55,56]. Our qubits
are encoded in the polarization of single photons. The pre-
ferred basis is given by the horizontal (H) and vertical (V )
polarization, also defining the reference measurement x̂ =
−|H〉〈H | + |V 〉〈V | = [−1 0

0 1]. The states we prepare take the
general form

ρ̂ =
[

1 − p
√

p(1 − p)γ√
p(1 − p)γ p

]
, (5)
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where p ∈ [0, 1] indicates the population unbalance between
the two levels, and the parameter γ ∈ [0, 1] determines the
coherence in the state when compared to its incoherent coun-
terpart, ρ̂ ′ = (1 − p)|H〉〈H | + p|V 〉〈V |; cf. Eq. (3). Note that
γ can be additionally equipped with a complex phase factor,
eiφ , to account for the most general case of a qubit; this,
however, does not lead to any conceptional advantage and is,
therefore, fixed to one (eiφ = 1) in our treatment. The qubit
is subjected to two consecutive measurements. The first one
measures the Pauli-z operator (here, denoted as x̂); the second
one measures an arbitrary observable

ŷ = cos θ

[−1 0
0 1

]
+ sin θ

[
0 1
1 0

]
, (6)

parametrized through the angle θ .
In our experiment, we prepare linear polarization states

from H-polarized photons by means of a half-wave plate
(HWP) at an angle α—hence, p = sin2(2α). The statistics for
mixed states is obtained by inputting states corresponding to
the setting +α and −α with the respective weights w+,w− �
0, chosen in such a way that w+ + w− = 1 and w+ − w− = γ

hold true.
In order to implement the x̂ measurement without destroy-

ing the signal photon, we couple the photon with an ancillary
meter by means of a controlled sign gate [57–59]. This is
constituted by a beam splitter with polarization-dependent
transmittivities, TH = 1 and TV = 1/3. Two-photon nonclas-
sical interference occurs selectively on the beam splitter only
for the vertical components of the signal and the meter photon
polarizations. These consequently acquire a π phase shift
with respect to the other three terms when postselecting
those events in which the two photons emerge on distinct
outputs of the beam splitter—this then demands to register
only coincidence events between the arms. In our setup,
we encounter slight imperfections, such as TH = 98.5% �= 1
and TV = 32.4% �= 1/3. In order to reduce the impact of
leakage of the horizontal polarization, the polarization modes
of the meter photon are kept spatially separated by embedding
the controlled gate in a Sagnac interferometer. Two other
identical beam splitters, rotated by 90◦, are used to balance
polarization-dependent loss induced by the first one [60].
Remaining discrepancies between our data and the theoretical
modeling can be attributed to reduced visibility of the two-
photon interference, as well as the Sagnac interferometer.
This, however, does not affect the working of our criterion
(2) as it applies to arbitrary measurements, including their
imperfections.

The action of the described gate can be switched on and off
by controlling the polarization of the meter [61–63]. Consider
a pure signal state state (γ = 1) arriving at the gate. If a
H-polarized meter is injected, no coupling can occur; hence,
the joint state remains separable, (

√
1 − p|H〉s + √

p|V 〉s) ⊗
|H〉m. No information can be inferred from the meter about
the signal. If the meter is, however, injected in a diago-
nal polarization, |+〉m = (|H〉m + |V 〉m)/

√
2, the output two-

photon polarization state is entangled,
√

1 − p|H〉s ⊗ |+〉m +√
p|V 〉s ⊗ |−〉m, due to the phase shift imparted on the gate.

By measuring the meter in the diagonal basis, one can extract
the full information about the x̂ measurement of the original

FIG. 1. Variance difference, representing the deviation from our
classical constraint, �V = 0 [Eq. (7)], between the two measurement
configurations. (a) The surface depicts the expected theoretical be-
havior when varying p and θ ; the points show the experimental data.
(b) Cut of the plot (a) for p = 0.165. (c) Cut of the plot (a) graph
for p = 0.552. Error bars, typically smaller than the bullet points,
are derived from Poissonian statistics of the count rates; the same
applies to all following plots.

signal state. The observable ŷ is then measured conventionally
by a HWP at β = θ/4 and a polarization beam splitter.

The experiment is carried out in two steps: First, we
measure the unperturbed variance, predicted to be 〈(�ŷ)2〉ρ̂ =
1 − [(2p − 1) cos θ + 2

√
p(1 − p)γ sin θ ]2; second, we mea-

sure the variance resulting from a prior measurement of x̂,
expected to follow 〈(�ŷ)2〉ρ̂ ′ = 1 − (1 − 2p)2 cos2 θ . In order
to account for experimental artifacts, both measurements are
performed with the photons passing through the gate, with
the polarization of the meter set accordingly, and registering
coincidences counts. In both cases, the polarization of the
meter is not analyzed since we are ignoring the outcome x,
as expressed in Eq. (3).

V. RESULTS

To assess the amount of measurement-induced quantum
coherence when compared to the classical constraint (2), it
is convenient to consider the following difference:

�V = VP′(y)[y] − VP(y)[y] = 〈(�ŷ)2〉ρ̂ ′ − 〈(�ŷ)2〉ρ̂ . (7)

Because of Eq. (2), a significant deviation from �V = 0 is our
figure of merit to quantify the amount of coherence.

Figure 1(a) shows the measured deviation of �V as a
function of θ and p for a measurement of ŷ [Eq. (6)] for pure
states [γ = 1 in Eq. (5)]. As one can observe, our data are
in good agreement with the quantum-mechanical model of
the detection processes. We also confirm that for θ ≈ 0, i.e.,
[x̂, ŷ] = 0 [Eq. (6)], no coherence can be observed (�V = 0)
regardless of the input state as predicted in the theory part.
Moreover, we can rule out that our system can be mimicked
by any classical model of a measurement as �V significantly
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FIG. 2. Variance difference between the two measurement con-
figurations [Eq. (7)]. (a) The surface is the expected theoretical
behavior as a function of γ and θ ; the points depict our data. (b) Cut
of the plot (a) along θ = 36◦. (c) Cut of the plot (a) along θ = 84◦.

deviates from zero in almost all other cases. For specific
values of p, the deviation from the classical bound is shown
in Figs. 1(b) and 1(c). In particular, Fig. 1(c) certifies that
the maximal violation is obtained for θ ≈ π/2, which corre-
sponds to a detection of ŷ that is a Pauli-x measurement, and
thus maximally incompatible with the reference measurement
x̂, the Pauli-z operator.

In addition, we explore mixed states to probe the quantum
coherence between the measurements in Fig. 2(a). For this
purpose, we fix the value of p = sin2(2α) at α = 12◦ and
study the difference of the variances as a function of γ

[Eq. (5)]. We can observe that, in general, the highest purity
(γ → 1) yields the most significant verification of quantum
coherence, �V �= 0, which also represents the scenario with
the highest coherence of the probe state ρ̂. Again, Figs. 2(b)
and 2(c) show the cuts with the optimal deviations �V from
the classical bound zero.

Finally, we can also measure the maximal deviation of the
state ρ̂ prior to the measurement x̂ and ρ̂ ′ after the detection
took place [64,65]; cf. Eq. (3). The result is shown in Fig. 3 as
functions of p and γ , defining the prepared state in Eq. (5).
The shown results enable us to quantify the measurement-
induced decoherence because one can straightforwardly prove
[66] that the square of trace distance between ρ̂ and ρ̂ ′ is

FIG. 3. Maximal violation of �V = 0 for θ ≈ π/2 as a function
of p and γ in plots (a) and (b), respectively. Plot (a) is expected to be
symmetric with respect to p = 1/2 in the ideal case.

identical to �V for θ ≈ π/2. For instance, we can conclude
from Figs. 3(a) and 3(b) that the maximal decoherence occurs
for p ≈ 1/2 and γ ≈ 1. This corresponds to a maximally co-
herent input state, ρ̂ = |ψ〉〈ψ | with |ψ〉 = (|H〉 + |V 〉)/

√
2,

that is converted into a maximally incoherent one, ρ̂ ′ =
(|H〉〈H | + |V 〉〈V |)/2, through the detection of x̂.

VI. DISCUSSION

In summary, we formulated and implemented a method
that enables us to certify quantum coherence between two
measurements. We applied the law of total probabilities (and
variances) to formulate conditions that apply to all classical
measurements. The translation to the quantum domain en-
abled us to violate these classical requirements, and thereby
we revealed a connection to the notion of quantum coherence
between measurements. We confirmed our theory by probing
the quantumness of different and essential qubit measure-
ments, encoded in the polarization of photons. This allowed
us to experimentally verify the fundamental incompatibility
of quantum measurements with classical statistical models
on a quantitative basis. Furthermore, we were able to assess
the measurement-induced decoherence which occurs when a
measurement is performed on a quantum system.

Our studies reveal fundamental and application-oriented
properties genuine to the quantum description of measure-
ments. First, we confirmed—with an easily accessible, al-
ternative approach and high statistical significance—that the
quantum statistics of measurements has fundamentally dif-
ferent properties than expected from any classical perspec-
tive. Second, we were able to connect the resource-theoretic
notion of quantum coherence of quantum states to the co-
herence between two measurement scenarios. Specifically,
one measurement defines a classical reference, the incom-
patibility of this reference with the employed state, and the
second measurement then leads to quantum effects beyond
classical physics. In this scenario, the coherence of the state
serves as a medium to prove that the description of the
second measurement requires quantum superpositions since
for commuting observables, any quantum coherence of the
state become meaningless. This further demonstrates that,
in quantum physics, it makes a profound difference if one
measures a second observable in the context of preceding
one or not—even if one is ignorant to the outcome of the
first detection event. Note that the role of the first and second
measurements is fixed by reasons of experimental practicality
and can be exchanged in our treatment without affecting any
of our general observations.

Our approach also enables us to quantify the loss of coher-
ence as a result of the alteration of a state after a quantum-
measurement process took place, relating to the collapse of
the wave function. In particular, we show that intervening
with a measurement has a disruptive action on the quantum
information carried by the state’s coherence. Indeed, a prior
measurement cancels the presence of coherence in the state,
affecting a subsequent measurement, which is also the basis
of our quantumness criteria. Furthermore, our second-order
criterion can be straightforwardly extended to higher order
correlations and other nonlinear statistical quantifiers, such
as the entropy, outlining possible generalizations. Moreover,
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our method can be also generalized to compare more than
two measurements in a pairwise manner or when measured
successively. We also want to stress that our approach applies
to discrete and continuous variables alike, and its purely
classical derivation does not presuppose any knowledge about
quantum physics, such as notions of eigenstates, measure-
ment operators, collapse of the wave function, etc. This is
in contrast to other attempts to quantify the coherence of
measurements that require a quantum description.

It is also worth emphasizing that measurement-based quan-
tum protocols rely on realizing measurements which are in-
compatible. Here, we were able to assess the quantum coher-
ence between such measurements to quantify this resource
of incompatibility, which is analogous to the requirements
on quantum protocols which exploit the coherence of the
state. Based on our method interpreted as a means to quantify
the measurement-induced decoherence, we have additionally

demonstrated how to infer the coherence in the trace distance
of a qubit state via the performed measurements, providing the
necessary information for the success of certain quantum tasks
[67,68]. Furthermore, the variance-based form of our criterion
enables us to predict the precision to estimate a quantity
in settings which consists of noncommuting measurements,
which is useful, e.g., when comparing classical and quantum
metrology [69]. Thus, we also provide a useful tool to quantify
the coherence of measurements for practical purposes.
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