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Controlled quantum search on structured databases
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By proposing two schemes (namely, a multistage and a single-stage one) based on the continuous-time
quantum walk (CTQW), we study the quantum search on balanced trees of height r with N vertices. For the
multistage scheme, we achieve the search for a marked leaf vertex with a runtime �(N (2r−1)/2r ) and a success
probability close to 100% when the branching factor is large. For the single-stage scheme with adjustable edge
weights, we achieve the search with an optimal runtime �(

√
N ) and a success probability close to 100% as well.

Furthermore, we show that our search algorithms also work for real trees with unbalanced structures and are
quite robust against various kinds of small perturbations.
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I. INTRODUCTION

In the Yellow Pages, each entry contains a subscriber’s
name, phone number, and other information. All the en-
tries are ordered alphabetically according to the subscribers’
names, and the whole directory can be considered as a struc-
tured tree with each entry corresponding to a vertex (see
Fig. 1). One can easily find the phone number of a subscriber
since the path to the related entry is directly following the
name. Nevertheless, it is very difficult to find the related
subscriber’s name when only his/her phone number is given
since one does not know the path to the corresponding entry.
Thus the search on this database requires an average runtime
proportional to the total number of the phone entries N and
is actually equivalent to that on an unsorted database. For
such an unsorted database, if the vertices are mimicked to
certain kind of quantum counterparts, interestingly, a fast
quantum search via the Grover’s algorithm [1] can be ap-
plied, providing a quadratic quantum speedup with a runtime
�(

√
N ). Although the implementation of the Grover’s algo-

rithm is not easy, it was shown that on complete graphs a
standard continuous-time quantum walk (CTQW) can realize
the continuous-time analog of the Grover’s algorithm and
achieve a quadratic quantum speedup [2]. Generally, for many
databases, e.g., the phone directories, with tree structures, one
may still expect that a search via the standard CTQW can
achieve the same quantum speedup, but a study showed that
the standard CTQW on trees cannot achieve the mentioned
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above quantum advantage [3]. Can we use a generalized
scheme based on modified CTQW to realize the quantum
search on databases with tree structures and achieve the
quantum speedup?

The model of quantum walk describes a particle evolving
on a graph according to a unitary evolution operator deter-
mined by the structure of the graph [4,5]. This model is
quite friendly for algorithmic design and experimental imple-
mentation [6,7]. It has already been used as an algorithmic
tool to design the quantum algorithms [8–10], implement the
universal quantum computing [11–13], explore the topologi-
cal insulator and photonics [14,15], generate the nonclassical
states in optics [16], model the network-based process [17],
study the properties related to localization [18,19], and even
test some aspects of the fundamental physics [20,21]. Its
experimental implementations or proposals were explored in
different platforms: trapped ions and atoms [22–25], opti-
cal systems [21,26–29], nuclear-magnetic-resonance devices
[30], quantum circuits [31], and the artificial electric field
[32]. In addition, except the complete graphs, algorithms
based on CTQW was also used to the spatial search on the
hypercube, d-dimensional periodic lattices [2], and several
other graphs [3,33–39]. An optimal search time �(

√
N ) was

obtained for some of these structured graphs under certain
circumstances [2,34–37]. However, it was also shown that
high connectivity, good global symmetry and regularity do not
guarantee fast search [36–38].

Tree structures are very important and essential for data
manipulation. Organizing quantum memory in tree-structure
has gotten some attention as it allows a easy way for ad-
dressing [40–42]. There have been a number of ingenious
studies on quantum algorithm related to trees [3,5,8,34,43–
50]. As a typical example, the search for a hidden tree vertex
was achieved via the CTQW within a runtime �(Nβ ) with β

varying from 0.5 to 1 when the marked vertex moves from
the root (the single vertex on the top level) to the leaves (the
vertices in the bottom level with no children) [3]. Thus no
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FIG. 1. A physicist’s conundrum. Having a ragged note with a
phone number on it, a physicist tries to find out the owner out of
curiosity. Can a quantum walk help her to find this particular phone
entry?

quantum speedup is obtained when the vertex is deeply hidden
as a leaf. Moreover, the success probability is rather low,
and practically decreases as the height of the tree increases.
In another work, the success probability was shown to be
much less than 100%, and also decreases as the height or
branching factor increases [34] (see Sec. II D of Ref. [51] for
more discussions). In a nice recent work via the discrete-time
quantum walk [50], the structure of the graph is modified
according to the result of each trial and a speed close to
(still slower than) the Grover’s algorithm is achieved, but this
approach requires multiple trials. It is still a challenge to have
an optimal runtime and a high success probability at the same
time for the search on a tree.

In this paper, we provide a solution. We propose a multi-
stage quantum search scheme on trees with a success proba-
bility close to 100%, which does not decrease as the height
or branching factor of the tree increases. Surprisingly, we
also find that a proper modification of the edge weights can
cause a merging of the multistages in the search processes,
thus resulting in a substantial speedup for the search. With
a suitable choice of the edge weights, we can achieve an
optimal runtime �(

√
N ), meanwhile keep the high success

probability.

II. GENERAL SCENARIO

We consider a particle that performs a quantum walk on
a graph with N vertices, with each vertex corresponding to a
basis state in an N-dimensional Hilbert space. The quantum
walk is governed by the Hamiltonian [2]

H = −γ L − |a〉〈a|, (1)

where γ is the jumping rate (amplitude per unit time) between
a pair of connected vertices, L = A − D is the graph Lapla-
cian, A is the adjacency matrix of graph (i.e., Ai j is the weight
of edge between vertices i and j), D is the diagonal matrix
with Dj j = deg( j) (i.e., the total weight of edges connected
to vertex j), and |a〉 is the state corresponding to the marked
vertex a. For convenience, our Hamiltonian H and the time
are chosen to be dimensionless. Quantum algorithms usually
use an invariant subspace of the Hamiltonian, which can
be conveniently found by grouping the identically evolving

FIG. 2. A balanced tree with height r = 2 and branching factor
M = 4. The total number of vertices is N = 1 + M + M2 = 21.
The invariable subspace is spanned by the six states |a〉, · · · , | f 〉,
with each one an equal superposition of the vertex states in the
corresponding box.

vertices together. Since we have no prior information of the
location of the marked vertex, the initial state of the particle is
chosen as

|s〉 = 1√
N

N∑
i=1

|i〉. (2)

The quantum search proceeds as follows. We start with the
initial state |s〉 in Eq. (2) in the invariant subspace, and let
the particle evolve under the Hamiltonian in Eq. (1). After
a particular period of time, the particle will arrive at the
marked vertex a with a certain probability. We then perform
a projective measurement onto the vertex basis and reveal
the marked vertex with a probability P of success. If the
jumping rate is fixed and the edge weights are uniformed, the
success probability P is low and decreases when the height
or the branching factor increases in general. Here we take the
advantage of controllable jumping rate and adjustable edge
weights to improve the success probability and search speed.

III. MULTISTAGE QUANTUM SEARCH
ON BALANCED TREES

We focus on a balanced tree with height r and branching
factor M, which contains one vertex on the first (top) level,
M vertices on the second level, . . . , and Mr vertices on the
(r + 1)th (bottom) level, thus the total number of (Mr+1 −
1)/(M − 1) vertices (see Fig. 2). We assume that the marked
vertex is a leaf vertex.

We first discuss a balanced tree with height r = 2 and
an arbitrary branching factor M (see Fig. 2 for the case of
M = 4). To study the evolution of the system, we group
the vertices with identical evolution by the same color, and
then work in the invariant subspace of the Hamiltonian. The
invariant subspace is spanned by the following six basis states:
|a〉 (the marked vertex state), |b〉 = 1√

M−1

∑
i∈b |i〉, |c〉 =

1√
M(M−1)

∑
i∈c |i〉, |d〉, |e〉 = 1√

M−1

∑
i∈e |i〉, and | f 〉. A state

initially in the invariant subspace evolves only in the subspace
due to the vanishing off-diagonal terms of the Hamiltonian be-
tween the invariant subspace and its orthogonal complement.
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(a)

(b)

(c)  

FIG. 3. The squared overlaps of basis states |s〉, |b〉, |a〉 with the
eigenstates |ψ0,1,2〉 of H for a balanced tree of height 2 when M =
100.

Hence, the effective Hamiltonian in this subspace is

H = −γ

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 + 1
γ

0 0 1 0 0
0 −1 0

√
M−1 0 0

0 0 −1 0
√

M 0
1

√
M−1 0 −M−1 0 1

0 0
√

M 0 −M−1
√

M−1
0 0 0 1

√
M−1 −M

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The evolution of the particle’s state is determined by a
Schrödinger’s equation with solution

|ψ (t )〉 = e−iHt |s〉 = e−iHt
5∑

i=0

|ψi〉〈ψi|s〉, (3)

where |ψi〉 is the ith lowest eigenstate of H and can be worked
out numerically. The overlaps between the basis states and
the eigenstates of H as functions of γ are shown by Fig. 3.
From it we know that the first two eigenstates |ψi〉(i = 0, 1)
of H are equal superpositions of |b〉 and |s〉 when γ = 2,
and direct numerical calculations yield |ψ0〉 ≈ (|b〉 + |s〉)/

√
2

and |ψ1〉 ≈ (|b〉 − |s〉)/
√

2 (the approximation becomes more
accurate when M increases and the deviation as function of M

is shown by Fig. S2 in Ref. [51]). We have

|ψ (t )〉 = e−iHt |s〉 ≈ 1√
2

(e−iE0t |ψ0〉 + e−iE1t |ψ1〉), (4)

and then |〈b||ψ (t )〉|2 = (1 − cos �E10t )/2, where �E10 =
E1 − E0. Hence, the probability amplitude will flow from |s〉
(≈|c〉) to |b〉 within a time π/�E10. Similarly, when γ = 1,
the state of the system oscillates between |b〉 and |a〉. In
order to make the probability amplitude accumulate in the
marked vertex a, a two-stage process is required and works
as follows. In the first stage, the system is prepared in the
initial state |s〉, and evolves according to the Hamiltonian with
γ = 2 during a time π/�E10. Then, in the second stage, the
system evolves according to the Hamiltonian with adjusted
jumping rate γ = 1 for a time π/�E20. Finally, a simple
projective measurement onto the vertex states will reveal the
state |a〉 for the marked vertex a with a very high probability.
The evolution of probability distribution illustrated in Fig. 4
clearly shows the state evolution |s〉(≈|c〉) → |b〉 → |a〉 step
by step (and also see Fig. S5 in Sec. II B of Ref. [51] for a
pictorial demonstration).

For the first stage with γ = 2, by numerically calculating
the slope of ln(E1 − E0) as a function of ln M as shown in
Fig. 5 (details in Sec. II A of Ref. [51]), we find the energy
gap

�E10 = 4.0M−3/2 − 10M−5/2 + o(M−5/2). (5)

Considering only the dominant term, we obtain the searching
time in the first stage as

t = πM3/2/4. (6)

For the second stage with γ = 1, we find

�E20 = 2.0M−1/2 − 1.75M−3/2 + o(M−3/2), (7)

and we obtain the searching time in this stage as

t = πM1/2/2. (8)

When M is large enough, e.g., M = 100, the success prob-
ability |〈a||ψ (t )〉|2 for finding the marked vertex in the final
projective measurement is close to 100%, indicating all higher
order terms dropped are negligible. The effect of M on the
success probability P is shown in Sec. II C of Ref. [51], where
a discussion on the effect of higher order terms dropped here
is also given. The dominant term of the runtime in the overall
search process is t ∝ M3/2 ∝ N3/4.

Now, we discuss the case of any height r. We explicitly
write down the Hamiltonian in the invariant subspace and
work out the related results for r up to 6. We find that
the search process with a high success probability has r
stages with different jumping rates γ = r, r − 1, . . . , 2, 1,
and the appropriate searching time in each stage is pro-
portional to M1/2, M3/2, . . . , M (2r−3)/2, and M (2r−1)/2 (i.e.,
N1/2r , N3/2r , . . . , N (2r−3)/2r , and N (2r−1)/2r), respectively. The
dominant term of the time required in the search process is
∝M (2r−1)/2 ∝ N (2r−1)/2r .
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(a) (b) (c)  

FIG. 4. The evolution of probability distribution for a balanced tree with r = 2 and M = 100. The probability distribution is illustrated for
the state at the beginning (a), at the end of the 1st step (b), and at the end of the second step (c). At the end of the second step (c), the probability
in the marked state |a〉 is close to 100%.

IV. MERGED SINGLE-STAGE QUANTUM SEARCH

A. The goal

Our multistage quantum search on balanced trees achieves
a high success probability with a runtime �(N (2r−1)/2r ). Can
we further improve the search scheme to achieve an optimal
runtime �(N1/2) while keeping the high success probability?
A positive and even surprising answer is given below. By
adjusting the edge weights, we can merge our multistage
search process into a single stage and achieve an optimal
search speed with runtime �(N1/2)!

B. The case with height r = 2

Let us start with a balanced tree with height 2. We adjust
the weight of edges between the first and second level and set
it as ω. The invariant subspace is the same as before, and the
effective Hamiltonian in the invariant subspace is written as

H = −γ

⎡
⎢⎢⎢⎢⎢⎢⎣

−1+ 1
γ

0 0 1 0 0
0 −1 0

√
M−1 0 0

0 0 −1 0
√

M 0
1

√
M−1 0 −M−ω 0 ω

0 0
√

M 0 −M−ω ω
√

M−1
0 0 0 ω ω

√
M−1 −ωM

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For a given value of ω, the search with high success
probability is a two-stage process with two different jumping
rates in general. However, we observe that when the value of
ω increases from O(M1/4) to roughly O(M3/4), the two stages

FIG. 5. The relation between energy gap E1 − E0 of the balanced
tree of height 2 and the branching number M. The slope of the line
in the figure shows that the energy gap E1 − E0 scales as M−3/2.

in the search process are merged gradually, and then become a
single stage for the value of ω > O(M3/4). Enlightened by this
observation, we consider a single-stage process and assume
ω = M in the following. Figure 6 shows the squared overlaps
between the basis states and the eigenstates of H (more details
in Sec. III A of Ref. [51]). When γ = 1 + 1/M, we find that

E1 − E0 = 2M−1 − 2M−2 + o(M−2), (9)

and we obtain the searching time as

t = πM/2 ∝ N1/2. (10)

Compared to the original two-stage search process, which
gives a runtime t ∝ M3/2 ∝ N3/4, a substantial speedup is
achieved for the weighted graph. We also find that the success
probability P is close to 100% when M is large enough.
The influence of M on the success probability P is shown in
Fig. S9 (Sec. IIIB of Ref. [51]). We have obtained similar re-
sults for a balanced tree with height 3 (Sec. IIIC of Ref. [51]).
The runtime t ∝ N5/6 in a three-stage search is shortened to
an optimal runtime t ∝ N1/2 in the single-stage search with
adjusted weights.

(a)

(b)

FIG. 6. The squared overlaps of basis states |s〉, |a〉 with the
eigenstates |ψ0,1〉 of H for a weighted balanced tree of height 2 when
ω = M.
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FIG. 7. Weighted balanced tree of height 4 and branching factor
2. The red vertex is the marked leaf vertex.

C. The case with a small M and a large r

Now, let us discuss the cases when the branching factor
M is small while the height r is large. Interestingly, by prop-
erly adjusting the weights of edges between different levels
[e.g., setting the weights to 1, ω, ω2, . . . , respectively, from
bottom up (Fig. 7)], we can still achieve the optimal runtime
and a high success probability for a small branching factor
(Sec. IIID of Ref. [51]). Compared to a recent scheme [3] for
this case, which gives a runtime proportional to N , our scheme
provides a substantial speedup. The influence of the height r
on the success probability P is shown in Fig. S12 (Sec. IIIE of
Ref. [51]).

D. Quantum search on real trees

For the tree database similar to a real telephone directory,
the graph could be very asymmetric and each branch could
have a different branching factor (see Fig. 8). Surprisingly,
for all the cases we have tried numerically, if the adjusted
edge weight ω is large enough, we always find the marked
leaf vertex with a runtime �(

√
N ) and a success probability

close to 100% (see Sec. III F of Ref. [51] for details). Such
a robust result makes the scheme of great practical signif-
icance to search on structured databases like real telephone
directories.

V. FURTHER DISCUSSIONS

In our single-stage scheme, we need to modify the edge
weights, i.e., increasing the edge weights close to the root.

FIG. 8. A real tree could be a weighted tree with highly asym-
metric structure, and the marked vertices could be any vertex on
the bottom level. With a large weight ω between the first and the
intermediate level, a fast search with optimal runtime �(

√
N ) and

success probability close to 100% is always achieved in a large
number of situations we have tried.

One might worry that this increase in edge weights could
increase the energy consumption. However, actually our strat-
egy to increase the edge weights does not increase the energy
consumption, as we show that the state evolves mainly in a
subspace with low energy as 〈ψ (t )|H |ψ (t )〉 = − 1

N (details
are given in Sec. IV A of Ref. [51]). The higher-energy levels
act as both barriers and bridges for the probability to tunnel
between the lower-energy levels. This magic tunneling is
really fascinate!

Our results show that optimal quantum search can be
achieved on intrinsically poorly connected graphs. A tree is
intrinsically poorly connected since it becomes disconnected
whichever edge is removed (the joined complete graphs [37]
is not poorly connected in this sense). It has a low connec-
tivity, irrespective of which measure one uses. According to
the definition in Ref. [52], the average connectivity of the
weighted balanced tree of height 2 when ω = M is roughly
4/N . More discussions on different measures of connectivity
can be found in Sec. IV B of Ref. [51].

In Ref. [33], an ingenious condition for quantum search
via CTQW as well as a lower bound of the success probabil-
ity was obtained, which however only guarantees a success
probability of �(1/N2) for the balanced trees with adjusted
edge weights (see the discussion in Sec. IV C of Ref. [51]). To
achieve a high success probability, one may need to repeat the
search �(N2) times, and the overall search is even slower than
the classical scheme. However, via our scheme we actually
achieve a probability close to 100%, which is independent of
N , and our scheme can be accomplished in a single run with
a runtime �(

√
N ). Trees with weighted edges have far richer

structure of the Hilbert space in which one can design useful
quantum algorithms.

We would like to briefly mention the possible implementa-
tion of our schemes. The two-dimensional CTQW has been
demonstrated experimentally on a photonic chip [29]. The
weight of edges of the corresponding graph, on which the
photon performs quantum walk, is determined by the cou-
pling strength between different waveguides. And one could
actually control this coupling strength by engineering the
waveguide spacing so as to implement the quantum walk on
a particular graph. Since the way we modify the weight of
the edges is highly symmetric, one might fabricate the waveg-
uide arrays corresponding to the weighted tree by changing
a certain group of the waveguide spacing while keeping
the waveguide arrays regular enough to be experimentally
feasible.

VI. CONCLUSIONS

We have discussed quantum search on structured
databases, especially balanced trees with various heights and
branching factors. Though balanced trees have low connectiv-
ity, our multistage quantum search scheme can achieve a suc-
cess probability approaching 100%, which does not decrease
even when the height or branching factor of the tree increases.
By controlling the edge weights between different levels, we
have a single-stage scheme and achieve an optimal runtime
�(

√
N ) while keeping the high success probability. Both our

multistage scheme for balanced trees and our single-stage
scheme for trees with adjusted edge weights require only a
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single run to achieve the high success probability. We find
that our controlled search scheme also works for real trees
with unbalanced structures, and we expect similar results hold
for other graphs with hierarchical structures. Finally, these
schemes are also quite robust under small deviations of the
jumping rates or small perturbation of the graph structure
(Sec.V of Ref. [51]).

The usage of controllable edge weights may be unavoid-
able in order to fully release the magic power of quantum
search on many structured databases, the same strategy may

also be useful for quantum simulation [53] and other quantum
information processing tasks.
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