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Quantum radiation reaction in aligned crystals beyond the local constant field approximation
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We report on experimental spectra of photons radiated by 50-GeV positrons crossing silicon single crystals of
thicknesses 1.1, 2.0, 4.2, and 6.2 mm at sufficiently small angles to the (110) planes that their motion effectively is
governed by the continuum crystal potential. The experiment covers a regime of interaction where each positron
emits several hard photons, whose recoils are not negligible and which are formed on lengths where the variation
of the crystal field cannot be ignored. As a result, neither the single-photon semiclassical theory of Baier ez al. nor
the conventional cascade approach to multiple hard photon emissions (quantum radiation reaction) based on the
local constant field approximation are able to reproduce the experimental results. After developing a theoretical
scheme which incorporates the essential physical features of the experiments, i.e., multiple emissions, photon
recoil, and background field variation within the radiation formation length, we show that it provides results in

convincing agreement with the data.

DOLI: 10.1103/PhysRevResearch.1.033014

I. INTRODUCTION

Strong electromagnetic fields such as those produced by
intense lasers and by crystals are a unique tool to test QED in
the laboratory in unprecedented high-energy regimes, where
nonlinear effects in the electromagnetic field energy den-
sity dominate the dynamics [1-6]. When electrodynamical
processes occur in the presence of a sufficiently intense
background electromagnetic field, the photon density of the
latter is so high that charged particles like positrons (charge
e and mass m, respectively) interact coherently with sev-
eral background field photons. The theoretical description of
this regime, known as strong-field QED (SFQED), relies on
Lorentz- and gauge-invariant parameters, which depend on
the structure of the external electromagnetic field [7].

When a high-energy positron impinges onto a crystal along
a symmetry plane of the crystal lattice, its motion can be-
come transversely bound between two adjacent planes, and
the positron effectively interacts with a static “continuum”
potential varying only along the direction perpendicular to the
planes (planar channeling) [3,5,8-10]. In planar channeling,
the transverse motion decouples from the motion along the
y-z plane and the condition for a positron with initial energy
&y > m to be channeled within two planes is that the total
kinetic plus potential energy U (x), such that &, = p*(t)/2eo +
U (x(t)) associated to the transverse motion is smaller than the
potential energy height Uj between the two planes [3,5,8—10].
Here, we have assumed that x is the coordinate perpendicular
to the symmetry planes and that p, < gy is the positron
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momentum along that direction (units with /i = ¢ = 1, a = €?

are employed). The condition for planar channeling can be
expressed as a bound on the maximal positron angle 6 to
the plane while in the crystal that has to be smaller than
0. = /22Uy /e [3]. The continuum approximation also applies
for 6 2 6. if g9 > m.

The study of SFQED processes in the background crys-
tal field corresponding to the continuum potential, such as
the emission of high-energy photons, is complicated by the
necessity of including the field exactly in the calculations.
Now, in the case of planar channeling, the crystal field has a
dependence on the coordinate x, which does not allow for an
exact analytical solution of the Dirac equation [11]. For this
reason, the semiclassical method of Baier and Katkov [3,12],
which allows for the computation of the probabilities of
quantum processes using only the classical trajectory of the
charged particles involved in the process, has been extremely
useful in the study of SFQED processes. The semiclassical
method is based on the observation that in the interaction
of ultrarelativistic particles (we consider positrons here) the
quantization of the motion is negligible such that one can still
attribute physical meaning to the positron classical trajectory,
whereas the main quantum effect in the process of radiation
to be included is the recoil in the emission of high-energy
photons [3]. The semiclassical method has been successfully
employed to compute the probability of the basic SFQED pro-
cesses like single photon emission and electron-positron pho-
toproduction in aligned crystals (see Ref. [3] also for studies
on higher order processes). However, when a positron crosses
a crystal whose thickness corresponds to several radiation
lengths, a potentially large number of photons can be emitted.
The theoretical investigation of such high-order processes is
a formidable task [13] and mainly kinetic approaches are
employed, where it is assumed that multiple-photon emissions
arise from sequential (cascade) emissions of single photons,
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with each single-photon emission being well localized [3].
The localization of the emission is a crucial requirement of
the method and it corresponds to assuming that the formation
length [; of the photon emission process is much smaller
than the typical length where the crystal field significantly
varies, such that the local value of the probability per unit
time, evaluated for a constant field, can be employed [2,3].
This local constant field approximation (LCFA) is another
remarkable tool in strong-field physics and recent studies
have been devoted to investigating its limitations, especially
in the realm of SFQED in beamstrahlung [14,15], in intense
laser fields [16-19], and in space-time dependent electric
fields [20]. The LCFA has previously been applied to high-
energy radiation and pair-production processes in aligned
single crystals. In Refs. [21,22], the leading-order correction
in the field derivatives of the photon radiation probability has
been found. In Refs. [23,24], experimental results beyond the
LCFA are presented but either quantum radiation reaction
effects were negligible, i.e., each charge emits on average
one photon or, in case of multiple-photon emission, single-
photon spectra were not measured. See Refs. [25-28] for other
channeling related effects.

Here, we report experimental single-photon spectra emit-
ted by high-energy (50-GeV) positrons crossing silicon crys-
tals of different thicknesses (1.1, 2.0, 4.2, and 6.2 mm) aligned
to the (110) planes. Depending on the crystal thickness,
several photons are emitted by each positron with significant
recoil, such that quantum radiation reaction effects have to
be taken into account (see also the results of our previous
experiment reported in Ref. [29]). By employing a conven-
tional kinetic approach based on the emission probabilities
evaluated within the LCFA, we show that such an approach
is unable to explain the experimental results. Thus, we have
developed a kinetic approach suitable for SFQED processes in
crystals oriented along crystallographic planes, but which can,
barring extreme circumstances, be adapted to any external
field for which the transverse velocity of the particle, as
obtained from the Lorentz-force equation, is (approximately)
periodic, which then includes effects beyond the LCFA; see
the Appendix. The extreme circumstances refer here to the
fact that the motion must remain semiclassical; see, e.g.,
Ref. [30] on this topic. Other examples of such a field include
those of a long laser pulse, of long dense particle bunches (as
in beamstrahlung), and of undulators or wigglers. The theoret-
ical spectra obtained with this method result in overall good
agreement with the data, which in turn can be interpreted as
experimental evidence of quantum radiation reaction beyond
the LCFA.

II. EXPERIMENT

The experiment was carried out at the CERN SPS H4
beamline employing a positron beam of 50 GeV with an en-
ergy spread of a few percent (see Fig. 1). Because of changed
conditions of the accelerator, which can occur during outages,
the positron beam features varying initial angular distributions
along the x direction (the crystal symmetry planes are defined
to be parallel to the y-z planes). The experimental angular
distributions were fitted with a Gaussian function and the
resulting average angle 6, relative to the crystal plane and
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FIG. 1. A top view schematic of the experimental setup.

standard deviation oy are reported in Table I for the crystal
thicknesses used in the experiment. As the radiation spectra
are highly sensitive to the entry angle of the positrons, the
variation in the entry angles complicates a direct comparison
between spectra for the different crystal thicknesses.

The scintillators S1, S2, and S3 are used to make the trigger
signal, for which a signal must be present in S1 and S3 and
absent in S2, as S2 has a hole to allow particles through.
After the scintillators, the positron enters a helium chamber
to reduce multiple Coulomb scattering. Here, the transverse
position of the positron is measured as it passes through the
MIMOSA detectors M1 and M2, which allows us to determine
the incidence angle. The positron then enters the silicon
crystal, where it emits radiation. A large magnet removes
the charged particles exiting the crystal. The emitted photons
instead continue forward and encounter a converter foil of
200-pum tantalum, corresponding to an approximately 1/26
chance of being converted into an electron-positron pair. Note
that when the photon energy exceeds the threshold of pair
production, the pair production cross section quickly tends to
a constant value for large photon energies. This approach of
conversion is used to obtain a spectrum of individual photons,
as opposed to a calorimeter setup, which would only measure
the sum of energies of all the emitted photons. The produced
electron and positron pair is tracked through detectors M3
and M4, then deflected by another magnet, and then tracked
again in M5 and M6. The deflection angles of the electron
and positron allow us to determine their individual momenta,
whose sum yields the momentum of the original photon (see
Ref. [29] for a description of the employed tracking algo-
rithm). The response of the experimental setup is complicated

TABLE 1. Average angles 6y and standard deviations o, of the
Gaussian functions fitting the initial angular distribution of the
positrons along the x direction for the various crystal thicknesses
used in the experiment. For the case of our experiment, we have
6. = 30 purad; that is, only a minor fraction of positrons is channeled.
Note that the critical angle v, as given, e.g., in Ref. [5], assumes the
value ¥, = 23 prad.

Case a b ¢ d e
L [mm)] 6.2 2.0 6.2 4.2 1.1
oy [urad] 100 100 85 85 85
Oy [purad] 50 70 7 62 27
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by multiple scattering through the setup, finite detector sizes,
etc., and therefore it should be simulated [29]. In order to
validate the simulation of the experiment, the crystal can
be oriented far away from any low-index crystallographic
direction, such that the emission of radiation essentially stems
from Bethe-Heitler (BH) bremsstrahlung rather than showing
coherence effects as in coherent bremsstrahlung or channeling
radiation. BH bremsstrahlung is a well-studied process, and
the agreement between the simulation using the BH spectrum
and the experimental spectra shows that the experimental
setup is well understood and described by the simulation.
An overall normalization constant is used on the simulation
such that the BH simulation matches the experiment, and this
accounts for the inherent efficiency in the MIMOSA detectors.

III. THEORY

For the theoretical description of the experimental results,
it is useful to introduce the parameters x = e(¢E)/m> and & =
|P1 max — (P1)]/m [1-5]. Here, £(¢) is the positron energy at
time ¢, E(¢) is the amplitude of the crystal electric field at the
positron position at time ¢, the symbol () indicates the average
over the positron trajectory, and [p, .| is the maximum
momentum transverse to the direction of the largest compo-
nent of the momentum p,(t) ~ ¢(¢) (note that for channeled
positrons (p,) = 0). When  is of the order of unity or larger,
quantum effects such as spin and recoil during the emission
are essential. The parameter £ differentiates between regimes
of undulator-like (¢ « 1) and synchrotron-like (§ > 1) radi-
ation emission. Quantum radiation reaction is the emission
of multiple photons while quantum effects in the emission
is important, i.e., x is not too small [31]. When & > 1, the
calculation of the quantum radiation reaction process is sim-
plified as one can assume that the multiple emissions mainly
stem from a sequence of localized single-photon events and
use the LCFA to calculate the corresponding single-photon
radiation emission probability. This approach has been em-
ployed to explain recent experimental results on radiation
reaction [29,32,33]. When £ is on the order of unity, the above
approach is no longer applicable, and a more general theory of
radiation reaction is required. In the experiment reported here,
we have that £ < 2.9 and x < 0.042, with the inequalities be-
ing due to different initial conditions of the positron yielding
different values of the parameters. While the value of x is
smaller than unity, it is large enough that quantum effects are
important in the experiment. This important point is illustrated
in Fig. 2 by a direct comparison of classical and quantum
spectra of radiation emission (average energy radiated per unit
of photon energy and unit length) for a thin crystal, such that
radiation reaction effects, i.e., multiple photon emission, can
be neglected.

Since quantum effects are important, we compare the ex-
perimental data with three theoretical quantum models. In the
first and most general model, called quantum stochastic model
(QSM), the multiple-photon emission is treated as a cascade
of sequential single-photon emissions. Each single-photon
emission event is implemented via a Monte Carlo approach
based on probabilities which are summed over the final spin
and photon polarization, and averaged over the initial spin.
The important feature of this model is the use of the semiclas-
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FIG. 2. Theoretical single-photon power spectra for a positron
beam of 50 GeV energy crossing a crystal of 0.1 mm thickness,
which is the energy emitted per unit photon energy and per unit
length of the crystal. For the incoming positron angular distribution,
we have chosen 6y = 7 urad and oy = 85 purad. The green, dotted
curve corresponds to the classical emission spectrum; the blue,
continuous curve corresponds to the quantum emission spectrum via
the semiclassical method; and the yellow, dashed curve corresponds
to the quantum emission spectrum within the LCFA. See also Fig. 1
in Ref. [22].

sical method of Baier and Katkov to calculate the differential
single-photon emission rate dW/dw [3,15,34-37] integrated
over a finite section of the positron trajectory corresponding
to a finite time interval T'. This approach is then able to handle
quantum radiation reaction beyond the LCFA for planar chan-
neling and takes advantage of the regular, oscillatory motion
of positrons inside the crystal field. In fact, the value of T
has to be large enough such that the differential rate dW/dw
has converged, i.e., it no longer changes significantly when
T is further increased. This requires a value of T on the order
of several photon formation lengths [, = 2)/2(1 —w/e)/w[3]
or several wavelengths of the particle motion A, whichever is
larger, where y = ¢/m is the Lorentz factor of the positron at
the moment of emission. We refer to the Appendix for more
details on this scheme.

The second model is the LCFA, which is the usual ap-
proach to quantum radiation reaction, where multiple-photon
emissions are simulated via independent and random emission
events, with the emission probability being used within the
LCFA [29]. Finally, the third model is the “no RR,” where
radiation reaction is ignored, which is the same as the first
model, except that the momentum of the emitted photon is
not subtracted from the radiating positron. The difference
between the first and the third models, therefore, shows the
size of radiation-reaction effects. In Ref. [29], we described
how to use the constant field approximation in the case of
channeling radiation and therefore we refer to this paper for
additional details. The only difference in the LCFA model as
compared to that employed in Ref. [29] is that here we also
add the incoherent BH bremsstrahlung with a Monte Carlo
approach. The reason is that this process is more important
here than in Ref. [29].

The process of multiple elastic scattering of the positron
with the nuclei as the positron propagates through the crystal

033014-3



T. N. WISTISEN et al.

PHYSICAL REVIEW RESEARCH 1, 033014 (2019)

0.1 0.14
. (a) - (b)
S 0.075 1. T Aligned exp g 0.105 - T Aligned exp
— III —— Aligned QSM sim — —— Aligned QSM sim
- s B P Aligned no RR sim - f;x ---------- Aligned no RR sim
'%1 0-05 Aligned LCFA sim | | "%1 0.07 N Aligned LCFA sim | |
<) 1 Amorphous exp = 1 Amorphous exp
oy 0.025 — — = Amorphous sim wy 0.035 — — — Amorphous sim
& & :
0= : ! <= s e =R == S
0 10 20 30 40 50 0 10 20 30 40 50
w[GeV] w[GeV]
0.08 0.08
— (©) — (d)
g 0.06 | 1 Aligned exp g 0.06 1, " 1 Aligned exp
> —— Aligned QSM sim > e —— Aligned QSM sim
? 004l FEN: | Al%gned no RR b:iIIl | ? 0.04 N Al%gned no RR b:iIIl |
“g =\ - Aligned LCFA sim "% Aligned LCFA sim
3 = T Amorphous exp E T Amorphous exp
wy 0.02 ¢ R — — = Amorphous sim wy 0.02 ¢ — — = Amorphous sim
By L B oy ]
e . e i o s
0 I . 0 ! . . (s .
0 10 20 30 40 50 0 10 20 30 40 50
w[GeV] w[GeV]
0.1
_ ©
2 0.075] T Aligned exp
> —— Aligned QSM sim
005 F B | Al}gned no RR sim| |
= . Aligned LCFA sim
3 T\,
3 TN T Amorphous exp
w 0.025 |- IIIIIL — — — Amorphous sim
= 0 ;JIIEHEI—-};I*&I .‘_g
0 10 20 30 40 50
w[GeV]

FIG. 3. Experimental data compared with the three different models described in the text in the “aligned” case. The data with the crystal
turned into the “amorphous” orientation is compared with the simulation of the BH bremsstrahlung spectrum. See Table I for the parameters

corresponding to each subplot.

plays an important role as this on average increases the other-
wise conserved energy &, = pfc(t)/Zeo + U (x(t)) associated
with the motion along the x direction. Since the radiation
emission spectrum depends on this effect, we have imple-
mented it in our numerical codes as described in Ref. [38].
The positron velocity at each time step, as provided by the
solver of the trajectory according to the Lorentz force, is
additionally changed by an amount which is random and
normal distributed, with a standard deviation depending on the
local density of nuclei and electrons. In Ref. [39], a method
similar to what we have described here was put forward.
However, the method was compared to experimental results
with & > 1, where the LCFA was a good approximation.
Moreover, an important difference between the two methods
is that in Ref. [39] the trajectory is divided into sections with
length of the order of the period of motion which in general
does not lead to convergence of the differential rate (this
is, however, acceptable at £ > 1, for which it was applied,
because in this case the formation length is generally shorter
than the oscillation period).

IV. DISCUSSION OF RESULTS

In Fig. 3, we show all the experimental data correspond-
ing to five different settings of crystal thickness and beam

distributions; see Table I. In all figures, we also report
the simulation corresponding to the amorphous orientation
and we always find a very good agreement with the BH
bremsstrahlung, which is a good validation of the simulation
of the experimental setup. Additionally, Fig. 3 shows that
the three models give three distinct curves, which means
that we are able to distinguish between the two models of
radiation reaction (within and beyond the LCFA) as well as
to establish that radiation reaction is present, as otherwise
the “no-RR” curve would coincide with the QSM curve. The
no-RR curve is naturally higher than the QSM curve because
at given conditions the radiation power of a charge increases
for higher charge energies, and the inclusion of radiation
reaction lowers the energy of the positron as it propagates
through the crystal. One may note that the relative height of
the LCFA curve in the theory plots from Fig. 2, compared
to the other models, is larger than the corresponding curves
seen when comparing with the experimental data in Fig. 3.
This is because the simulation of the experimental setup takes
into account that the latter has a lower detection efficiency
for low photon energies. The primary reason for this is that
the pairs produced by a low-energy photon will scatter so
much in the converter foil that one of or both the produced
particles have an angle too large to hit within the area of the
MIMOSA detector. In Fig. 3, it is, however, clearly seen that
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the LCFA is not applicable in the parameter regime under
investigation. Indeed, the LCFA approximation neglects inter-
ferences between the contributions to the radiation emission
amplitude between different parts of the trajectory. Instead,
the stochastic approach presented here takes these effects into
account by performing the integration over several photon
formation lengths and particle oscillations along the positron
trajectory. Figure 3 indeed shows that the QSM model is
overall in good agreement with the experimental data.

V. CONCLUSION

In conclusion, we have presented experimental results in a
regime of quantum radiation emission where available theo-
retical models based on the local constant field approximation
are inadequate. By putting forward another approach to the
quantum radiation reaction, which takes into account effects
beyond the local constant field approximation, we have ob-
tained results in convincing agreement with the experimental
data.
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APPENDIX

If the Lorentz-force motion of the particle has a velocity
that is approximately transversely periodic, one can write the
differential emission rate per photon solid angle €2 and energy
w by a positron as [3,35,37]

d*w 11 e [e?+¢? L+ w*m? U
= lim ———| ———— ,
dodQ ~ T-0oT w42\ 262 1 " 2g4 T
(AD)
where ¢ is the initial positron energy, ¢’ = ¢ — w, and
2 px [(n—v)xd]
Iy = / ¢ ) 5 ]e’kxdt, (A2)
—T/2 (1 —n- ‘U)
7 p.y "y
Jr = / ————"d, (A3)
-T/2 (1 —n- ‘D)

with k'#= (g/e")k*, k"= (w, k) = w(1, sin 6 cos ¢, sin 6 sin @,
cosf), n = k/w, and with v(t) and v(¢) being the positron
velocity and the acceleration at time ¢ as obtained by solving
the Lorentz-force equation of motion. Usually the formulas

are given in terms of emission probability, and the ratio of the
probability with the integration length T converges, yielding
a rate, because of the mentioned periodicity condition.
This condition is valid for both the transversely bound and
unbound motion, i.e., & < Uy and &, > Uy (assuming the
minimum of U (x) is 0).

The emission rate depends on the classical trajectory of
the positron, which can be characterized by the momentum
p(t) = ev(t) and the conserved particle energy

& =+/p*@1) +m? 4+ U(x(1)).

Since in the case of channeling radiation and for our choice of
the coordinates, we have that p? + p% +m? > p? (note that
py and p, are constants of motion), and

(A4)

e R ey, + &y, (A5)

where both &,. = v'p? + p} + m? and then &, = p3(1)/2e,. +
U (x(t)) are conserved. As mentioned, we choose the z di-
rection as the direction of the largest component of the mo-
mentum and therefore p? > p} +m* and &, ~ p. + (p; +

m?)/2p.. When a photon is emitted, energy conservation
implies

Eyef T Exf+ @ =8y i+ &xis (A6)

where the labels i and f denote initial and final quantities.
By enforcing momentum conservation along the y and the z
directions, we can rewrite this equation as

Pat (kP w62
2¢g; 2(g; — w) 2

where we have used the fact that, since the photon is essen-
tially emitted along the instantaneous positron velocity in the
ultrarelativistic regime, then o ~ k, + (k? + kf,)/Zw ~ k, +
(wh)?/2w. This equation indicates how to change the positron
velocity accordingly after the emission of a photon takes
place. This is the same formula as obtained in the quantum
treatment found in Ref. [11], except that there the initial
and final transverse mechanical energy &, is quantized, and
this decides the emission angle for a fixed value of w. Here,
conversely, the semiclassical formulas give us the emission
angle for a given w, and we can then obtain the change in the
transverse mechanical energy in a semiclassical picture.

We therefore make the following Monte Carlo implemen-
tation for the theoretical description of the single-photon
emission process: A positron starts out with initial energy
€o and a given initial condition (r (0), v, (0)), where the L
symbol denotes the x and y coordinates. Since the experiment
was on planar channeling, the initial position r, (0) has the
form (xp, 0,0), where xy is a random variable uniformly
distributed between 0 and the interplanar distance d,,, whereas
the initial velocity v, (0) is distributed according to the exper-
imentally measured angular distribution of the particle beam
(see Table I). By choosing a time step At, the positron
is advanced by using the Lorentz force together with the
possibility that multiple scattering occurs. The size of the time
step has to be such that W At is much less than unity, with W
being the total emission rate at t = At. Moreover, At has to
correspond to a length much smaller than the dechanneling
length, which is the length over which the multiple scattering

Ex,f = Ex,i +
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would, on average, have increased the transverse positron
energy by the total potential depth Uy [U, is equal to 22.7 eV
in the case of the silicon (110) plane], implying in turn that the
particle would no longer be bound. The rate W is evaluated by
integrating the differential rate d>W/dwd 2 in Eq. (A1), with
a solution of the Lorentz-force equation with initial conditions
given by the positron position and velocity at t = Ar and for
a duration T from t = Ar — T /2 tot = At + T /2. The time
interval T is chosen such that the limit convergence of the
integral in Eq. (A1) is achieved. As mentioned, this is possible
by choosing T >> max(ly, A). Indeed, the formation length of
a photon with energy w is given by I; = 2y*(1 — w/¢)/w [3],
with y = ¢/m being the Lorentz factor of the positron at
the moment of emission. For w ~ xe, it is [y ~ 2y Ac/x,
where Ac = 1/m =3.9 x 107! cm is the Compton wave-
length, and, for the parameters of the experiment, /; ~ 1 um.
The time interval T has been chosen to be multiple times
the formation length (divided by the speed of light), or the
wavelength of the motion, whichever is larger, by checking
numerically that the mentioned convergence was achieved.
Moreover, as the formation length is typically o ~ 1/137
times smaller than the radiation length, for which the emission
probability is unity, At can be chosen to be larger than T
(notice that under the assumption of being in the channeling
regime, the dechanneling length is much longer than the
formation length too). Now, since At is such that WAr « 1,
a random number is sampled to decide whether the radiation
emission takes place. If radiation emission takes place, the
value of w is decided based on the calculated distribution
dW/dw and the inverse transform sampling method. Once
o has been picked, the angle of emission is picked using
the distribution d’W/dwd$2 and a Monte Carlo acceptance-
rejection method. The emission is assumed to occur at t = At
and the new value of the positron energy is &y — w, whereas
the new value of the transverse mechanical energy has to be
consistent with Eq. (A7). This process is then repeated for all
time steps At until the end of the crystal is reached.

We point out that, in principle, multiple solutions for the
new initial conditions in x and v, are possible if the photon
emission occurs. However, we have made sure numerically
that, provided that the transverse mechanical energy is given

0.2

o
-
[6)]

d€ /dwdz [1/mm)]
o

0.05

0 5 10 15 20 25
w|[GeV]

FIG. 4. Two photon spectra for the parameters L = 6.2 mm and
oy = 85 urad. The blue continuous curve (red dashed curve) corre-
sponds to selecting the initial position of the positron along the x
direction to be centered between two planes [half the maximal value
allowed from Eq. (A7)]. For each value, the initial velocity along the
x direction has been chosen in such a way that the initial transverse
mechanical energy of the positron is the same (both possible values
of v, differing only by the sign provide indistinguishable results).

by Eq. (A7), all different initial conditions provide essentially
the same photon spectra. The physical reason of this is that
the emission probability in a crystal for planar channeling
depends on the transverse mechanical energy (as well as on
the total energy) of the emitting particle but not on the precise
initial values of x and v,. For the sake of completeness,
we show in Fig. 4 the results of two calculations for the
parameters L = 6.2 mm and oy = 85 urad. The two curves
correspond to choosing the initial x position of the positron
at each emission to be either centered between two planes
(blue continuous curve) or to be half the maximal value
allowed from Eq. (A7) (red dashed curve). Moreover, we
have ensured that also for the initial positron x coordinate,
being the maximum value allowed by Eq. (A7), the results are
unchanged. This conclusion was also verified in all cases for
both possible values of the initial velocity vy, differing only
by the sign.
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