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Biskyrmion lattices in centrosymmetric magnetic films
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A theoretical framework is developed that permits construction of biskyrmion lattices observed in nonchiral
magnetic films. Skyrmion and antiskyrmion configurations are discussed. We study films of finite thickness
containing up to 1000 × 1000 × 100 spins. Hexatic biskyrmion lattices in a pure two-dimensional (2D) exchange
model are naturally described by the Weierstrass ℘ and ζ elliptic functions. Starting with such a lattice as an
initial state, we investigate how it evolves toward a minimum-energy state in a zero magnetic field in the presence
of perpendicular magnetic anisotropy (PMA) and dipole-dipole interaction. Metastable biskyrmion lattices exist
at low PMA. At higher PMA, we observe stable triangular lattices of biskyrmion bubbles containing Bloch lines,
whose energies are lower than the energy of the uniformly magnetized state.
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I. INTRODUCTION

Skyrmions were initially introduced in nuclear physics as
solutions of the nonlinear σ model that can describe atomic
nuclei [1–3]. They possess topological charge: Q = ±1,±2,
etc. Q = 1 would correspond to a single nucleon, Q = 2 could
describe a deuteron [4,5], Q = 4 would provide a model of an
α particle, etc.

In magnetic films, skyrmions are defects of the ferromag-
netic order. Their topological charge Q arises from differ-
ent homotopy classes of the mapping of a three-component
fixed-length magnetization field onto the xy plane. Skyrmions
represent a very active field of research due to their nanoscale
size and potential for a dense topologically protected data
storage and information processing [6–11]. Much bigger
micron-size magnetic bubbles intensively studied in 1970s
[12,13] possessed similar topological properties. They were
cylindrical domains surrounded by narrow domain walls. On
the contrary, a typical skyrmion would be small compared
to the domain wall thickness, making it conceptually similar
to the topological objects studied in nuclear physics [14,15].

Research on magnetic skyrmions focuses on their stability
and dynamics. Magnetic bubble lattices are in effect domain
structures [12,13,16,17] stabilized by the perpendicular mag-
netic anisotropy (PMA), dipole-dipole interaction (DDI), and
the external magnetic field. On the contrary, in the absence
of other interactions, small skyrmions collapse [18] due to
violation of the scale invariance of the two-dimensional (2D)
exchange model by the atomic lattice. They can be stabilized
by the Dzyaloshinskii-Moriya interaction that is present in
materials lacking inversion symmetry (DMI) [9,19–21] or by
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quenched randomness [22,23] that has an effect similar to that
of the DMI.

While Q = 1 skyrmions and lattices of such skyrmions
have been intensively studied, observation of Q = 2
biskyrmions (see Fig. 1), and biskyrmion lattices has been
rare. Unlike skyrmions, that have been mostly observed in
chiral films, stable biskyrmions lattices have been initially
reported down to zero field in two nonchiral films of suf-
ficient thickness: the La2−2xSr1+2xMn2O7 manganite [24]
and the (Mn1−xNix )65Ga35 half-Heusler alloy [25]. Recent
works [26–28] provided further experimental and numerical
evidence of stable biskyrmions in centrosymmetric magnetic
materials.

Theoretical works on biskyrmions have been scarce. It
has been shown [29] that topological defects with Q > 1
appear naturally in centrosymmetric films due to the pres-
ence of Bloch lines in labyrinth domains on increasing mag-
netic field. Numerical investigation of biskyrmions, including
the current-induced dynamics, was performed in Ref. [30]
within a 2D frustrated micromagnetic model. Biskyrmions
arising from frustrated Heisenberg exchange have also been
reported in the studies of triangular spin lattices [31] and in a
model based upon Ginzburg-Landau theory [32]. Metastable
biskyrmion configurations have been observed in Landau-
Lifshitz dynamics of a frustrated bilayer film [33]. However,
the study of biskyrmion lattices has been absent so far.

In real systems, the magnetic biskyrmions are more com-
plicated than generic Q = 2 solutions of the Belavin-Polyakov
(BP) 2D exchange model. They are formed by a number
of competing interactions on top of the exchange, such as
PMA and DDI. The latter rules out any meaningful analytical
solution. In this paper, we adopt the following approach. First,
we prepare a biskyrmion lattice that is a solution of the pure
exchange model. Fortunately, it can be described in the com-
plex plane, z = x + iy, by standard elliptic Weierstrass func-
tions that have been previously used to build multiskyrmion
configurations in nuclear physics [3]. We then turn on the
PMA and DDI and compute numerically evolution of the
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FIG. 1. Computer-generated spin field in a Bloch-type
biskirmion in a ferromagnetic film.

system toward the spin configuration that corresponds to the
energy minimum.

Our calculations are performed on 3D lattices containing
1000 × 1000 × 100 spins that describe magnetic films of
finite thickness. In accordance with real experiments, we find
that the lowest energy achieved in our numerical experiments
corresponds to a triangular lattice of biskyrmion bubbles
containing Bloch lines.

The paper is organized as follows. Analytical expressions
for individual biskyrmion and biskyrmion lattices within the
BP model are given in Sec. II. Biskyrmion lattices in a 2D
magnetic film with PMA and DDI are studied numerically
within a discrete spin model in Sec. III. Our results are
summarized in Sec. IV.

II. BISKYRMION LATTICES IN A 2D EXCHANGE MODEL

The 2D exchange model is described by the energy

Hex = J

2

∫
dxdy

(
∂s
∂x

∂s
∂x

+ ∂s
∂y

∂s
∂y

)
, (1)

where s is a three-component fixed-length spin field, s2 = 1,
J is the exchange constant, and summation over spin compo-
nents α = x, y, z is performed. We choose uniform magneti-
zation, s = (0, 0,−1), in the negative z direction at infinity.
Spin-field configurations belong to homotopy classes charac-
terized by the topological charge

Q =
∫

dxdy

4π
s · ∂s

∂x
× ∂s

∂y
(2)

that takes quantized values Q = 0,±1,±2, . . .. The value of
Q shows how many times the spin vector circumscribes the
full body angle 4π as the position vector covers the whole xy
plane.

In each homotopy class, the energy is minimized by s(x, y)
satisfying

s × ∇2s = 0, (3)

which means that the spins are collinear with the exchange
field. In 2D, this is equivalent to

∂s
∂x

= ±s × ∂s
∂y

,
∂s
∂y

= ∓s × ∂s
∂x

. (4)

One recovers Eq. (3) by differentiating the first of these
equations over y and the second one over x, and subtracting
one from the other. With the help of Eqs. (1) and (4), it is easy
to obtain the relation between the exchange energy and the
topological charge [14]:

E = 4πJ|Q|. (5)

Extremal spin configurations can be obtained by mapping
the problem onto the complex plane, z = x + iy. In terms of
the complex function

ω(z) = sx + isy

1 − sz
, (6)

Eqs. (4) reduce to linear equations,

∂ω

∂x
= ±i

∂ω

∂y
, (7)

that are familiar Cauchy-Riemann (CR) conditions of the ana-
lyticity of the function. The corresponding spin configuration
follow from the relations

sx + isy = 2ω

|ω|2 + 1
, sz = |ω|2 − 1

|ω|2 + 1
. (8)

The remarkable property of the model is that any analytic
function ω(z) provides a solution for the extremal spin
configuration.

In particular, the sum of poles

ω(z) =
∑

i

λieiγi

z − zi
(9)

describes a collection of antiskyrmions with spins at the poles
pointing up against the spin-down background and the param-
eters zi, λi, γi defining the position, size, and chirality angle of
the ith antiskyrmion. This function satisfies the CR condition,
Eq. (7), with the plus sign. In-plane spin components are
rotating counterclockwise as the observation point is moving
clockwise around the center (the pole) of the antiskyrmion.
Each antiskyrmion is contributing −1 to the total topological
charge Q.

The state with the skyrmions whose central spins are
pointing down against the spin-up background can be obtained
by rotating all spins of the above collection of antiskyrmions
by the angle π around the x axis. Conformal invariance of the
2D exchange model allows one to achieve the same effect by
taking the reciprocal of the ω function,

ω(z) =
(∑

i

λieiγi

z − zi

)−1

. (10)

It describes a collection of skyrmions pointing down against
the spin-up background, with each skyrmion corresponding
to a zero of ω(z). Since the rotation of all spins preserves
the homotopy class, such skyrmions have topological charge
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FIG. 2. Bloch-type skyrmion (upper pannel) and antiskyrmion
(lower panel) spin-field configurations. In-plane components of the
field rotate clockwise for the skyrmion and counterclockwise for
the antiskyrmion as one goes clockwise around the center of the
topological defect.

Q = −1, with in-plane spin components rotating clockwise
when the observation point moves clockwise around the
skyrmion’s center. This illustrates a less appreciated fact that
the sign of Q is determined by both the topology of the
solution and the boundary condition (direction of spins at
infinity). The physical distinction between magnetic skyrmion
and antiskyrmion is determined by the difference in their
spin-field configurations illustrated in Fig. 2.

The expression with a complex-conjugated argument

ω(z) =
∑

i

λieiγi

z∗ − z∗
i

, (11)

that satisfies the CR condition Eq. (7) with the minus sign,
describes a collection of skyrmions whose central spins are
pointing up against the spin-down background. Here, each
skyrmion has topological charge Q = 1.

The energy of the collection of skyrmions or collection
of antiskyrmions is entirely defined by the total topological
charge Q through Eq. (5). Q is determined by the number
of poles and is independent of zi, λi, and γi due to the
symmetry of the 2D exchange model. In contrast, any combi-
nation of skyrmions and antiskyrmions yields a nonanalytical
ω(z) that violates the CR conditions and hence does not
satisfy Eq. (3). In the physical language, this means that
such a configuration cannot be static. Skyrmions and anti-
skyrmions must annihilate while conserving the total topo-
logical charge Q, with the excess energy going into spin
waves.

For an arbitrary Q, a skyrmion solution centered at z = z0

is given by

ω(z) =
(

λ

z∗ − z∗
0

)Q

eiγ . (12)

The antiskyrmion solution is obtained by replacing z∗ and z∗
0

with z and z0. A biskyrmion with Q = 2 and separation d be-
tween two skyrmions of chirality γ1 and γ2 in the biskyrmion,
centered at z = 0, can be written as

ω(z) = λeiγ1

z∗ + d/2
+ λeiγ2

z∗ − d/2
. (13)

A generic Bloch-type biskyrmion with opposite chiralities
γ1 = −γ2 = π/2 is shown in Fig. 1.

Regular lattices of topological defects (skyrmions or anti-
skyrmions) can be constructed using functions that are double
periodic in the complex plane z = x + iy. The elliptic Weier-
strass ℘ function provides such a solution for the periodic
lattice of Q = 2 skyrmions,

℘ (z∗) = 1

z∗2
+

∑
m,n �=0

[
1

(z∗ + 2mp1 + 2np2)2

− 1

(2mp1 + 2np2)2

]
. (14)

Here m, n are integers, and p1,2 are half-periods of the elliptic
function satisfying Im(p2/p1) �= 0. Consequently ℘ (z∗) =
℘ (z∗ + 2mp1) = ℘ (z∗ + 2np2), so that Q = 2 skyrmions are
found at z∗ = 2mp1 + 2np2.

Following experimental observations, we will be interested
in the triangular biskyrmion lattices. They correspond to the
choice

p1 = a′

2
, p2 = −1 + i

√
3

4
a′, (15)

where a′ is the skyrmion lattice spacing. The choice for the
ω function is ω = λ2e−iγ ℘ (z∗), where λ and γ represent the
size and chirality of skyrmions in the lattice. Two such lattices
with γ = 0 and γ = π/2 are shown in Fig. 3.

So far the lattices we have built had zero separation
d between the two skyrmions in a Q = 2 topological de-
fect; see Eq. (13). To build biskyrmion lattices with a fi-
nite d , one can use the Weierstrass ζ function defined by
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FIG. 3. Triangular Q = 2 skyrmion lattices generated with the
help of the Weierstrass ℘ function.

dζ (z∗)/dz∗ = − ℘ (z∗). Its explicit form is given by

ζ (z∗) = 1

z∗ +
∑

m,n �=0

[
1

z∗ − 2np1 − 2mp2

+ 1

2np1 + 2mp2
+ z∗

(2np1 + 2mp2)2

]
. (16)

This elliptic function is only quasiperiodic, satisfying ζ (z∗ +
2mp1 + 2np2) = ζ (z∗) + 2mζ (p1) + 2nζ (p2). However, the
function

ω(z∗) = λ2

d
eiγ

[
ζ

(
z∗ + d

2
eiη

)
− ζ

(
z∗ − d

2
eiη

)]
(17)

is double periodic. It describes the lattice of biskyrmions
of opposite chiralities that have a finite separation d be-
tween skyrmions in a biskyrmion. The value of η selects
the orientation of the biskyrmion, with η = 0 and η = π/2
corresponding to the horizontal and vertical orientation re-
spectively. Lattices with vertical orientation of Néel and Bloch
biskyrmions are shown in Fig. 4.

It is interesting to notice that standard elliptic functions
are well suited for the description of Q = 2 skyrmion and
biskyrmion lattices but not of Q = 1 skyrmion lattices because
elliptic functions with first-order poles on a periodic lattice do
not exist [34]. By considering derivatives of ℘ functions, one
can, in principle, construct lattices of skyrmions with Q > 2.
We are not considering them here because they have not been
observed in experiment and because there is no reason to
expect that such lattices would have energies lower than the
energy of a biskyrmion lattice.

III. BISKYRMION LATTICES IN A 2D MAGNETIC FILM

In the numerical work, we study a lattice model of a
ferromagnetic film of finite thickness with the energy given

FIG. 4. Triangular biskyrmion lattices generated with the help
of Weierstrass ζ functions. Upper panel: Néel biskyrmions, γ = 0.
Lower panel: Bloch biskyrmions, γ = π/2.

by the sum over lattice sites i, j

H = −1

2

∑
i j

Ji jsi · s j − H
∑

i

siz − D

2

∑
i

s2
iz

− ED

2

∑
i j

�i j,αβsiαs jβ. (18)

Here, the exchange coupling is J for the nearest neighbors on
a simple cubic lattice and zero otherwise, D is the easy-axis
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PMA constant, and H ≡ gμBSB, with S being the value of the
atomic spin and B being the induction of the applied magnetic
field. In the DDI part of the energy,

�i j,αβ ≡ a3r−5
i j

(
3ri j,αri j,β − δαβr2

i j

)
, (19)

where ri j ≡ ri − r j is the displacement vector between the
lattice sites and α, β = x, y, z denote Cartesian components
in a three-dimensional (3D) coordinate space. The parameter
ED = μ0M2

0 a3/(4π ) defines the strength of the DDI, with
M0 = gμBS/a3 being the magnetization for our lattice model
and μ0 being the magnetic permeability of vacuum.

The ratio of the PMI and DDI is given by the dimension-
less parameter β ≡ D/(4πED). For β > 1, the energy of the
uniform state with spins directed along the z axis is lower than
that of the state with spins lying in the film’s plane. For β < 1,
the state with spins in the plane has a lower energy. The most
interesting practical case is β ∼ 1 realized in many materials
due to considerable compensation of the effects of the PMA
and DDI.

An important parameter controlling the DDI is the film
thickness represented by Nz in the units of the atomic spacing
a. For thin films that are studied here, the magnetization inside
the film is nearly constant along the direction perpendicular
to the film. Thus, one can make the problem effectively
two-dimensional by introducing the effective DDI between
the columns of parallel spins, considered as effective spins
of the 2D model. This greatly speeds up the computation.
To this end, for the simple cubic lattice, one can write the
dipolar coupling, Eq. (19), as Φi j,αβ = φαβ (nx, ny, nz ), where
nx ≡ ix − jx, etc., are the distances on the lattice and

φαβ (nx, ny, nz ) = 3nαnβ − δαβ

(
n2

x + n2
y + n2

z

)
(
n2

x + n2
y + n2

z

)5/2 . (20)

The effective DDI is defined by

φ̄αβ (nx, ny) = 1

Nz

Nz∑
iz, jz=1

φαβ (nx, ny, iz − jz ). (21)

Using the symmetry, one can express this result in the form
with only one summation,

φ̄αβ (nx, ny) = φαβ (nx, ny, 0)

+ 2

Nz

Nz−1∑
nz=1

(Nz − nz )φαβ (nx, ny, nz ), (22)

that is used in the computations. That effective DDI (that can
be precomputed) has different forms in different ranges of the
distance r. At r � aNz, it scales as the interaction of magnetic
dipoles 1/r3, while at r � aNz it goes as 1/r that corresponds
to the interaction of magnetic charges at the surface of the
film.

Starting with a biskyrmion lattice of the previous section
as an initial condition, we compute its evolution toward
the minimum-energy configuration in a system containing
up to 1000 × 1000 × 100 spins. Our numerical method [35]
combines sequential rotations of spins si towards the direc-
tion of the local effective field, Heff,i = −∂H/∂si, with the
probability α, and the energy-conserving spin flips (so-called
over-relaxation), si → 2(si · Heff,i )Heff,i/H2

eff,i − si, with the

probability 1 − α. The parameter α plays the role of the ef-
fective relaxation constant. We mainly use the value α = 0.03
that provides the overall fastest convergence.

The dipolar part of the effective field takes the longest
time to compute. The most efficient method uses updates of
the dipolar field after all spins are updated rather than after
updating each individual spin. Computation of the dipolar
field uses the fast Fourier transform (FFT) algorithm that
yields the dipolar fields in the whole sample as one program
step. The total topological charge Q of the lattice is computed
numerically using the lattice-discretized version of Eq. (2)
in which first derivatives are approximated by the four-point
formula.

An alternative way to minimize the energy can be a numer-
ical solution of the damped Landau-Lifshitz equation. While
doing this, one can either keep or discard the precession terms,
with the latter method being a variant of the gradient flow
method as the spins in each step would be rotating strictly
in the directions that maximize the decrease of energy. This
method is parallel rather than sequential because all spins are
updated in one integration step. The computational method
used by us (field alignment with over-relaxation) proves to be
faster.

Computations were performed with Wolfram Mathematica
using compilation. Most of the numerical work has been done
on the 20-core Dell Precision T7610 Workstation. The FFT
for computing the DDI was performed via Mathematica’s
function ListConvolve that implicitly uses many processor
cores. For this reason, no explicit parallelization was done in
our program.

For each skyrmion state, we compute the topological
charge Q, the exchange energy Eex, the total energy E , and
the difference, �E , of the total energy from the energy of the
uniformly magnetized state. The difference of the exchange
energy from 4πJQ is the measure of the distortion of BP
biskyrmions, while the sign of �E is indicative of whether
the formation of the biskyrmion lattice can lower the total
energy. Our numerical results for the energies are presented
in the units of J .

Typical results of the energy minimization at H = 0 and
β = 1 for two values of PMA, starting with the same Weier-
strass biskyrmion lattice as the initial condition, are illus-
trated by Figs. 5 and 6. The final state does not depend
on the separation d in the biskyrmions but depends on the
lattice period which defines the total topological charge of the
system. The latter is approximately conserved and changes
only slightly due to the use of the open boundaries. At low
PMA, D/J = 0.001, the system relaxes to a biskyrmion lattice
shown in Fig. 5. Its energy, however, is above the energy of
the uniformly magnetized state, �E > 0, indicating that it can
only be a metastable state stabilized by the conservation of the
topological charge.

At D/J = 0.03, the initial Weierstrass biskyrmion lattice
evolves into a lattice of biskyrmion bubbles shown Fig. 6. The
energy of such a lattice is below the energy of the uniformly
magnetized state, �E < 0, indicating that it can be a stable
domain structure at H = 0. It consists of regularly spaced
magnetic bubbles with Q = 2, each having two Bloch lines.
Notice that Bloch lines in biskyrmion bubbles forming a trian-
gular lattice at H = 0 have been observed in experiment [24].
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FIG. 5. Biskyrmion lattice that evolves from the Weierstrass
lattice similar to the one shown in the lower panel of Fig. 4 under
the action of PMA and DDI at H = 0, β = 1, and D = 0.001.
The energy of this state is higher than the energy of the uniformly
magnetized state, �E = 82.4.

Even a lower energy can be achieved by increasing the
period of the lattice, which leads to bigger biskyrmion bubbles
in the final state; see Fig. 7. This finding confirms conjecture

FIG. 6. Biskyrmion bubble lattice that evolves from the Weier-
strass lattice under the action of PMA and DDI at H = 0, β = 1,
and D = 0.03. Its energy is lower than the energy of the uniformly
magnetized state, �E = −272, indicating that it can be a stable
domain structure formed by the DDI.

FIG. 7. Biskyrmion bubble lattice with lower energy, �E =
−373, that evolves from the Weierstrass lattice of longer period
under the action of PMA and DDI at H = 0, β = 1, and D = 0.03.

of Ref. [26] that the absolute minimum of the energy is likely
to correspond to the limiting case of biskyrmion bubbles of
size much greater than the domain wall thickness.

IV. DISCUSSION

We have studied the complex-plane representation of
skyrmion and antiskyrmion spin configurations. Our focus has
been on biskyrmion lattices in nonchiral magnetic films of
finite thickness. While such lattices have been observed in
experiments, their theoretical description presented a consid-
erable challenge. Our approach has been based upon obser-
vation that representation of ferromagnetically coupled spins
that uses a complex function ω(z) = (sx + isy)/(1 − sz ) of
z = x + iy, naturally provides biskyrmion lattices when ω(z)
is written in terms of elliptic functions. Starting with such
a function as an initial condition, we study evolution of the
spin configuration under the action of perpendicular magnetic
anisotropy (PMA) and dipole-dipole interaction (DDI).

Our main result is that in a certain a range of parameters,
that is relevant to experimental situations, the energy of a
triangular lattice of biskyrmion bubbles is significantly lower
than the energy of the uniformly magnetized film in a zero
magnetic field. Notice in this connection that for a large,
highly nonlinear, hysteretic magnetic system that has infinite
number of local energy minima one cannot find and compare
energies of all metastable nonuniformly magnetized states
that emerge due to the exchange interaction, PMA, and DDI
(such as various kinds of labyrinth domains, various kinds
of cylindrical domains or skyrmions, with and without Bloch
lines and Bloch points, etc.). Consequently, it is impossible
to say with the absolute certainty that a biskyrmion lattice
observed in experiments and simulations is the ground state of
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the system. Its low energy computed in our model, however,
makes it plausible that it represents a kind of the energy-
minimizing domain structure that has not been observed until
recently.

When biskyrmion lattices correspond to the energy min-
imum, they are likely to consist of bubbles of size much
greater than the domain wall thickness. An additional con-
nection between theory and observation is provided by the
fact that biskyrmions arranged in a triangular lattice possess
Bloch lines in both experiments and computations. Further

experimental studies of magnetic phases of nonchiral films
along the hysteresis loop will shed more light on the place
of biskyrmion lattices in the phase diagram.
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