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Transition from Dirac points to exceptional points in anisotropic waveguides
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We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and
study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where
the matrix describing the eigenvalue problem for bound states splits into two blocks, sorting the eigenmodes
either by polarization or by inner mode symmetry. Introducing a non-Hermitian channel via a suitable leakage
mechanism causes the Dirac points to transform into exceptional points connected by a Fermi arc. The
exceptional points arise as improper hybrid leaky states and, importantly, are found to occur always out of
the anisotropy symmetry planes.
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Many physical phenomena that initially arose in quantum
and solid-state physics and where rare bound states and
special dispersion properties play a central role have found
important and fertile implementations in optical systems. Chi-
ral edge states [1,2], Weyl points [3], topological insulators
[4–9], and bound states in the continuum [10–12], to cite
only a few, are examples of effects that have opened rich
lines of research that are of continuously growing interest
for both the fundamental understanding of wave phenomena
and its application to photonic devices. Occurrence of Dirac
points (DPs) and exceptional points (EPs) are another salient
example.

By and large, Dirac points are singularities in the band dia-
grams of Hermitian systems that are at the core of the unique
properties of the corresponding structures and materials, as
for example in the electronic properties of graphene [13].
A DP occurs when two bands cross each other locally and
exhibit a linear dispersion in any direction in the momentum
space [1]. As the eigenvalues of Hermitian systems are real,
two orthogonal eigenstates coexist at the DP with the same
eigenvalue. The counterpart in non-Hermitian systems are
exceptional points [14], where the complex eigenvalues of two
different bands are identical, with equal real and imaginary
parts. In EPs, the eigenvectors and therefore the bands are also
degenerate. Thus, at an EP the matrix describing the system
in standard formalism as an eigenvalue problem cannot be
diagonalized. Such properties result in unique dynamics near
EPs [15], which result in, e.g., asymmetric mode switching
[16,17], appearance of polarization topological half-charges
[18], chiral modes and directional lasing [19], or ultrasensitive
measurements [20,21].
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Adding a non-Hermitian physical effect transforms DPs
into EPs [22]. Studying the transition between them requires a
system where DPs exist and EPs can be generated by opening
a nonconservative channel. In this report we address the exis-
tence conditions of DPs in waveguiding structures containing
uniaxial anisotropic materials and study their transformation
into EPs when a tunable leakage mechanism opens a radiation
channel. Encircling the EPs can be conceptually done by
varying the optical axis orientation relative to the propagation
direction of the material forming the waveguide core.

The existence of DPs in waveguiding structures can be
elucidated by analyzing the matrix describing the eigenvalue
problem for bound states. Waveguides with isotropic materials
are described by two independent matrices for transverse
electric (TE) and transverse magnetic (TM) eigenmodes. This
results in lines in the dispersion diagram that do not cross each
other, therefore DPs do not exist. In contrast, general struc-
tures made of anisotropic materials are described by a matrix
that cannot be separated in smaller parts, resulting in the
intrinsic hybrid polarization of the eigenmodes. Solving the
eigenvalue problem as a function of the propagation direction
results into eigenmodes that exist in surfaces (bands) in the
three-dimensional dispersion diagram [Fig. 2(a)]. However,
under suitable material or geometrical symmetric conditions,
waveguides made of anisotropic media also allow splitting the
matrix into two blocks after suitable algebraic manipulations.
Under such conditions, the resulting matrix provides also sets
of eigenmodes described by two different eigenequations. At
such propagation directions and at a given wavelength the
corresponding bands can cross each other and exhibit linear
dispersion, therefore resulting in DPs.

We found that DPs exist for different planar waveguide
parameters and anisotropy configurations. Their inner nature
is best exposed by analyzing a symmetric structure with a film
made of a uniaxial crystal surrounded by isotropic materials,
as in Fig. 1 with nb = ns = nc. Wave propagation is set along
the y direction and the optical axis of the film is oriented
at a direction given by the polar θ and azimuth φ angles.
Calculations were performed using the formalism described in
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FIG. 1. Schematic minimal waveguiding structure comprising an
isotropic cladding and a substrate with refractive indices nc and
ns, respectively, and a guiding film made of a uniaxial anisotropic
medium with thickness d and ordinary and extraordinary refractive
indices no and ne. In the second half of the structure, a tunable
refractive index nb, which may be induced externally, e.g., by a
thermo-optic effect, is located at a distance db from the guiding film.
The grey plane separates the regions of Hermitian and non-Hermitian
behavior.

Ref. [23] and elaborated in detail in the Appendix for the case
addressed here. In Fig. 2 we plot the dispersion diagram for
a structure with a film with positive birefringence and optical
axis orientation pointing out of plane at θ = 80◦, plotted as
the variation of the effective index N = k/k0 (where k is the
wave momentum along the propagation direction and k0 the
vacuum wave number) versus the normalized film thickness
d/λ and the propagation direction, which by simple rotation
is given by the value of the angle φ. Two existing DPs are
shown as red dots in Fig. 2(a): the first one at φ = 0◦ occurs
between the first two bands when the eigenmodes are TE
and TM polarized. Figure 2(b) shows the DPs as crossings
at φ = 0 and anticrossings for φ �= 0. In an important phys-
ical insight, the second DP [φ = 90◦, Fig. 2(a)] arises as a
crossing between the second and third bands, at a propagation
direction where the system matrix splits into two blocks, now
describing even and odd eigenmodes instead. Importantly,
note that in this last case the modes at the DP are fully
hybrid and that their existence is a phenomenon that occurs
owing to the perfect symmetry of the structure; in asymmetric
geometries, such DPs cease to exist. We found that other DPs
(not shown) appear between alternating bands when d/λ is
increased further. We also found that when the guiding film
features a negative birefringence, the first DP appears for even
and odd modes between the two first bands at φ = 90◦, while
the DP that exists at φ = 0◦ between TE and TM modes in this
case arises between the second and third bands. In all cases,
anisotropy is necessary for the DPs to occur.

Mode crossings in waveguides made of anisotropic media
are known to exist, see e.g., [24–27]. However, it must be
properly appreciated that to date none of such crossings have
been identified as a DP and, more importantly, most crossings
are not DPs, actually. For example, the matrix describing the
waveguide studied in Fig. 2 splits into two blocks for two other
configurations: when the optical axis is oriented orthogonal
(θ = 0◦) and parallel (θ = 90◦) to the structure interface,
resulting in pure TE or TM and even or odd eigenmodes,

FIG. 2. (a) Dispersion bands of the eigenmode effective index N
depicted in green and blue colors, as a function of the normalized
film thickness d/λ and propagation direction φ. The arrow labeled
OA in the inset indicates the optical axis orientation with polar θ and
azimuth φ angles in spherical coordinates. The waveguide param-
eters are nc = ns = nb = 1.4, ne = 1.6, no = 1.5, and θ = 80◦. The
dispersion diagram can be transformed into energy E vs momentum
ky-kz diagrams by setting E = h̄ω ∝ d/λ, ky = Nk0 cos φ, and kz =
Nk0 sin φ. Two DPs are indicated as red dots at the crossings between
the fundamental eigenmodes existing at φ = 0◦, and between the first
even and second odd eigenmodes existing at φ = 90◦. The first DPs
are TE or TM polarized states, while the second DPs are fully hybrid
states. The zooms blow up the areas near (b) φ = 0◦ and (c) φ = 90◦.
DPs occur at the symmetry planes φ = 0◦ in (b) and φ = 90◦ in
(c) while any other propagation direction shows anticrossings. The
structure and the dispersion diagram are symmetric with respect to
the θ = 90◦, φ = 0◦, and φ = 90◦ planes.

respectively [28]. However, none of such cases correspond to
a DP, because the splitting of the matrix, and therefore the
surface crossing, appears for any propagation direction within
the waveguide plane and not at specific directions, thus failing
to show the linear dispersion dependence required for a DP.

Dirac points transform into EPs by introducing gain or loss
in the system [18,22,29]. Thus, we open a nonconservative
channel by placing a region with a high refractive index
close to the film, which causes energy to leak away. The
high refractive index may be provided by a suitable bulk
material or may be induced externally, e.g., by a thermo-optic
effect. The loss strength is dictated by the penetration of the
evanescent tails into the high-index material and, importantly,
also by the optical axis orientation, which affects the hybrid
composition of the eigenmodes in terms of ordinary and ex-
traordinary waves and thus the fraction of total energy carried
by the component that becomes leaky. In the analysis, we
set the refractive indices, the wavelength, and the thickness
of the waveguide, and vary the optical axis orientation.

Figure 3(a) shows the two bands existing above cutoff in
the structure corresponding to Fig. 2 for d/λ = 0.5. The bands
touch each other in a DP located at the optical axis orientation
(θ = 75.6◦, φ = 0◦), where the eigenmodes are separable by
polarization. Raising the refractive index from nb = ns to nb <

N only changes the optical axis polar orientation θ at which
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FIG. 3. (a) Dispersion for the waveguide in Fig. 2 as a function
of θ and φ with d/λ = 0.5. (b) Same as in (a) but now for a structure
with nb = 1.8 located at a distance from the film db/λ = 0.5. The
color scale in (b) is proportional to the normalized decay length.

the DP exists [Fig. 4(a)]. Yet the system remains Hermitian,
the DP is found at the symmetry plane φ = 0◦, and the
polarization remains either TE [Fig. 4(c)] or TM [Fig. 4(d)].
In contrast, when nb > N a radiation channel is opened and
the system becomes non-Hermitian. Then, the eigenmodes
become improper hybrid leaky modes with complex N , and
the DP transforms into a pair of EPs that, therefore, occur out
of the anisotropy symmetry planes.

For slightly larger values of nb, the two EPs occur closer
to each other (see the inset) and, as nb keeps increasing, the
loci at which the EPs are located depart farther from the
symmetry plane φ �= 0◦ [Fig. 4(b)]. A representative shape
of the dispersion diagram of the leaky modes for nb = 1.8,

FIG. 4. (a), (b) Angular loci of the DPs (red) and EPs (blue) as
a function of nb for db/λ = 0.5. The insets expand the transition
regions; the apparent gap in the inset of (a) is due to the finite
resolution of the calculations. Red and blue dots correspond to
Figs. 3(a) and 3(b), respectively. Eigenmode of the (c) TE and (d) TM
bound states at the DP. (e) Field components of the hybrid leaky
mode near the EP.

FIG. 5. (a) Dispersion of an asymmetric waveguide as a function
of θ and φ, for a system similar to the one considered in Fig. 3(a), but
now ns = nb = 1.41. (b) Same as in (a) but for a waveguide with a
negative uniaxial film with various parameters: nc = 1.4, ns = nb =
1.41, ne = 1.5, no = 1.6, and d/λ = 0.5. Figures (c) and (d) corre-
spond to the waveguides in (a) and (b), respectively, but coupled to
an isotropic background with refractive index nb = 1.8 separated a
distance 0.5 d/λ from the film. The color scales in (c) and (d) are
proportional to the normalized decay length L/λ.

featuring two EPs located at θ = 77.78◦, φ = ±2.49◦, is
shown in Fig. 3(b). At the EPs the bands coalesce, with N
having identical real and imaginary parts. The real part of the
effective index of the leaky modes is identical at both bands in
the line connecting the two EPs, a property that is equivalent
to a Fermi arc in the energy-momentum dispersion diagram.
The imaginary part of N differs along the Fermi arc for the
two bands, except at the EP where the modes are completely
degenerate. These EPs are hybrid states [Fig. 4(e)] and are
located at directions where the optical axis is oriented out
of any anisotropy symmetry plane of the structure. We found
that the TE and TM projections of the hybrid modes around
the EPs remain almost constant, with the TM fraction being
larger (almost twice in the particular case shown) than the TE
polarization.

The mechanism that splits the matrix that describes the sys-
tem impacts the robustness of the DPs against perturbations.
DPs arising between bands with different polarization are
robust even against asymmetric perturbations, as the system
matrix can be split in any case. This yields the dispersion
diagram shown in Fig. 5(a), which corresponds to a waveguide
that is asymmetric in terms of the refractive index. However,
DPs arising between bands with different parity cease to exist
in the presence of asymmetric perturbations, as in such a case
the system matrix can only be divided into blocks when the
waveguide is symmetric, as elaborated in the Appendix. As
a consequence, a gap opens in the dispersion band diagram
of asymmetric structures [Fig. 5(b)]. In contrast, EPs are
robust against perturbations and do appear in asymmetric non-
Hermitian structures. Figure 5(c) shows the two EPs related
to the DP arising between bands with different polarization
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FIG. 6. Topological features of the radiating fields.
(a) Frequency-momentum dispersion diagram showing EPs
and a Fermi arc for the waveguide with isotropic background
shown analyzed in Fig. 5(c). The color scale is proportional to the
normalized decay length L/λ. (b) Isofrequency cuts represented
by the grey surfaces in (a) at which we plot the polarization of the
radiation field. The second panel (with the green frame) corresponds
to an isofrequency that contains the EPs.

when the structure in Fig. 5(a) is coupled to an isotropic
background. In contrast to simple expectations, Fig. 5(d) also
shows two EPs, even when a gap is present between the
two bands with different parity in Fig. 5(b). In this case the

origin of EPs must be sought in the DPs arising in symmetric
structure rather than in the asymmetric one.

Note that robustness of EPs has been related to the topo-
logical properties exhibited by the corresponding radiated
fields [18]. Figure 6 shows the polarization of the radiated
field for the structure analyzed in Fig. 5(c), for different
isofrequency cuts in the dispersion diagram. The isofrequency
surface that encircles the EPs [the panel with a green frame in
Fig. 6(b)] shows the half-charge polarization winding near the
EP described in [18]. A half topological charge is apparent
starting from the vertical red polarization, traversing the full
contour in the clockwise direction and returning to the same
point. Then the polarization flips direction by rotating 180◦ in
the clockwise direction.

The transition from a Hermitian to a non-Hermitian behav-
ior allows comparing the dynamical evolution in the proximity
of DPs and EPs. In the anisotropic waveguides, this can
be done by varying the optical axis orientation in the film
along the propagation direction [Fig. 7(a)]. We performed
finite-difference-time-domain (FDTD) calculations [30] along
a closed circuit in the θ -φ parameter space in a clockwise and
anticlockwise direction, which is equivalent to exciting the
structure from the right or left sides, and studied the reversal
(direction-independent) versus chiral (direction-dependent)
mode conversion [16,31–33]. In the Hermitian structure, the
linear dispersion at the DP allows exchanging the band while
maintaining the polarization, and the anticrossing existing in
their proximity [Figs. 2(b) and 2(c)] results in polarization
conversion [34]. We therefore chose an arbitrary (i.e., by no
means optimized) closed circuit that crosses through the DP
and returns through an anticrossing. A direct consequence
of the election of a circuit that crosses a DP is conversion
from a TE (TM) input to a TM (TE) output after returning
to the initial point [Fig. 7(b)]. The conversion is total and
independent of the direction of excitation when the change in
optical axis orientation is adiabatic, which in the case of the

FIG. 7. Hermitian vs non-Hermitian dynamical evolution modeled with FDTD. (a) Variation of the film optical axis orientation along the
y axis used in all the calculations: The optical axis follows a closed circuit in the θ -φ parameter space. The calculations were performed for
the waveguide characteristics as in Fig. 3. (b) Mode conversion for the Hermitian structure as a function of the device length when a TM
(left panel) and TE (right panel) mode is injected from the left (circles) and the right (asterisk) side of the structure. (c) Example of FDTD
propagation combining Hermitian and non-Hermitian (red square) sections in the same structure. (d) Same as in (b) but when the central part
of the structure is non-Hermitian.
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figure occurs for propagation lengths larger that 100λ. In the
case of a circuit containing a DP between bands with different
parity [Fig. 2(c)], the conversion refers to the parity state.

When nb increases, the circuit encircles the EP in a non-
Hermitian way. The change of polarization still occurs, as
the branches are exchanged through the Fermi arc. However,
the conversion now is chiral and depends on the propagation
direction. The phenomenon occurs also with low losses, when
the leakage mechanism is introduced only in one section of
the circuit [the red square in Fig. 7(c)]. Chiral conversion is
illustrated in Fig. 7(d), where the conversion from TE (TM)
input to TM (TE) output yields a different value when the
waveguide is excited from the right or from the left side. In
this particular case the non-Hermitian section is short and it
is located at the center of the waveguide, which is enough
to expose the occurrence of the chiral behavior. However, its
absolute strength may be enhanced by optimizing the location
and length of the section containing the radiative channel.

To summarize, we stress that the new feature introduced
in this paper is the existence of DPs and EPs in waveguiding
structures made of anisotropic materials. The anisotropy in-
troduces intrinsic angular-dependent propagation properties,
which allows the existence of EPs out of symmetry planes, and
affords the possibility to follow the transition between DPs
and EPs by opening and closing a suitable nonconservative
channel. The transition from the Hermitian to a non-Hermitian
behavior occurs via a radiation channel that generates leaky

modes that are hybrid (with the full field components) and
improper (they are modes of infinite energy that capture the
physics of a infinite band of proper modes belonging to the
continuum spectrum), which break the Hermitian behavior
through radiation rather than via material losses. Such a
physical mechanism is general and should be applicable to
other types of photonic structures showing similar phenom-
ena, as in the case of photonic crystals with a graphene-like
lattice [35–38]. We studied a simple structure made of film
birefringent materials, but the concept holds for more complex
structures, including waveguides made of biaxial materials,
of multiple anisotropic layers that allow a higher control of
radiation, and of general anisotropic metamaterials.
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APPENDIX: SPLITTING OF THE SYSTEM MATRIX

The dielectric tensor of a uniaxial material for an arbitrary
orientation of the optical axis given by the angles θ and φ as
defined in Fig. 2(a) of the main text reads as

ε =

⎡
⎢⎣

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎥⎦ =

⎡
⎢⎣

εe cos2 (θ ) + εo sin2 (θ ) � sin (θ ) cos (φ) cos (θ ) � sin (φ) sin (θ ) cos (θ )

� sin (θ ) cos (φ) cos (θ ) � sin2 (θ ) cos2 (φ) + εo � sin (φ) sin2 (θ ) cos (φ)

� sin (φ) sin (θ ) cos (θ ) � sin (φ) sin2 (θ ) cos (φ) � sin2 (φ) sin2 (θ ) + εo

⎤
⎥⎦, (A1)

where εo = n2
o and εe = n2

e are the ordinary and the extraor-
dinary dielectric constants, respectively, and � = εe − εo.
Following Berreman’s approach [39,40], Maxwell equations
are solved using the electric and magnetic field components
parallel to the interfaces. For propagation along y, monochro-
matic waves take the form

�E (x, y, t ) = �E · ei(k0(κxx+Ny)−ωt ),

�H (x, y, t ) = �H · ei(k0(κxx+Ny)−ωt ), (A2)

with k0 being the vacuum wave number. In an isotropic
material with dielectric constant ε, the solutions reduce to

TE and TM sets, with eigenvalues κx = κ = ±
√

ε − k2
y , for

forward (+ sign) and backward (− sign) propagation. Then
the field amplitudes in (A2) can be described using a column
vector �F as

�F =

⎡
⎢⎢⎢⎣

Ey

Hz

Ez

Hy

⎤
⎥⎥⎥⎦, �FTE =

⎡
⎢⎢⎢⎣

1
ε
κ

0

0

⎤
⎥⎥⎥⎦, �FTM =

⎡
⎢⎢⎢⎣

0

0

1

−κ

⎤
⎥⎥⎥⎦. (A3)

In anisotropic uniaxial materials the solutions are ordinary and
extraordinary waves. Here we use the corresponding analytic

expression derived in [23] with ordinary κo and extraordinary
κe eigenvalues

κo = ±
√

ε − k2
y , (A4)

κe = −1

εxx

(
εxyky ±

√
εo

[
εxxεe + k2

y (εzz − εe − εo)
])

, (A5)

with

�Fo =

⎡
⎢⎢⎢⎣

κo sin (φ) sin (θ )

εo sin (φ) sin (θ )

ky cos (θ ) − κo sin (θ ) cos (φ)

−κo[ky cos (θ ) − κo sin (θ ) cos (φ)]

⎤
⎥⎥⎥⎦,

�Fe =

⎡
⎢⎢⎢⎣

−kyκe cos (θ ) + κ2
o sin (θ ) cos (φ)

εo[−ky cos (θ ) + κe sin (θ ) cos (φ)]

εo sin (φ) sin (θ )

−εoκe sin (φ) sin (θ )

⎤
⎥⎥⎥⎦. (A6)

Following Berreman’s approach, a layer of material is
accounted for by its field 4 × 4 matrix F̂ , composed by the
four field vectors �F representing the forward (+ superindex)
and backward (− superindex) waves

F̂Iso = [ �F+
TE, �F−

TE, �F+
TM, �F−

TM],

F̂Ux = [ �F+
e , �F−

e , �F+
o , �F−

o ]. (A7)
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The optical response of a multilayer system is described by
the characteristic matrix Â calculated as

Â = F̂−1
c M̂F̂s, (A8)

where F̂c and F̂s are the cladding and substrate field matrices
respectively, and M̂ is defined for a stack of N layers as

M̂ = F̂1Â1F̂−1
1 F̂2Â2F̂−1

2 · · · F̂N ÂN F̂N 1−1. (A9)

The diagonal matrix Âi is the phase matrix of layer i, which in
an isotropic layer writes

Âi =

⎡
⎢⎢⎣

eidik0κ 0 0 0
0 e−idik0κ 0 0
0 0 eidik0κ 0
0 0 0 e−idik0κ

⎤
⎥⎥⎦, (A10)

and in an uniaxial layer it writes

Âi =

⎡
⎢⎢⎣

eidik0κ
+
e 0 0 0

0 eidik0κ
−
e 0 0

0 0 eidik0κo 0
0 0 0 e−idik0κo

⎤
⎥⎥⎦, (A11)

with di being the thickness of the ith layer.
For guided modes, the evanescent waves in the cladding

are related to the evanescent waves of the substrate by the
characteristic matrix as

A+
TE,s

�F+
TE + A+

TM,s
�F+
TM = M̂(A−

TE,c
�F−
TE + A−

TM,c
�F−
TM), (A12)

where A+
TE,s and A+

TM,s are the amplitudes of the forward
TE and TM waves in the substrate and A−

TE,c and A−
TM,c the

amplitudes of the backward propagating TE and TM waves in
the cladding. This results in a system of equations describing
the eigenvalue problem, characterized by the system matrix.

The calculation of M̂ can be readily done numerically.
However, it is instructive to derive the modal equation from

the boundary conditions for a layer system comprising a
uniaxial film and isotropic cladding and substrate, and write
it in the form of an 8 × 8 matrix. At the interface between the
substrate and the film, the boundary conditions write

A+
TE,s

�F+
TE + A+

TM,s
�F+
TM = A+

e
�F+
e ei d

2 k0κ
+
e + A−

e
�F−
e ei d

2 k0κ
−
e

+ A+
o

�F+
o ei d

2 k0κo + A−
o

�F−
o e−i d

2 k0κo,

(A13)

and at the interface between cladding and film they write

A−
TE,c

�F−
TE + A−

TM,c
�F−
TM = A+

e
�F+
e e−i d

2 k0κ
+
e + A−

e
�F−
e e−i d

2 k0κ
−
e

+ A+
o

�F+
o e−i d

2 k0κo + A−
o

�F−
o e+i d

2 k0κo,

(A14)

where A+
e , A−

e , A+
o , and A−

o are the amplitudes of the four
waves in the film.

Equations (A13) and (A14) can be written as an 8 × 8
matrix, the determinant of which yields the eigenvalue equa-
tion. In general, modes need all eight amplitudes, and the
whole matrix cannot be separated into smaller blocks. Thus,
anisotropy couples the eight waves. However, under special
conditions the matrix can be written as 4 × 4 blocks. Then the
system matrix takes the form[

B̂1 Ô1

Ô2 B̂2

]
�Am = �0. (A15)

Specifically, for φ = 0◦ (x-y plane), the 8 × 8 matrix splits
by polarization, corresponding to the case shown in Fig. 3(a).
Under such conditions, all components in Ô1 and Ô2 vanish,
even for asymmetric structures [Fig. 5(a)]. Then, DPs exist in
both situations as the matrix can be split into two blocks. For
the TE polarization one gets

B̂1

⎡
⎢⎢⎢⎣

A+
TE,s

A+
e

A−
e

A−
TE,c

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
[
kyκ

+
e cos (θ ) − κ2

o sin (θ )
]
e

id
2 k0κ

+
e

[
kyκ

−
e cos (θ ) − κ2

o sin (θ )
]
e

id
2 k0κ

−
e 0

− εs
κs

εo[ky cos (θ ) − κ+
e sin (θ )]e

id
2 k0κ

+
e εo[ky cos (θ ) − κ−

e sin (θ )]e
id
2 k0κ

−
e 0

0
[
kyκ

+
e cos (θ ) − κ2

o sin (θ )
]
e− id

2 k0κ
+
e

[
kyκ

−
e cos (θ ) − κ2

o sin (θ )
]
e− id

2 k0κ
−
e 1

0 εo[ky cos (θ ) − κ+
e sin (θ )]e− id

2 k0κ
+
e εo[ky cos (θ ) − κ−

e sin (θ )]e− id
2 k0κ

−
e εc

κc

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A+
TE,s

A+
e

A−
e

A−
TE,c

⎤
⎥⎥⎥⎦ = �0, (A16)

and for TM polarization one gets

B̂2

⎡
⎢⎢⎢⎣

A+
TM,s

A+
o

A−
o

A−
TM,c

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 [−ky cos (θ ) + κo sin (θ )]e
id
2 k0κo −[ky cos (θ ) + κo sin (θ )]e− id

2 k0κo 0

κs κo[ky cos (θ ) − κo sin (θ )]e
id
2 k0κo −κo[ky cos (θ ) + κo sin (θ )]e− id

2 k0κo 0

0 [ky cos (θ ) − κo sin (θ )]e− id
2 k0κo [ky cos (θ ) + κo sin (θ )]e

id
2 k0κo −1

0 κo[−ky cos (θ ) + κo sin (θ )]e− id
2 k0κo κo[ky cos (θ ) + κo sin (θ )]e

id
2 k0κo κc

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

A+
TM,s

A+
o

A−
o

A−
TM,c

⎤
⎥⎥⎥⎦ = �0. (A17)

Another example of matrix splitting in blocks occurs at θ = 90◦ (y-z plane), where eigenmodes can be described as odd and
even modes. Algebraic combinations of the amplitudes �Am lead to the new base

Asum
TE = A+

TE,s + A−
TE,c, Asub

TE = A+
TE,s − A−

TE,c, Asum
TM = A+

TM,s + A−
TM,c, Asub

TM = A+
TM,s − A−

TM,c,

Asum
e = A+

e + A−
e , Asub

e = A+
e − A−

e , Asum
o = A+

o + A−
o , Asub

o = A+
o − A−

o .
(A18)
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Then, the diagonal blocks B̂1 and B̂2 in (A15) write

B̂1

⎡
⎢⎢⎢⎣

Asum
TE

Asub
TM

Asum
o

Asub
e

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 0 −κo sin (φ) cos
( dk0

2 κo
) −κ2

o cos (φ) cos
( dk0

2 κe
)

− εc
κc

− εs
κs

0 −iεo sin (φ) sin
( dk0

2 κo
) −iεoκe sin

( dk0
2 κe

)
cos (φ)

0 2 κo cos (φ) cos
( dk0

2 κo
) −εo sin (φ) cos

( dk0
2 κe

)
0 κc + κs −iκ2

o sin
( dk0

2 κo
)

cos (φ) iεoκe sin (φ) sin
( dk0

2 κe
)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Asum
TE

Asub
TM

Asum
o

Asub
e

⎤
⎥⎥⎥⎦ = �0, (A19)

and

B̂2

⎡
⎢⎢⎢⎣

Asub
TE

Asum
TM

Asub
o

Asum
e

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 0 −iκo sin (φ) sin
( dk0

2 κo
) −iκ2

o sin
( dk0

2 κe
)

cos (φ)

− εc
κc

− εs
κs

0 −εo sin (φ) cos
( dk0

2 κo
) −εoκe cos (φ) cos

( dk0
2 κe

)
0 2 iκo sin

( dk0
2 κo

)
cos (φ) −iεo sin (φ) sin

( dk0
2 κe

)
0 κc + κs −κ2

o cos (φ) cos
( dk0

2 κo
)

εoκe sin (φ) cos
( dk0

2 κe
)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Asub
TE

Asum
TM

Asub
o

Asum
e

⎤
⎥⎥⎥⎦ = �0. (A20)

In this case, blocks Ô1 and Ô2 in (A15) are

Ô1 = Ô2 =

⎡
⎢⎢⎢⎣

0 0 0 0
εc
κc

− εs
κs

0 0 0

0 0 0 0

0 −κc + κs 0 0

⎤
⎥⎥⎥⎦. (A21)

These two blocks can vanish only when εs = εc and κs = κc, i.e., when the substrate and cladding are identical and the amplitudes
in (A18) describe even and odd modes. If the waveguide is asymmetrical, the matrix (A21) does not vanish and thus the system
matrix (A15) does not split into blocks and, therefore, DPs cannot exist. This is the case shown in Fig. 5(c), where instead of a
DP, a gap is opened in the dispersion diagram.

Finally, another situation of interest occurs for φ = 90◦. This corresponds to the DP shown in Figs. 2(a) and 2(c) in the main
text. Here one can use again the definitions in (A18) to find the same blocks Ô1 and Ô2 as in (A21), while the diagonal blocks
B̂1 and B̂2 in (A15) write

B̂1

⎡
⎢⎢⎢⎣

Asub
TE

Asum
TM

Asum
o

Asub
e

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 0 −iκo sin (θ ) sin
( dk0

2 κo
)

ikyκe sin
( dk0

2 κe
)

cos (θ )

− εc
κc

− εs
κs

0 −εo sin (θ ) cos
( dk0

2 κo
)

εoky cos (θ ) cos
( dk0

2 κe
)

0 2 −ky cos (θ ) cos
( dk0

2 κo
) −εo sin (θ ) cos

( dk0
2 κe

)
0 κc + κs ikyκo sin

( dk0
2 κo

)
cos (θ ) iεoκe sin (θ ) sin

( dk0
2 κe

)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Asub
TE

Asum
TM

Asum
o

Asub
e

⎤
⎥⎥⎥⎦ = �0, (A22)

and

B̂2

⎡
⎢⎢⎢⎣

Asum
TE

Asub
TM

Asub
o

Asum
e

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 0 −κo sin (θ ) cos
( dk0

2 κo
)

kyκe cos (θ ) cos
( dk0

2 κe
)

− εc
κc

− εs
κs

0 −iεo sin (θ ) sin
( dk0

2 κo
)

iεoky sin
( dk0

2 κe
)

cos (θ )

0 2 −iky sin
( dk0

2 κo
)

cos (θ ) −iεo sin (θ ) sin
( dk0

2 κe
)

0 κc + κs kyκo cos (θ ) cos
( dk0

2 κo
)

εoκe sin (θ ) cos
( dk0

2 κe
)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Asum
TE

Asub
TM

Asub
o

Asum
e

⎤
⎥⎥⎥⎦ = �0. (A23)

In this case the polar orientation of the optical axis can have an arbitrary value, which may break the anisotropy symmetry with
respect to the y-z plane [23]. However, importantly, eigenmodes can also be expressed as even and odd modes, and DPs can exist
provided the structure is symmetric in refractive index.
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