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Topological spin excitations in Harper-Heisenberg spin chains
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Many-body spin systems represent a paradigmatic platform for the realization of emergent states of matter
in a strongly interacting regime. Spin models are commonly studied in one-dimensional periodic chains, whose
lattice constant is on the order of the interatomic distance. However, in cold atomic setups or functionalized
twisted van der Waals heterostructures, long-range modulations of the spin physics can be engineered. Here we
show that such superlattice modulations in a many-body spin Hamiltonian can give rise to observable topological
boundary modes in the excitation spectrum of the spin chain. In the case of an XY spin-1/2 chain, these boundary
modes stem from a mathematical correspondence with the chiral edge modes of a two-dimensional quantum Hall
state. Our results show that the addition of many-body interactions does not close some of the topological gaps
in the excitation spectrum, and the topological boundary modes visibly persist in the isotropic Heisenberg limit.
These observations carry through when the spin moment is increased and a large-spin limit of the phenomenon
is established. Our results show that such spin superlattices provide a promising route to observe many-body
topological boundary effects in cold atomic setups and functionalized twisted van der Waals materials.
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I. INTRODUCTION

Topological phases of matter comprise one of the most
active research domains in contemporary physics research
[1,2]. Prominent examples thereof involve systems with trans-
lational symmetry, where characteristic topological boundary
effects appear [1,2], requiring in certain scenarios an addi-
tional symmetry constraint, such as chiral [3], time reversal
[4–6], or crystalline [7,8] symmetries. Identification of this
fundamental source for topology has enabled the realization
of topological effects in a plethora of systems, including
electronic [1,2], photonic [9], atomic [10], phononic [11–14],
and circuit metamaterials [15–18]. Additionally, topological
phenomena may arise from single-particle interference in
structures where competition between different length scales
occurs, i.e., in structures with broken lattice translation-
invariance. Examples of this include breaking of translation-
invariance with magnetic-fields in integer quantum Hall
effects [19], topological pumps [20–25], and topological qua-
sicrystals [21,26–29]. These systems share a deep connection
with one another: An adiabatic time-dependent modulation
between superlattice potentials sharing the same long-range
order can lead to topological pumping and a dynamical real-
ization of quantum Hall systems [20,21].

The fundamental motivation for exploring the topology of
spectral gaps in physical systems is threefold: (i) nontriv-
ial topology implies topological phase transitions between
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systems of different topology, (ii) quantized bulk responses
appear in association with the topology, and (iii) at open
boundaries, the quantized topological bulk invariants lead
to corresponding boundary effects [1,2,9]. For example, the
energy levels of the quantum Hall effect are associated
with topological invariants—Chern numbers—that lead to the
quantization of the bulk Hall conductance. In turn, with open
boundary conditions, the quantum Hall effect exhibits corre-
sponding chiral edge modes [1,2,9]. In similitude, topological
pumps exhibit a quantized number of charges pumped per
pump-cycle corresponding to the Chern number of the pump
[20,21]. At their boundaries, 0D boundary modes must appear
and cross the spectral gap during the per pump-cycle [21].

Moving toward the design of topological phenomena in
many-body quantum systems [30], we consider a variety of
platforms, including cold atom in optical superlattices [31–37]
and atomically engineered lattices with scanning tunnel mi-
croscopy [38]. These systems allow for the engineering of
tailored quantum spin models [39–48]. A particularly versatile
candidate in this direction consists of hydrogenated graphene
[49], where each hydrogen atom binds an S = 1/2 state in
graphene [50]. A key feature of this system, relevant to our
work, is that the system can be placed on top of another
graphene layer to form a moiré pattern that in turn leads
to a long-ranged modulation of the spin chain’s exchange-
couplings [51,52]. In particular, one can consider a single
graphene layer where hydrogen atoms are deposited equidis-
tantly from each other. By placing such a functionalized
graphene layer on top of another pristine graphene sheet and
at a relative angle, a moire pattern will appear that effec-
tively modulates the spin chain’s exchange constants. These
platforms offer the opportunity to study novel phenomena
such as many-body quantum phase transitions [53–65] and
many-body localization [66–68].
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In this work, we show that topological boundary modes
emerge in the dynamical response spectrum of many-body
spin chains with a superlattice modulation. In particular, we
focus on isotropic spin chains with modulated exchange con-
stants, that can be realized both in cold-atom setups and the
solid-state platform discussed above. We harness a combina-
tion of a kernel polynomial method [69] with tensor network
techniques [70] to compute the dynamical structure factors
of the many-body system, which exhibit the appearance of
topological boundary excitations. We furthermore provide an
analytic adiabatic connection to known regimes, showing that
in certain paradigmatic cases, the topological modes can be
adiabatically connected to a well-understood non-interacting
limit. Last, by a systematic scaling-up of the spins’ mo-
ment, we obtain that our results persist also in the large-
spin limit, showing the universality of such excitations in
superlattices.

The manuscript is organized as follows: in Sec. II A, we
present the topological bulk and boundary effects correspond-
ing to the mapping between free particles in one-dimensional
superlattices, topological pumps, and two-dimensional quan-
tum Hall states. This section shows the connection between
single particle topological modes and many-body topological
response functions. The next sections deal exclusively with
topological many-body response functions, in systems that
cannot be mapped to a single particle picture. In Sec. III,
we detail the kernel polynomial method [69] and its utility in
showing the emergence of topological boundary excitations in
many-body S = 1/2, 1, 3/2, 2 superlattice chains. We, thus,
reveal the existence of topological gaps in the excitation
spectrum of many-body superlattices. Finally, in Sec. IV, we
discuss and summarize our results.

II. TOPOLOGICAL PUMPS AND THEIR
BOUNDARY MODES

The main goal of this work is to show that 1D many-body
superlattices support topological gaps with in-gap boundary
modes in their excitation spectrum. These topological modes
arise from the competition between different length scales in
the system. In conventional fermionic systems, such modes
are associated to a quantized topological pumping response
in the bulk. In particular, in the noninteracting limit, these
boundary modes support the quantized charge pumping in
a finite system [20,21]. Furthermore, they correspond to the
sampling over the chiral edge modes of a parent 2D quantum
Hall-like system [21]. Here, we aim to extend such a mapping
to strongly interacting systems, by expressing the existence of
topological boundary modes in a many-body framework.

We consider a Heisenberg model with a long-ranged mod-
ulation of its exchange constants [71,72]; see Fig. 1(a). Here
we focus on spin models whose exchange constants are of the
form

H = J
∑

N

[1 + λ cos(αN + φ)]�SN · �SN+1, (1)

where �Si are spin operators with spatially modulated coupling
of amplitude λ, modulation frequency α, and displacement
φ. The site index N goes from N = 0 (the leftmost site)
to N = L − 1 (the rightmost site). We note that the impact

FIG. 1. (a) Sketch of a spin-chain superlattice with Heisenberg
couplings (magenta arrows) modulated in space [cf. Eq. (1)] that can
be engineered in a cold atom setup. Moreover, the model of panel
(a) naturally arises in atomically engineered lattices on top of twisted
van der Waals materials as shown in panel (b). (c) The calculated
dynamical structure factor [cf. Eq. (2)] for a uniform S = 1/2 chain,
showing the emergence of different confined modes and a gapless
excitation spectrum. (d) The calculated dynamical structure factor of
a modulated chain with α = π/

√
2, λ = 0.5 and φ = 0.6π , showing

the emergence of a spectral gap and in-gap edge excitations (cyan
circles). As the pumping parameter φ is varied, we expect topological
in-gap modes to traverse the bulk gap as sketched in panel (e).

of nonperiodicity on the ground state of quantum Heisen-
berg models has been addressed in the past [73]. As stated
previously, the Hamiltonian Eq. (1) can be realized in cold
atomic setups and solid-state platforms based on atomically
engineered twisted 2D materials [Fig. 1(b)] [51,52,73–75].
In the solid-state realization of this Hamiltonian based on
hydrogenated twisted bilayer graphene, the parameter α in
will be controlled by the ratio between the hydrogen-hydrogen
distance and the moire length, whereas the parameter φ will
be controlled by the displacement between the two layers.
When λ = 0, the model describes a uniform antiferromagnetic
Heisenberg chain. Taking spins S = 1/2, the spin chain is
known to have a gapless excitation spectrum, and represents
a paradigmatic integrable system that can be solved using
Bethe’s antsaz [76]. For arbitrary λ and α, however, the system
has no known solution.
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In the following, we will show that a superlattice Hamil-
tonian of the form Eq. (1) hosts topological boundary modes
in its excitation spectrum. The existence of these boundary
modes can be seen in the dynamical structure factor

χ (N, ω) = 〈GS|Sz
Nδ(ω − H + E0)Sz

N |GS〉, (2)

where Sz
N is the spin operator along z at the site number n,

E0 is the many-body ground-state energy, and |GS〉 is the
many-body ground state of the system. We note that analogous
dynamical structure factors can be defined by taking operators
for the different spin components, so that the previous one
corresponds to the zz dynamical structure factor χ ≡ χ zz.
This quantity is sensitive to the spectrum of excitations in the
system that are accessible by a local perturbation at position
N . The details of the method to compute Eq. (2) are detailed
in Sec. III A. Using the dynamical structure factor, we can, for
example, readily verify the aforementioned gapless excitation
spectrum property of Eq. (1) for the S = 1/2 uniform antifer-
romagnetic Heisenberg chain; see Fig. 1(c).1 Taking λ �= 0,
gaps appear in the dynamical structure factor spectrum and
topological boundary modes can be observed in the excitation
spectrum of the boundary; see Fig. 1(d). In particular, the in-
gap modes wind through the bulk excitation gap as a function
of φ; see Fig. 1(e). The origin of such in-gap modes can be
understood by starting from a modulated noninteracting limit,
as we show in the next section.

A. Single-particle topological pumps and their bulk-boundary
excitation spectrum

Before focusing on the many-body study of excitations of
spin chains [Eq. (1)], we first consider a specific noninter-
acting limit of Eq. (1). The strongly interacting Hamiltonian
Eq. (1) can be modified by breaking its rotational symmetry
to obtain a spin chain with anisotropic exchange

H (	) = J
∑

N

[1 + λ cos(αN + φ)]
[
Sx

N Sx
N+1

+ Sy
N Sy

N+1 + 	Sz
N Sz

N+1

]
. (3)

In the limit 	 = 0, Eq. (3) becomes the Harper-XY
model [77] H (	 = 0) = ∑

N [1 + λ cos(αN + φ)][Sx
N Sx

N+1 +
Sy

N Sy
N+1], which can be analytically solved by means of

Jordan-Wigner’s transformation [77] S−
N = e

∑
i<N c†

i ci cN and

S+
N = e

∑
i<n c†

i ci c†
N , with S±

N = Sx
N ± iSy

N . Specifically, using the
transformation, the Hamiltonian becomes

H = t
∑

N

[1 + λ cos(αN + φ)]c†
N cN+1 + H.c., (4)

with t = J/2. The model Eq. (4) in known as the off-diagonal
Harper model [26,78], which was used in the realization of
photonic topological pumps [21,24]. Specifically, it exhibits
bulk gaps and topological boundary modes that thread through
the gaps as a function of a scan of the pump parameter
φ; see Fig. 2(a). The appearance of these in-gap modes
stems from the topological quantized bulk response of the

1Dynamical responses in the different sites of the chain that are not
averaged over φ are denoted with the color scheme of Fig. 1(c).

FIG. 2. Single-particle superlattices. (a) The energy spectrum of
the off-diagonal Harper model [Eq. (4)] as a function of the pumping
parameter φ. Topological in-gap bound states appear on both sides
of the chain (red and blue) and traverse the gap. The appearance of
these states is in correspondence with the topological bulk response
of the topological pump and can be mapped to the chiral edge
modes of the 2D quantum Hall effect [21]. (b) Sketch of the 2D
quantum Hall model [Eq. (5)] that is mappable to the off-diagonal
Harper pump [Eq. (4)]. The Hofstadter spectra in a bulk site averaged
over φ (c) and the corresponding dynamical charge response in a
bulk site averaged over φ (d) [cf. Eq. (6)]. Panels (c), (d) highlight
their characteristic topological spectral gaps for arbitrary α. Note
the different energy axis in panels (c), (d) due to the fact that the
dynamical correlator includes contributions from transitions that can
have absolute energy 0 � ω � W , where W = ωmax − ωmin is the full
bandwidth of the bulk spectrum (c). (e) There are bulk gaps that
remain open in the dynamical charge response as a function of φ.
(f) Same as panel (e) but evaluated at the boundary, showing in-gap
boundary excitations. We used λ = 0.8 and α = π/

√
2 in panels

(a), (c), (d), (e), (f), panels (c), (d) are averaged over φ.

pump, which can be traced back to a two-dimensional quan-
tum Hall model on a lattice using dimensional extension
[9,19,21,26,79,80].

For completeness, we detail the relationship between the
1D topological pump and the 2D quantum Hall effect. Let
us start with a two-dimensional quantum Hall tight-binding
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model with nearest-neighbor hopping in the x-direction and
next-nearest-neighbor hopping along the ±x ± y direction
[see Fig. 2(b)]:

H =
∑
N,M

[
t c†

N,McN+1,M + λ

2

(
eiαN c†

N,McN+1,M+1

+ e−iαN c†
N,McN+1,M−1

) + H.c.

]
. (5)

We have written the model in the Landau gauge and used
Peierls’ substitution [81] to describe the magnetic flux pierc-
ing each plaquette of the model. In this gauge, the model
does not depend on y explicitly and it can be written in
terms of momenta ky as good quantum numbers, leading
to a summation over Eq. (4) with ky ≡ φ. In other words,
superlattice Hamiltonians can be understood to be specific
k-cuts of a two-dimensional Hall state, where the magnetic
flux α competing with the lattice translation in 2D is mapped
onto the superlattice modulation frequency in 1D.

For rational values of α/(2π ), periodic boundary con-
ditions can be found in the x-direction with an addi-
tional momentum k. Correspondingly, a Chern number
[82] can be computed for occupied bands of the model
C = 1

2π

∫

αkdkdφ, where 
αk = i[

∑
j∈O ∂k〈� j |∂φ� j〉 −

∂φ〈� j |∂k� j〉], O denotes the set of occupied states, and �N

are the eigenstates of the system, which for simplicity we
assume to be nondegenerate. In the case of a degenerate
spectra, the Chern number can be efficiently computed by
means of the Wilson loop technique [83].

The existence of a nonzero Chern number for the
pump [Eq. (4)] implies that for open boundary conditions
the system will develop a quantized topological bulk re-
sponse [19,20,28,84–86] with associated boundary modes;
see Fig. 2(a). In particular, the modes that traverse the gap
as a function of φ appear in pairs that are located at opposite
boundaries of the modulated chain, where the number of such
pairs equals the Chern number of the gap. In this way, for a
specific chain at a particular φ, a certain in-gap state can be
located inside the gap, whose origin can be traced back to the
nontrivial Chern number of the parent Hamiltonian [21]. For
arbitrary α and λ, the bulk of the noninteracting superlattice
chain [Eq. (4)] will have a fractal hierarchy of gaps with dif-
ferent Chern numbers [19,20,87]. Plotting the bulk density of
states as a function of α shows these different gaps forming the
so-called Hofstadter butterfly spectrum [88,89]; see Fig. 2(c).
Since these gaps have nontrivial Chern numbers, the boundary
of the system will host in-gap modes.

Such a topological bulk-boundary correspondence analysis
cannot be easily extended to many-body systems, due to the
fact that direct access to all many-body eigenstates is in gen-
eral not possible. To make the connection with a many-body
system, it is useful to demonstrate the noninteracting limit
using an response that can be easily defined for a many-body
system: a dynamical correlation function.

B. Topological pumps in a many-body framework

In a many-body system, the existence of topological
boundary modes is defined by means of dynamical quantities
instead of by single-particle eigenvalues. As an example,

let us consider the noninteracting Hamiltonian Eq. (4): the
charge-charge correlation carries information on the single-
particle spectrum of the system, and is analogous to the ZZ
spin correlator [Eq. (2)] of the original XY model [Eq. (3)].
Therefore, understanding the noninteracting limit provides a
fruitful starting point to understand the many-body case.

The onsite charge-charge dynamical correlator can be ex-
pressed as

χ0(N, ω) = 〈GS|c†
N cNδ(ω − H + EGS)c†

N cN |GS〉, (6)

where EGS is the many-body ground-state energy and
|GS〉 the many-body ground-state wave function. For free
fermions, the previous charge-charge correlator can be
computed from the single particle orbitals and eigenval-
ues of Hamiltonian Eq. (4) by means of Kubo’s for-
malism as χ0(N, ω) ∼ Im(

∑
μ,ν

fμ,ν

Eμ−Eν−ω+i0+ ), with fμ,ν =
|�μ(N )|2|�ν (N )|2[n(Eμ) − n(Eν )], n(x) the Fermi-Dirac dis-
tribution at T = 0 (i.e. a step function) and �μ the single-
particle eigenstates corresponding to single-particle eigenen-
ergies Eμ. We note that the filling of the free fermion model
has to be taken at half filling i.e., with the chemical potential
at ω = 0, which is the situation mathematically equivalent
to the spectral function of the XY model. Calculations away
from half filling in the fermionic model are analogous to
an XY model with external magnetic field. We emphasize
that the many-body response function of Eq. (6) can be thus
characterized from the single particle eigenvalues of Eq. (4),
making a connection between a many-body response function
and single particle energies.

The spectral weight of χ0 can be understood as a weighted
convolution of the density of states of the system. The re-
sponse with the highest energy is expected at ω ≈ 4t , since
it corresponds to transitions between the deepest occupied
state (located at ω ≈ −2t) and the highest unoccupied state
(located at ω ≈ +2t). For a system showing different gaps in
its spectra, χ0 will exhibit this structure in a convoluted fash-
ion. We can now compute the bulk χ0 at position L/2 where
L is the length of the chain and average over different φ. We
plot 〈χ0(L/2, ω)〉φ = 1

2π

∫ 2π

0 χ0(L/2, ω, φ)dφ in Fig. 2(d) for
the off-diagonal Harper model Eq. (4). First, we observe that
the fractal gap structure in the energy spectra in Fig. 2(c)
[90] is indeed manifesting in Fig. 2(d). Importantly, when the
bulk gaps remains open, the in-gap excitations located at the
boundary of the system generate a signal in the local response.
The latter is clearly seen in Figs. 2(e) and 2(f), where we
observe that inside a finite excitation spectral gap of the bulk
Fig. 2(e), there are in-gap boundary excitations in Fig. 2(f)
that cross the gap as a function of φ. These in-gap excita-
tions stem from the convolution of the original single-particle
topological pump modes shown in Fig. 2(a). As a result, the
nontrivial boundary phenomenon of the 1D topological pump
is observable in the dynamical charge susceptibility.

The previous formulation of pumping modes in terms of
a dynamical response has the advantage that it can be also
defined for a purely many-body system, where single-particle
energies are no longer defined. In the next sections, we will ex-
plore in system that no longer have single particle excitations,
and thus require to compute the dynamical response function
from the many-body ground state explicitly. In the following,
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we will use such formulation to show the emergence of topo-
logical edge modes in modulated spin Heisenberg models, a
paradigmatic example of a modulated quantum many-body
Hamiltonian.

III. BOUNDARY EXCITATIONS OF TOPOLOGICAL
PUMPS IN MANY-BODY SYSTEMS

The mapping between a one-dimensional cosine-like long-
wavelength modulated Hamiltonian and a two-dimensional
quantum Hall state is valid in the free electron case. How-
ever, for strongly interacting superlattice Hamiltonians, such
a mapping cannot be readily done. In the following, our main
goal is to address whether boundary effects corresponding
to topological pumps appear also in a many-body dynamical
response for generic modulated quantum Heisenberg models.

Excitations in one dimensional S = 1/2 models are usu-
ally studied by means of Jordan-Wigner’s transformation and
bosonization techniques [77]. In this framework, low-energy
excitations are understood by means of Luttinger liquid ex-
citations [77]. This approximation, however, holds only for
small energies, which makes predictions concerning high-
energy excitations difficult. To treat high-energy excitations,
matrix-product techniques are very well suited, as they al-
low to exactly solve one-dimensional Hamiltonians without
relying on a low-energy approximation. In the following, we
harness a combination of a tensor-network formalism together
with kernel polynomial techniques to compute dynamical
structure factors, and show that superlattice many-body sys-
tems can host topological boundary modes in their excitation
spectrum. We now elaborate on the numerical procedure
that allows us to compute the dynamical properties of the
superlattice Heisenberg Hamiltonian Eq. (1).

A. Dynamical correlators with the DMRG-KPM method

The kernel polynomial method [69] (KPM) allows for the
computation of the function χ directly in frequency space,
by performing expansion in terms of Chebyshev polynomials.
For simplicity, we focus our discussion on a Hamiltonian H̄
whose ground-state energy is located at E = 0 and whose
excited states are restricted to the interval [0,1) [91], which
can be generically obtained by shifting and rescaling the
original Hamiltonian H → H̄ . The dynamical correlator χ for
the original Hamiltonian H can then be recovered by rescaling
back the energies in the dynamical correlator χ̄ of the scaled
Hamiltonian H̄ .

The dynamical correlator χ̄ for the Hamiltonian H̄ takes
the form

χ̄ (ω) = 〈GS|Sz
Nδ(ω − H̄ )Sz

N |GS〉, (7)

where |GS〉 is the many-body ground state of the system. To
compute the dynamical correlator, we perform an expansion
of the form

χ̄ (ω) = 1

π
√

1 − ω2

[
μ0 + 2

NP∑
l=1

μlTl (ω)

]
, (8)

where Tl are Chebyshev polynomials. The coefficients of the
expansion μl can be then computed as

μl =
∫ 1

−1
χ̄ (ω)Tl (ω)dω, (9)

which can be rewritten as

μl = 〈GS|Sz
N Tl (H̄ )Sz

N |GS〉. (10)

Taking into account the recursion relation of the Cheby-
shev polynomials

Tl (ω) = 2ωTl−1(ω) − Tl−2(ω), (11)

with T1(ω) = ω and T0(ω) = 1, the different coefficients μl

can be computed by iteratively defining the vectors

|w0〉 = Sz
N |GS〉, (12)

|w1〉 = H̄ |w0〉, (13)

|wl+1〉 = 2H̄ |wl〉 − |wl−1〉, (14)

so that |wl〉 = Tl (H̄ )Sz
N |GS〉.

In this way, the coefficients μl are computed as

μl = 〈GS|Sz
N |wl〉. (15)

To improve the convergence rate of the expansion, the coef-
ficients are redefined μl → gNP

l μl , using the Jackson Kernel

[92] gNP
l = (NP−l−1) cos π l

NP+1 +sin π l
NP+1 cot π

NP+1

NP+1 , to damp Gibbs os-
cillations [69]. The number of polynomials used NP controls
the natural smearing of the δ(x) function, yielding a smearing
that scales as 1/NP in units of the whole bandwidth. In
particular, the bigger the number of polynomials NP, the
sharper the spectral features will be. Given that the bandwidth
of the full Hamiltonian scales as S2L, the smearing in units
of the exchange coupling scales as S2L/NP. As a reference,
we took up to NP = 4000 for the S = 1/2 calculations, and
NP = 60000 for S = 2 calculations. With these coefficients,
the dynamical structure factors in the whole frequency range
can be computed with the same resolution using Eq. (8). The
previous procedure can be used also to compute dynamical
correlators between different sites simply by replacing the
operator Sz

N in Eq. (15).
Importantly, the KPM workflow can be readily imple-

mented within the matrix product state formalism [93–95]
using ITensor [70], which enables us [96] to compute the dy-
namical correlation function of many-body systems directly in
frequency space [97–100]. In the following, we demonstrate
the power of this method in identifying boundary modes of
topological pumps in the excitation spectrum of different spin
superlattices.

B. Boundary excitations of topological pumps in S=1/2 chains

We first focus on a spin chain with S = 1/2, as it repre-
sents a minimal many-body system whose topology can be
adiabatically connected to a noninteracting limit discussed
in Sec. II A. We consider a spin superlattice chain described
by the Hamiltonian Eq. (1). Due to the rotational symme-
try of Eq. (1), the different correlation functions are equiv-
alent χ xx(N, ω) = χ yy(N, ω) = χ zz(N, ω), which allows us
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FIG. 3. (a) Dynamical structure factor χ (ω) [Eq. (2)] in the
different sites of the chain averaged over φ for a Heisenberg spin
chain S = 1/2 of Eq. (1). It is observed that the bulk of the chain
shows a spectral gap, whereas at the edge the average spectral
function 〈χ (ω)〉φ signals the appearance of edge excitations. This can
be explicitly seen by looking at the dynamical structure factor χ (ω)
in the bulk (b), left edge (c), and right edge (d) as a function of φ,
showing states that thread through the gap at the edge while the bulk
shows a robust spectral gap at the high energy part of the spectrum.
The edge modes that pump with φ can be adiabatically connected to
the ones found in the noninteracting limit Fig. 2. Panel (e) shows the
bulk dynamical correlator in the anisotropic case 	 �= 1, showing
that the main excitation gap remains open as one goes from the
noninteracting (	 = 0) to the fully interacting (	 = 1) limit. We
took λ = 0.5 for panels (a)–(e), α = 0.66π for panels (a), (e) and
α = 0.7π for (b)–(d).

to fully characterize the state by means of a single-spin
orientation χ (N, ω) ≡ χ zz(N, ω). Moreover, it is worth to
recall the sum rule for the dynamical correlator

∫
χ (ω)dω =

〈GS|(Sz
N )2|GS〉, which for S = 1/2 yields

∫
χ (ω)dω = 1/4.

This sum rule implies that the spectral weight is conserved,
and thus sites that yield a finite in-gap response must compen-
sate by decreasing their response in another energy window.

We compute the dynamical structure factor χ (N, ω)
[Eq. (2)] at each site of the chain and average over different
pump parameters φ, as shown in Fig. 3(a). Whereas the bulk

of the system hosts an excitation gap, at the boundaries in-gap
excitations appear. A more detailed picture is obtained by
comparing the dynamical structure factor in the bulk and at
the boundary as a function φ; see Figs. 3(b)–3(d), respectively.
In the bulk, we observe a gap in the excitation spectrum
[Fig. 3(b)], whereas at the boundary excitations cross the
gap as a function of φ [Figs. 3(c) and 3(d)]. This is the
very same phenomenon that we detailed in the noninteracting
case [Figs. 2(e) and 2(f)], showing that topological gaps of
excited states of the noninteracting model survive the onset of
many-body interactions, and appear in the dynamical response
of the system [101–103].

The emergence of topological boundary modes as a func-
tion of φ happens for arbitrary values of α. First, let us recall
that in the noninteracting limit, the value of α was associated
to the magnetic field of the parent two-dimensional Hamilto-
nian, and thus edge modes appear for arbitrary values of α.
By adiabatically connecting the noninteracting Hamiltonian
Eq. (4) to Eq. (1) by means of Eq. (3), we have observed gaps
that do not close that support in-gap boundary modes in the
fully interacting limit for arbitrary values of α. In particular,
we show in Fig. 3(e) the bulk spectral function of Eq. (3)
as a function of 	, observing a bulk gap that remained open
for 	 ∈ (0, 1). In the strongly interacting limit of 	 = 1, the
existence of such bulk spectral gap and edge modes can be
observed by computing the dynamical structure factor as a
function of α both in the bulk and at the edge as shown in
Fig. 4. In particular, we observe that whereas the bulk shows a
robust spectral gap [Figs. 4(a) and 4(c)], the boundary shows
a finite spectral density in that very same energy window
[Figs. 4(b) and 4(d)], highlighting the emergence of in-gap
boundary modes for arbitrary modulation frequency α.

The adiabatic connection between the Heisenberg model
and free fermions is done by means of Eq. (3), which
in particular breaks rotational symmetry in the Heisenberg
Hamiltonian. Such rotational symmetry breaking makes the
different dynamical correlators χ zz and χ xx quantitatively
different. This motivates us to consider a mapping that retains
the spin rotational symmetry between the noninteracting limit
and the interacting one. Interestingly, besides the Jordan-
Wigner mapping introduced in Sec. II A the persistence of
the topological boundary modes can be mapped to completely
different free model, namely, a Harper-Hubbard model. This
additional mapping to a free fermionic system does not break
the rotational symmetry of the Hamiltonian, in strike compar-
ison with Eq. (3).

To perform the mapping to the Harper-Hubbard model, let
us consider a fermionic model similar to Eq. (4), but now for
spinful fermions with an onsite Hubbard interaction

Hφ = U
∑

N

c†
N,↑cN,↑c†

N,↓cN,↓

+ t
∑

N

[1 + λ cos(αN + φ)]c†
N,scN+1,s + H.c. (16)

For U = 0, the imaginary part of the spin suscep-
tibility of the previous Hamiltonian can be written
as χ0(N, ω, φ) ∼ ∑

μ,ν

fμ,ν

Eμ−Eν−ω+i0+ , with fμ,ν =
〈�μ|S+

N |�ν〉〈�ν |S−
N |�μ〉[n(Eμ) − n(Eν )] and �μ the different

single particle eigenstates of Eq. (16) for U = 0. Note that the

033009-6



TOPOLOGICAL SPIN EXCITATIONS IN HARPER- … PHYSICAL REVIEW RESEARCH 1, 033009 (2019)

FIG. 4. (a)–(d) Dynamical structure factor χ (ω) Eq. (2) averaged
over φ, for a Heisenberg spin chain S = 1/2 of Eq. (1), for different
modulation wave vectors α. Panel (a) [zoom in (c)] shows the bulk
and panel (b) [zoom in (d)] shows the edge χ (ω). It is observed
that whereas the bulk (a), (c) shows a spectral gap, the edge (b),
(d) shows a nonzero spectral weight, reflecting the emergence of the
edge modes at arbitrary modulation frequencies α. In the absence of
ZZ interaction in the Heisenberg model Eq. (1), panels (a), (c) would
be equivalent to panel Fig. 2(d). We took λ = 0.8 for panels (a)–(d).

previous expression is equivalent to the charge susceptibility
in the absence of symmetry breaking for the spinless chain
presented in Sec. II A. In particular, such susceptibility will
have analogous properties as the charge susceptibility of the
spinless fermionic chain in the noninteracting limit. As a
result, in the limit U = 0 the spin response can be understood
in the same way as the spinless fermionic free case. For
increasing values of U , the charge fluctuations of the system
develop a global gap that scales with U , whereas the spin
excitations are substantially less affected due to spin-charge
separation. In particular, we observe that the high energy
gaps in the dynamical spin-spin correlator remain open up
to large values of U . In particular, for large values of U ,
we can perform a Hubbard-Stratonovic transformation to the
Hamiltonian Eq. (16) and map it to the very same Hamiltonian
in Eq. (1), with J = 4t2/U . As a result, the spin excitations
in the noninteracting limit adiabatically evolve toward the
interacting limit, and thus its topological properties can be
once more inferred from the noninteracting scenario.

In this section, we have shown that the edge modes of
a modulated Heisenberg S = 1/2 chain can be adiabatically
connected to the topological modes of a non interacting limit.
This connection can be made both by means of a Jordan-
Wigner mapping to an interacting spinless fermion model,
or through a Hubbard-Stratonovic transformation to a spinful
Hubbard model. Irrespective of the mapping, the analytic
connection highlights the topological origin of the edge modes

in the modulated S = 1/2 Heisenberg model. In the following,
we address the next step in complexity, namely a modulated
S = 1 Heisenberg model, where the previous two mappings
are not trivially applied.

C. Boundary excitations of topological pumps in S = 1 chains

We now address the existence of boundary excitations
associated with a topological pump in a Heisenberg chain with
S = 1. In striking comparison with the S = 1/2 chains studied
above, S = 1 chains are much harder to theoretically study
as they cannot be easily connected to a noninteracting limit
and, as a result, we directly address the system using a full
many-body formulation of topological boundary modes. In
the following, we show that despite the missing noninteracting
limit, modulated S = 1 chains show similar topological in-gap
excitations.

It is instructive first to address the known limit of λ = 0,
that corresponds to a uniform S = 1 Heisenberg model. This
model is known to develop a bulk gap, which has been
shown numerically to converge to a value of 0.41J in the
thermodynamic limit [93]. Moreover, such model develops
gapless edge modes [93], namely, the Heisenberg model with
S = 1 has the particularity of hosting in-gap boundary modes
that originate from its topological nontrivial ground state.
Importantly, these modes appear without the requirement of
a superlattice modulation; see Fig. 5(a). As a result, for weak
superlattice modulations, the Hamiltonian can host simultane-
ously boundary modes originating from the original nontrivial
topology of the uniform limit [red circles in Fig. 5(b)], and
also pumping boundary modes arising from the longer-ranged
superlattice modulation [cyan circles in Fig. 5(b)]. For strong
modulations, the original topological gap of the uniform sys-
tem closes and only the topological pumping modes of the
superlattice survive.

We now proceed in an analogous way to the free electron
limit [Sec. II A] and to the S = 1/2 [Sec. III B]. First, in
Fig. 5(c), we show the local dynamical correlator at ev-
ery site of an S = 1 chain with open boundary conditions.
When averaged out over the different phases φ, the bulk of
the S = 1 spin chain shows an excitation gap as shown in
Fig. 5(c), alongside a finite spectral weight on the boundaries
in that very same gap. This phenomenon is the same as
the one observed for the S = 1/2 chain [cf. Fig. 3(a)]. The
nature of the edge weight can be understood by looking at
the φ-dependent dynamical structure factor. In particular, in
the bulk, it is observed that a spectral gap appears for every
φ; see Fig. 5(d). In comparison, at the boundary [Figs. 5(e)
and 5(f)], we see a pumping in-gap excitation that traverses
the gap as φ is varied.

The existence of a high energy bulk excitation gap together
with in-gap edge modes emerges for generic modulation
frequencies of the Heisenberg superlattice. This can be easily
observed by computing the Hofstadter spectra for the mod-
ulated S = 1 chain for different frequencies α; see Fig. 6.
In particular, we see that a spectral gap appears for a wide
range of modulation frequencies α [Figs. 6(a) and 6(c)]. For
any of those frequencies, computing the structure factor at the
boundary shows the existence of in-gap modes; see Figs. 6(b)
and 6(d).
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FIG. 5. (a) Dynamical structure factor in the different sites of the
chain for a uniform S = 1 Heisenberg model, showing the emergence
of topological modes at the edge (red circles). Panel (b) shows the
dynamical structure factor for a modulated S = 1 chain, showing
the coexistence of the preexisting zero modes (red circles) with
the topological pumping modes (cyan circles). Panel (c) shows the
dynamical structure factor for the different sites of a S = 1 chain
averaged over φ. Bulk (d), left edge (e), and right edge (f) dynamical
structure factors as a function of φ, showing states that thread through
the gap in the edge while the bulk shows an excitation gap in the high
energy part of the spectrum. We took α = π/

√
2 for panels (b)–(f),

λ = 0.4 for panel (b), and λ = 0.7 in panels (c)–(f).

For the S = 1 studied above, no mapping to a free interact-
ing limit can be easily performed. Nevertheless, we identify
topological boundary modes that traverse the gap in a similar
fashion to that understood in the free fermionic topological
pump limit. Given that in the strong interacting limit, the
computation of the Chern number cannot be performed, at this
stage, it is not possible to uniquely determine the invariant that
protects these gap crossings.

D. Boundary excitations of topological pumps
in high-spin chains

Previously, we focused on S = 1/2 and S = 1 chains, for
which we showed the emergence of topological pumping

FIG. 6. (a)–(d) Dynamical structure factor χ (ω) Eq. (2) averaged
over φ, for a Heisenberg spin chain S = 1 of Eq. (1), for different
modulation wave vectors α. Panel (a) [zoom in (c)] shows the bulk
and panel (b) [zoom in (d)] shows the edge χ (ω). It is observed
that whereas the bulk (a), (c) shows a spectral gap, the boundary
(b), (d) shows a nonzero spectral weight, reflecting the emergence
of the boundary modes at arbitrary modulation frequencies α. In
contract with the S = 1/2 chain of Fig. 4, the present case cannot
be adiabatically connected to the free fermion Hamiltonian Eq. (4).
We took λ = 0.8 for panels (a)–(d).

modes. We turn to study whether such physics survives
for higher-spin superlattice chains and, optimally, whether a
large-S limit could be identified [104]. Toward answering this
question, we now study the case of topological pumps for the
S = 3/2 and S = 2 Heisenberg superlattice models, following
an analogous procedure as the one highlighted in the previous
section.

We first point out several features of the large-S limit: the
physics of large-S spin chains resembles in certain aspects
the semiclassical limit. This can be qualitatively understood
from the fact that the commutation relation of the Sα matrices
become less relevant as the value of S increases. In this regard,
one could naively think that large-S Heisenberg models would
approach a classical limit with symmetry breaking, hosting a
Néel order. This is, however, not the case, as large-S Heisen-
berg chains still retain a singlet ground state with no symmetry
breaking, and thus their ground state must be treated within
a many-body framework [105]. In particular, according to
Haldane’s conjecture for integer S, the ground state of a
uniform Heisenberg model is expected to host a finite gap
whereas for half-integer it is expected to be gapless, which has
been verified for S = 1/2 [106,107], S = 1 [93,108], S = 3/2
[109,110], and S = 2 [111–113].

We consider the Heisenberg superlatttice chains of higher
spin, focusing on S = 3/2 and S = 2 cases. We show in Fig. 7
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FIG. 7. Dynamical structure factor χ (ω) at the edge (a), (c) and
bulk (b), (d) for a Harper-Heisenberg chain of Eq. (1), for spins
S = 3/2 (a), (b) and S = 2 (c), (d). In particular, panels (b), (d)
show the emergence of a spectral gap in the bulk, that hosts pumping
modes at the edge (a), (c). This situation is analogous to the pumping
shown for S = 1/2 in Fig. 3, S = 1 in Fig. 5, and ultimately the free
fermion case of Fig. 2. In comparison with the S = 1/2 case of Fig. 3,
a simple mapping with the free fermionic case of Fig. 2 cannot be
performed. We took α = π/

√
2 and λ = 0.5 for panels (a)–(d).

the bulk and edge spectra as a function of the pumping param-
eter φ for an S = 3/2 and an S = 2 spin chain, which again
show the emergence of boundary pumping edge excitations in
bulk spectral gaps. In particular, we observe that the spectra
for S = 3/2 and S = 2 are qualitatively similar apart from an
overall bandwidth increase. The bandwidth increase can be
understood in terms of an increase in the spin stiffness arising
from the higher spin of the chain. The similarity in the spectra
suggests that the system is reaching a large-S limit, implying
that the topological pumping states are a generic feature of
modulated quantum spin chains.

IV. CONCLUSION

We have shown that quantum spin superlattice chains host
topological excitations originating from the mapping of the
superlattice to a topological pump. Specifically, we have
shown that the emergence of such boundary modes in S = 1/2
chains can be understood using a continuous deformation into
a free-particle superlattice, where the 1D topological pump
and its boundary modes are equivalent to a scan over the
physics of the integer 2D quantum Hall state. The fact that
we can perform this deformation between the 1D interacting
Heisenberg model and the 1D free-fermion case demonstrates
that at excitation gaps that do not close, the boundary in-
gap excitations share the same topological origin. Such a
deformation is verified numerically, showing bulk spectral
gaps that do not close as one adiabatically goes from the free
fermion limit to the Heisenberg limit. This is a first strong in-
dication that the geometrical length-scale competition leading
to nontrivial topology in single-particle models, carries on to
the many-body world. Crucially, we have shown that the very
same topological boundary excitations appear in higher-S spin
chains, suggesting that the emergence of topological boundary
modes is a generic feature of superlattice Hamiltonians, even
when an adiabatic connection to a free-particle model is not
known.

Our findings have several important consequences: (i)
our results motivate possible further extensions of topolog-
ical characterization to superlattice many-body systems and
their excitation gaps; (ii) we show that long-ranged spatial
modulations in many-body 1D systems provide a platform
to study topological effects and their interplay with other
many-body effects, such as critical exponent and many-body
localization; (iii) our results highlight that modulated Heisen-
berg systems provide a compelling framework to explore the
interplay of topological pumping excitations and quantum
magnetism; and (iv) using contemporary numerical methods,
we can explore a whole new range of many-body phenomena
corresponding to excitations far above common low-energy
treatments.
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