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Nonequilibrium Majorana dynamics by quenching a magnetic field in Kitaev spin liquids
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The honeycomb Kitaev spin model provides a quantum spin liquid in the ground state, where the spin
excitations are fractionalized into itinerant and localized Majorana fermions; the former spectrum has a broad
continuum ranging up to a high energy, while the latter has a sharp peak at a low energy. Despite tremendous
efforts, it remains elusive to clearly identify these distinct Majorana excitations in experiments. Here we show
their manifestation in the time evolution after quenching the magnetic field, by using the time-dependent
Majorana mean-field theory for both the ferromagnetic and antiferromagnetic Kitaev models. We find that the
transient spin dynamics from the quantum spin liquid states is qualitatively different from the conventional spin
precessions by the quench from the high-field forced-ferromagnetic state. We obtain peculiar time evolutions
with distinct timescales, i.e., short-time decay of high-energy components associated with the itinerant Majorana
excitations, and long-lived excitations at a low energy by the localized ones. These peculiar behaviors are caused
by the energy transfer between the two Majorana quasiparticles after the field quench. Moreover, we find that the
Majorana semimetal with the point nodes in equilibrium turns into a Majorana metal with the transient “Fermi
surfaces” by the energy transfer. In particular, for the quench from the intermediate-field quantum spin liquid
in the antiferromagnetic Kitaev model, the Fermi surfaces change their topology in the time evolution, which
is regarded as a dynamical version of the Majorana “Lifshitz transition.” Our results unveil that the real-time
dynamics provides another route to not only the identification of the fractional Majorana excitations in candidate
materials of Kitaev magnets but also unprecedented quantum phases that cannot be stabilized as the equilibrium
states.
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I. INTRODUCTION

Fractionalization of fundamental degrees of freedom in
quantum many-body states is one of the most fascinating
subjects in condensed matter physics. Among others, quantum
spin liquids (QSLs), where any long-range magnetic order is
absent down to the lowest temperature, have been intensively
studied as a playground for the fractionalization of the spin
degree of freedom [1,2]. Antiferromagnets on geometrically
frustrated lattices are considered as typical candidates ex-
hibiting QSLs [3]. In QSLs, elementary excitations from
the ground state are predicted to be described as fractional
quasiparticles, such as spinons and visons [4–9]. However, the
clear identification of such fractional excitations, especially in
more than one dimension, is a long-standing challenge in both
theories and experiments.

Recently, the Kitaev model, which is a quantum spin model
with bond-dependent interactions between localized S = 1/2
magnetic moments, has attracted considerable attention as
its ground state is exactly shown to be a QSL [10–15].
The excitations from the QSL ground state are described
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by two kinds of Majorana quasiparticles emergent from the
fractionalization of spins: One is itinerant Majorana fermions,
whose energy band ranges continuously from zero energy to
a high energy of O(J ) (J is the bare exchange coupling), and
the other is localized Majorana fermions, whose excitations
are gapped and form a flat band at a low energy of O(0.1J ).
To identify these fractional quasiparticles with distinct energy
scales, thermodynamic quantities, spin dynamics, and trans-
port properties have been investigated theoretically [16–37]
and measured in candidate materials such as iridium oxides
and ruthenium compounds [38–50]. Despite tremendous at-
tempts, the experimental observation of these quasiparticles
remains elusive. This is partly because the spin excitations
measured in experiments are usually given by a composite of
the two types of Majorana fermions, and it is hard to observe
them separately.

An effective technique to observe elementary excitations
with distinct energy scales is nonequilibrium measurements
for transient dynamics. For instance, in Mott insulators in low
dimensions, the transient carrier injection via photoirradia-
tion was theoretically examined for the observation of spin
and change excitations separately [51–53]. Indeed, the spin-
charge separation was clarified experimentally in quasi-one-
dimensional organic compounds by using the femtosecond
pump-probe spectroscopy [54–56]. In addition, for quasi-two-
dimensional organic molecular salts exhibiting a charge dis-
proportionation, pump-probe experiments clarified that two
excitations, high-energy charge dynamics and low-energy
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molecular vibrations, appear to be decoupled in the time do-
main; the charge dynamics is observed in the early-time stage
and quickly decays, and after that, the molecular vibration
dynamics is observed for a longer time [57–59]. Thus, the
transient dynamics is useful to identify distinct excitations in
strongly correlated electron systems.

A similar technique for nonequilibrium dynamics might be
a promising tool to observe the fractional quasiparticles with
distinct energy scales in the Kitaev QSLs. Thus far, several
theoretical works have been done for the nonequilibrium
spin dynamics of the Kitaev model [60–67]. For instance,
time evolutions by quenching the exchange interactions were
discussed, and unconventional scaling laws were found for
correlation functions [61–63]. Moreover, the Floquet states
under periodically altered exchange interactions were studied
to realize the unusual change of the Majorana fermion bands,
such as nonequilibrium topological transitions [64,65]. Al-
though these theoretical proposals are intriguing, their exper-
imental confirmation has not yet been done, mainly because
it is difficult to realize such a real-time modulation of the
exchange interactions experimentally. Furthermore, it is not
obvious how the fractional excitations are identified in the
dynamical behaviors. It is therefore desired to propose another
feasible way of driving interesting nonequilibrium dynamics
related with the fractional excitations in the Kitaev QSLs.

In this paper, we investigate the transient spin dynamics in
the Kitaev model yielded by quenching an external magnetic
field. By exploiting a time-dependent version of the mean-
field (MF) approximation in the Majorana fermion representa-
tion (Majorana MF theory) [68], we calculate the time evolu-
tions of the magnetization and spin correlations after the field
quench for both ferromagnetic (FM) and antiferromagnetic
(AFM) Kitaev models. We find that the transient dynamics is
qualitatively different depending on the quantum phase before
quenching. In the case of the quench from the high-field
forced-FM phase, where the fractionalization is absent, the
transient spin dynamics is a conventional one originating from
the precessional motion of spins; two Majorana fermions are
strongly coupled and indistinguishable in the time evolution.
In stark contrast, in the quench from the low-field QSL phase
connected to the zero-field Kitaev QSL, two quasiparticles are
separately observed in the time evolutions of spin correlations
with distinct timescales. We show that such fractional dynam-
ics is observed in a more peculiar manner for the quench
from the intermediate-field QSL phase that appears only in
the AFM Kitaev model. The peculiar behaviors are discussed
by the transfer of the exchange energy from the itinerant to
localized Majorana quasiparticles by the field quench. We also
find that the energy transfer turns the Majorana semimetal
with the point nodes into a Majorana metal with the transient
“Fermi surfaces” in the Majorana fermion bands. In particular,
in the case of the intermediate-field QSL in the AFM Kitaev
model, one of the Majorana Fermi surfaces evolves from
an open to a closed one, which is regarded as a dynamical
version of the “Lifshitz transition.” We discuss the possibility
of experimental observations of our results, e.g., by magneto-
optical effects and transient hidden phases via the Peierls
instability.

This paper is organized as follows. In Sec. II, we introduce
the Kitaev model with a time-dependent magnetic field and its

FIG. 1. Schematic picture of the Kitaev model in Eq. (1) on
the honeycomb structure. The bond-dependent Ising-type interaction
−JSγ

j Sγ

j′ (γ = x, y, z) is defined on the γ bonds represented by blue,
green, and red for γ = x, y, and z, respectively.

Majorana fermion representation. We also discuss the funda-
mental aspect of the spin fractionalization and its implication
in the dynamical spin structure factor, which is relevant in the
following sections. In Sec. III, we present the framework of
the time-dependent Majorana MF theory. In Sec. IV, we show
the results for the transient dynamics of the magnetization and
spin correlations (Sec. IV A) and the Majorana fermion states
(Secs. IV B and IV C). We discuss the relevance of our results
in Sec. V, focusing on the experimental observations. Finally,
Sec. VI is devoted to the summary. The validity of the present
method is discussed in the Appendix.

II. MODEL

We consider the Kitaev model under the time-dependent
magnetic field, whose Hamiltonian is given by

H(t ) = −J
∑
〈 j j′〉γ

Sγ
j Sγ

j′ − h(t )
∑

j

Sz
j, (1)

where 〈 j j′〉γ stands for a nearest-neighbor (NN) bond of the
honeycomb lattice connecting sites with S = 1/2 localized
spins and the superscript γ (=x, y, z) distinguishes three kinds
of inequivalent bonds shown in Fig. 1. We assume that all
exchange constants are the same as J , and h(t ) is the magnetic
field along the Sz direction as a function of time t . While the
following calculations can be applied to any h(t ), we here
limit ourselves to the time dependence given by

h(t ) =
{

h, for t � 0,

0, for t > 0,
(2)

which mimics a sudden quench of the magnetic field.
The spin Hamiltonian can be rewritten by introducing Ma-

jorana fermions. Kitaev originally introduced four Majorana
fermions for each spin and showed that the Hamiltonian is
written by itinerant Majorana fermions coupled with local-
ized gauge fields in the absence of the magnetic field [10].
This representation extends the Hilbert space, and hence, a
projection onto the original model space is needed for each
local gauge field. Another Majorana fermion representation
was introduced by the Jordan-Wigner transformation [69–71],
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where each spin is represented by two Majorana fermions.
As this representation does not extend the Hilbert space, no
projection is needed. In the present study, we employ the
two-Majorana representation to avoid the projection which
may require an uncontrolled approximation.

By applying the Jordan-Wigner transformation and in-
troducing a Majorana fermion representation [22,69–72] to
Eq. (1), we can rewrite the spin model in Eq. (1) into the
interacting Majorana fermion model as

H(t ) = − iJ

4

∑
γ=x,y

∑
〈 j j′〉γ

a jb j′ − J

4

∑
〈 j j′〉z

ia jb j′ iā j b̄ j′

− ih(t )

2

⎛
⎝∑

j∈A

a j ā j −
∑
j′∈B

b j′ b̄ j′

⎞
⎠, (3)

where a j and ā j (b j′ and b̄ j′ ) are the Majorana fermions
defined on site j ( j′) of the A (B) sublattice, which is shown
by the black (white) circles in Fig. 1. The spin operators on
the A and B sublattices are explicitly given by

Sx
j = a j

2

∏
j′′< j

(− 2Sz
j′′
)
, Sy

j= − ā j

2

∏
j′′< j

(−2Sz
j′′
)
,

Sz
j = i

2
a jā j, (4)

and

Sx
j′ = b̄ j′

2

∏
j′′< j′

(−2Sz
j′′
)
, Sy

j′ = −b j′

2

∏
j′′< j′

(−2Sz
j′′
)
,

Sz
j′ = i

2
b̄ j′b j′ , (5)

respectively, where the sites are numbered along the chain
consisting of the x and y bonds.

The Kitaev model is exactly solvable in the absence of the
magnetic field (h = 0). The ground state is obtained as an
eigenstate in the Majorana representation in Eq. (3) without
the last term; the Majorana fermions {ā, b̄} are localized on
the z bonds, while {a, b} are itinerant. The excitations from the
ground state are described by the itinerant and localized Ma-
jorana fermions. These two types of Majorana fermion excita-
tions have distinct energy scales, and affect thermodynamics
and spin dynamics in a particular manner. Among them, the
dynamical spin structure factor S(q, ω), which is measured in
neutron scattering experiments, is important for the following
discussions in the time evolutions of the magnetization and
spin correlations. Let us focus on the uniform component
S(q = 0, ω), which is relevant in the quench of the spatially
uniform magnetic field considered here. In the FM case (J >

0), S(q = 0, ω) exhibits two distinct structures: a low-energy
coherent peak at ∼0.1J and high-energy incoherent feature
up to ∼2J [18,21]. The former mainly originates from the
localized Majorana fermions {ā, b̄}, while the latter from the
itinerant ones {a, b}. On the other hand, such a coherent peak
appears around the Brillouin zone boundary and is absent
at q = 0 in the AFM case (J < 0); S(q = 0, ω) has only a
broad incoherent spectrum [18,21] (see also Fig. 12 in the
Appendix).

A nonzero h hybridizes the two types of Majorana fermions
through the last term in Eq. (3), and the exact solvability is lost
(see Sec. IV B 1). In the following, we describe the ground
state before the field quench (t � 0) by using the Majorana
MF theory, and track the time evolution of the wave function
by using the time-dependent version of the Majorana MF
theory introduced in the next section.

III. METHOD

A. Time-dependent Majorana MF theory

In this section, we introduce the Majorana MF the-
ory for the time-dependent Hamiltonian. Before intro-
ducing the framework, let us briefly review the Majo-
rana MF theory for the Kitaev model in the equilib-
rium state under a static magnetic field [68]. In this
theory, the Majorana interactions in the second term
of Eq. (3) are decoupled by introducing the Hartree-
Fock type MFs as ia jb j′ iā j b̄ j′ � −iXb j′ b̄ j′ − iYa j ā j + XY +
i�̄ajb j′ + i�ā j b̄ j′ − ��̄ − i�ā jb j′ − i�̄a jb̄ j′ + ��̄, where
j ( j′) is the A-sublattice (B-sublattice) site on the corre-
sponding z bond and the MFs are defined by X = i〈ajā j〉,
Y = i〈b j′ b̄ j′ 〉, � = i〈a jb j′ 〉, �̄ = i〈ā j b̄ j′ 〉, � = i〈a jb̄ j′ 〉, and
�̄ = i〈ā jb j′ 〉. Note that the MFs are assumed to be spatially
uniform for simplicity. Then, the MF Hamiltonian is obtained
in the bilinear form in terms of the Majorana fermion op-
erators, which can be easily diagonalized in the reciprocal
space. The details are given in the Supplemental Material in
Ref. [68].

We extend the Majorana MF theory for the time-dependent
Hamiltonian in Eq. (3), following the conventional time-
dependent MF theory applied to correlated electron systems
[73–78]. In this framework, each one-particle state |φkν (t )〉
evolves with time t obeying the Schrödinger equation:

i
∂|φkν (t )〉

∂t
= HMF

k (t )|φkν (t )〉, (6)

where HMF
k (t ) is the MF Hamiltonian in the reciprocal space

with wave number k. This equation can be formally solved as

|φkν (t )〉 = T exp

[
−i

∫ t

0
HMF

k (t ′)dt ′
]
|φkν (0)〉, (7)

where T is the time-ordering operator. Thus, when consider-
ing an infinitesimal time evolution δt , the wave function is
obtained as

|φkν (t + δt )〉 =
∑

μ

〈ϕkμ(t )|φkν (t )〉e−iεkμ(t )δt |ϕkμ(t )〉, (8)

where ϕkμ(t ) is a one-particle eigenstate of HMF
k (t ) with

the eigenenergy εkμ(t ). Note that the norm of |φkμ(t )〉 is
conserved and taken to be unity.

In the present case, we start from the system with a nonzero
magnetic field h > 0 at t = 0. We describe the initial state by
using the Majorana MF theory for the equilibrium state; the
MFs are obtained by performing iterative calculations until
the convergence, and the one-particle occupied eigenstates
|φkν (0)〉 are calculated for the converged MFs. At t = 0+,
the magnetic field is quenched to zero, and |φkν (0)〉 is no
longer the eigenstate of the MF HamiltonianHMF

k (t > 0). We
diagonalize HMF

k (0+) by using the MFs at t = 0, and obtain
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ϕkμ(0+) and εkμ(0+). By applying Eq. (8) for a small time
evolution �t , we can evaluate |φkν (�t )〉. Using the many-
body state composed of the occupied states |φkν (�t )〉, we cal-
culate the MFs at t = �t and construct the MF Hamiltonian
HMF

k (�t ) with these MFs. Then, we can evaluate |φkν (2�t )〉
by using Eq. (8). By repeating the above procedures, we
can compute the time evolutions of the wave function, the
eigenenergy, and the MFs. In the following calculations, the
time step is taken to be �t/|J|−1 = 0.00133.

It has been pointed out that calculations for the dynamical
quantities do not work well using the static MF theory [79].
On the other hand, in the present study, we evaluate the spin
and/or Majorana dynamics on the basis of the time evolution
of the MFs including the hybridization between two Majorana
fermions induced by the field quench. The validity of the
present method and the numerical precision are discussed in
the Appendix.

B. Wavelet analysis

To analyze the time dependence of physical quantities, we
adopt the continuous wavelet transformation, which is widely
used for time-dependent spectra. This enables us to extract
characteristic frequencies and track their time evolution in
time-dependent quantities. The wavelet transformation of the
time-dependent function f (t ) is generally given by

w(a, b) = 1√
a

∫
{ f (t ′) − f0}

{
ψ

(
t ′ − b

a

)}∗
dt ′, (9)

where a and b are the scaling and time parameters, respec-
tively, and f0 is the long-time average of f (t ). In the present
study, we use the Morlet wavelet for ψ (t ) in Eq. (9), which is

given by

ψ (t ) = π−1/4(eiω0t − e−ω2
0/2)e−t2/2, (10)

where ω0 is the dimensionless center frequency. The wavelet
scalogram W (t, ω) is obtained by using Eq. (9) as

W (t, ω) =
∣∣∣w(ω0

ω
, t

)∣∣∣. (11)

In the following calculations, we take the long-time average f0

for 60 � t/|J|−1 � 266.7 and ω0 = 6. In the present study, we
apply this analysis to the time evolutions of the magnetization
and spin correlations.

IV. RESULT

A. Time evolution of magnetization and spin correlations

1. Initial state at t = 0

Before showing the time evolution after the field quench,
let us discuss the initial state at t = 0 under the magnetic
field h. As described in Sec. III A, the initial state is ob-
tained by the static Majorana MF theory; the results were
obtained in the previous study for both FM and AFM cases
[68]. Figures 2(a) and 2(c) show the magnetization in the z
direction, Mz = 1

N

∑
j〈Sz

j〉, as a function of the static field h
for the FM and AFM Kitaev models, respectively (N is the
number of spins in the system). In the FM case, there is a
discontinuous phase transition at hc/|J| � 0.0421 associated
with a jump of the magnetization as shown in Fig. 2(a). This
is a phase transition from the low-field Kitaev QSL phase
to the high-field forced-FM phase [see the phase diagram
above Fig. 2(a)]. On the other hand, in the AFM case, two
successive phase transitions take place: a continuous one at

FIG. 2. Magnetic-field dependence of (a), (c) the magnetization and (b), (d) the kinetic energy of the Majorana fermions for (a), (b) the
FM Kitaev model and (c), (d) the AFM one under the static magnetic field.
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hc1/|J| � 0.417 and a discontinuous one at hc2/|J| � 0.503,
as shown in Fig. 2(c). Thus, the AFM Kitaev model shows
an intermediate phase between the low-field Kitaev QSL
and the high-field forced-FM phases [see the phase diagram
above Fig. 2(c)]. This intermediate phase is identified as
another QSL, and the continuous phase transition at hc1

is accompanied by a topological change in the Majorana
fermion band [68,80]. A similar intermediate QSL phase
in the AFM case was pointed out also by other theoretical
calculations [81–84].

As mentioned in Sec. II, at h = 0, the spin excitations are
fractionalized into itinerant and localized Majorana fermions,
{a, b} and {ā, b̄}, respectively. The introduction of h hybridizes
these two quasiparticles through the last term in Eq. (3), which
makes {ā, b̄} also itinerant in the presence of the magnetic
field (see the discussion of the Majorana band structure in
Sec. IV B 1). To see these behaviors, we introduce the kinetic
energies of the two kinds of Majorana fermions as

K = − 1

2N

∑
〈 j j′〉x

〈ia jb j′ 〉, K̄ = − 1

2N

∑
〈 j j′〉y

〈iā j b̄ j′ 〉. (12)

In the original spin representation, these are equivalent to the
spin correlations:

K = 2

N

∑
〈 j j′〉x

〈
Sx

j S
x
j′
〉
, K̄ = 2

N

∑
〈 j j′〉y

〈
Sx

j S
x
j′
〉
. (13)

Note that K describes the spin correlation of the x component
on the x bonds, namely, for the spin component connected by
the exchange coupling J , whereas K̄ is for the x component on
the y bonds, namely, the noninteracting spin component [see
Eq. (1)]. Figures 2(b) and 2(d) show |K| and |K̄|, respectively,
as functions of h. In the absence of the magnetic field, |K̄|
is zero while |K| is nonzero in both FM and AFM cases,
indicating that the Majorana fermions {ā, b̄} are localized
while {a, b} are itinerant. By introducing h, |K̄| becomes
nonzero because of the hybridization as expected above. In the
forced-FM phase, the two kinetic energies take the same value
in both FM and AFM cases, which reflects the disappearance
of the spin fractionalization.

2. Ferromagnetic case

First, we show the results of the time evolution in the FM
Kitaev model. The upper panel of Fig. 3(a) shows the time
dependence of the magnetization Mz(t ) after the field quench
from the QSL state at h/|J| = 0.0420 just below hc/|J| �
0.0421. The magnetization oscillates around zero after the
magnetic field vanishes. The time dependence is close to a
simple cosine curve, implying the weak time dependence of
the frequency. This is confirmed by the wavelet transformation
introduced in Sec. III B, as shown in the wavelet scalogram in
the lower panel of Fig. 3(a); the frequency is almost constant
∼0.1|J| as a function of time. This energy scale is close to that
of the sharp peak in the dynamical spin structure factor S(q =
0, ω) in the equilibrium state at h = 0, which predominantly
originates from the Majorana fermions {ā, b̄}, as discussed
in Sec. II [18,21] [see also Fig. 12(a) and Eq. (A1) in the
Appendix]. Thus, the result suggests that the long-lived slow

oscillation of the magnetization predominantly governed by
the Majorana excitations described by {ā, b̄}.

We also calculate the time developments of K and K̄ . The
results are shown in Figs. 3(b) and 3(c) with their wavelet
scalograms. In the early-time period up to t/|J|−1 ∼ 5, there is
a high-energy broad structure with a relatively weak spectral
weight in K , as shown in the scalogram of Fig. 3(b). This
appears to correspond to the high-energy incoherent spectrum
in S(q = 0, ω) [18,21] [see Fig. 12(a) in the Appendix].
While increasing t , this broad structure disappears and there
remains a long-lived oscillation with the frequency of ∼0.4|J|.
On the other hand, K̄ does not show such a high-energy broad
structure, while the oscillation is somewhat deformed in the
early stage, as shown in Fig. 3(c). The frequency of the long-
lived component appears at ∼0.25|J| and shows different time
evolution from that of K ; while the intensity of K is gradually
suppressed by the elapse of time, that of K̄ is enhanced.
The distinct time dependence between the Majorana fermions
{a, b} and {ā, b̄} is interpreted as a consequence of the spin
fractionalization observed in the time domain. The difference
of the frequencies in K and K̄ will be discussed in Sec. IV B 2.

For comparison, we compute the time evolution for the
quench from the forced-FM state. Figures 3(d), 3(e), and 3(f)
display the time evolutions of Mz, K , and K̄ , respectively,
at h/|J| = 0.15 well above hc. All the results show damped
oscillations, where the amplitude decreases and the frequency
is almost constant. The damping occurs because the total Sz

is not a good quantum number in the Kitaev model. The
important point is that the time evolutions in K and K̄ are
identical except for the sign, indicating that the dynamics of
the Majorana fermions {a, b} and {ā, b̄} is indistinguishable.
The same behavior is also observed for the quench from
the forced-FM state in the AFM case (not shown) [85].
These imply that the spin fractionalization is not observed
in the field quench from the forced-FM state, where there
is no fractionalization in the equilibrium state, as shown in
Sec. IV A 1. The transient dynamics is understood simply by
the spin precession. This is in sharp contrast to the fractional
dynamics observed in the quench from the QSL in Figs. 3(b)
and 3(c).

3. Antiferromagnetic case: Kitaev QSL

Next, we study the time evolution in the AFM Kitaev
model, which exhibits two different QSLs before entering the
forced-FM phase in the static magnetic field, as described
in Sec. IV A 1. In this section, we focus on the results for
the field quench from the low-field Kitaev QSL state below
hc1/|J| � 0.417.

Figures 4(a)–4(c) show the time evolutions in the field
quench from h/|J| = 0.3. As shown in Fig. 4(a), the mag-
netization damps rapidly for t/|J|−1 � 10. The early-stage
dynamics has a broad spectrum for 1 � ω/|J| � 3 as observed
in the wavelet scalogram. Similar behavior is found in the time
evolution of K shown in Fig. 4(b). This result implies that
the dynamics of the magnetization is predominantly ascribed
to the excitation of the Majorana fermions {a, b}. On the
other hand, K̄ shows a long-lived quasicoherent oscillation,
as shown in Fig. 4(c). These results suggest that the dynamics
of the Majorana fermions {a, b} and {ā, b̄} are well separated
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FIG. 3. Time evolutions of (a) Mz, (b) K , and (c) K̄ , and their wavelet scalograms in the FM Kitaev model for the field quench from
h/J = 0.0420 (Kitaev QSL state). (d)–(f) Corresponding plots from h/J = 0.15 (forced-FM state). The dotted lines represent the long-time
averages of each quantity.

and exhibit distinct characteristics; the former emerges as
higher-energy excitations with a short lifetime, whereas the
latter as low-energy but long-lived excitations.

The distinct behavior is qualitatively understood in the
original spin picture. As shown in Eq. (13), K represents the
NN correlation for the interacting spin component, whereas
K̄ corresponds to that for the noninteracting one. Before
quenching, the magnetic field renders spins aligned against
the AFM interactions. After the forced alignment is released
by the quench, the energy accumulated in the interacting spin
component is transferred to the noninteracting ones, which
can fluctuate more freely. Such behavior is indeed seen in
the time evolutions in Figs. 4(b) and 4(c). This would be the
reason why the long-lived oscillation appears in K̄ , whereas
it is absent in K . Similar behavior is found also in the FM
case although the accumulation energy and its transfer are
much smaller than the AFM case; see Figs. 3(b) and 3(c).
Thus, the energy transfer between the two kinds of Majorana

fermions in the early-time stage and the resultant long-lived
oscillation in K̄ are common features to the QSLs driven
by the energy transfer between the itinerant and localized
Majorana fermions.

On the other hand, a qualitative difference is also present
between the FM and AFM cases in the time evolution of
Mz; namely, it shows a long-lived oscillation in the FM case
[Fig. 3(a)], but damps quickly in the AFM case [Fig. 4(a)].
This is understood from the difference in the dynamical
spin structure factor S(q = 0, ω) in the equilibrium state at
h = 0 [18,21] discussed in Sec. II (see also Fig. 12 in the
Appendix). As mentioned in Sec. IV A 2, the low-energy
peak in S(q = 0, ω) leads to the slow oscillation of Mz in
the FM case. On the other hand, such a low-energy coherent
peak is absent in the AFM Kitaev model, leaving only a high-
energy broad structure, as described in Sec. II. This results
in the absence of the low-energy component observed in
Fig. 4(a).
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FIG. 4. Time evolutions of (a) Mz, (b) K , and (c) K̄ , and their wavelet scalograms in the AFM Kitaev model for the field quench from
h/J = 0.3 (Kitaev QSL state). (d)–(f) Corresponding plots from h/J = 0.45 (intermediate QSL state). The dotted lines represent the long-time
averages of each quantity.

4. Antiferromagnetic case: Intermediate QSL

More conspicuous time evolutions are found in the case
of the quench from the intermediate QSL state between
hc1/|J| � 0.417 and hc2/|J| � 0.503. The representative re-
sults are shown for h/|J| = 0.45 in Figs. 4(d)–4(f). As shown
in the upper panel of Fig. 4(d), the magnetization exhibits
two-step transient dynamics: a high-frequency oscillation in
the early-time stage and a slower oscillation in the longer-time
range. This peculiar time evolution is clearly observed in the
wavelet scalogram. The high-energy broad structure appears
for 1 � ω/|J| � 3, which quickly decays for t/|J|−1 � 10.
This can be attributed to the Majorana fermions {a, b} because
a similar scalogram is observed for K in Fig. 4(e). Similar
correspondence was observed also for the low-field QSL case
in Figs. 4(a) and 4(b). On the other hand, the scalogram
in Fig. 4(d) indicates the enhancement of the low-energy
component with a narrow peak at ω/|J| ∼ 0.2 caused by the

elapse of time. Similar behavior is observed in K̄ shown in
Fig. 4(f), suggesting that this is ascribed to the Majorana
fermions {ā, b̄}. Thus, the dynamics of the magnetization
reflects both features of {a, b} and {ā, b̄} in this case. This
behavior will be discussed in Sec. IV B 4.

B. Time evolution of Majorana bands

In the previous section, we clarified the time evolutions
of the magnetization and spin correlations, and elucidated
how the spin fractionalization manifests itself in the transient
dynamics through the distinct lifetimes of the quasiparticles.
The quasiparticles, Majorana fermions {a, b} and {ā, b̄}, are
hybridized in the presence of the magnetic field, and the hy-
bridization is retained even after the field quench. This induces
the interesting dynamics in the cases of quenching from the
QSLs with fractional excitations. In this section, we analyze
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directly the time evolution of the Majorana fermion states to
further clarify the characteristic nonequilibrium dynamics.

In the following, we calculate the time dependence of the
Majorana band structure. To define the Majorana band, we
introduce complex fermions to diagonalize the Majorana MF
Hamiltonian as

HMF =
∑

k

∑
μ=−1,−2

Ekμ

(
f †
kμ

fkμ − 1

2

)
, (14)

where f †
kμ

and fkμ are creation and annihilation operators
of the complex fermions, respectively, and μ is the band
index. The details are given in the Supplemental Material in
Ref. [68]. In the equilibrium state, the eigenenergy Ekμ =
2εkμ is negative for the two bands with μ = −1 and −2 [εkμ

is the eigenvalue of Eq. (6)]. The ground state is described
by the fully occupied state of the two bands, whose energy is
given by

Eg =
∑

k

∑
μ=−1,−2

Ekμ

2
, (15)

and the excited states are expressed by annihilation of the f
fermions. The density of states (DOS) of the occupied bands
is defined as

Docc(ω) = 1

N

∑
k

∑
μ=−1,−2

δ(ω − Ekμ). (16)

In the time-dependent Majorana MF method, the filled
bands evolve adiabatically, and therefore, the two bands re-
main to be occupied in the time development of the ground
state after the field quench. To track the hybridization of the
bands in the elapse of time, we introduce the occupations for
two kinds of Majorana fermions {a, b} and {ā, b̄} as

nkμ = 〈φkμ|(a†
kak + b†

kbk)|φkμ〉 (17)

and

n̄kμ = 〈φkμ|(ā†
kāk + b̄†

kb̄k)|φkμ〉, (18)

respectively, where ck (c = a, b, ā, b̄) is the Fourier trans-
form of c j . Note that n̄kμ = 1 − nkμ. In the presence of the
hybridization, nkμ and n̄kμ take values between 0 and 1.
Therefore, as a measure of the hybridization, we compute the
time evolution of

wkμ = nkμn̄kμ. (19)

This quantity does not depend on the band, and hence, we
drop the band index μ and denote it as wk hereafter.

1. Initial state at t = 0

Before showing the results of the time-dependent Majo-
rana bands, we briefly discuss the Majorana bands in the
equilibrium states under the magnetic field. Figure 5 shows
the Majorana band structures at several magnetic fields in the
FM and AFM Kitaev models, obtained by the static Majorana
MF theory. At h = 0, where the Majorana MF theory gives
the exact solution, there are dispersive and flat bands, which
originate from the itinerant Majorana fermions {a, b} and the
localized ones {ā, b̄}, respectively [Fig. 5(a)]. The dispersive
band has nodal points with linear dispersions at the K points.

FIG. 5. Majorana band structures in the static magnetic field for
(a) h/|J| = 0 (Kitaev QSL) in both FM and AFM cases, (b) h/|J| =
0.0420 (Kitaev QSL) in the FM case, (c) h/|J| = 0.15 (forced FM) in
the FM case, (d) h/|J| = 0.3 (Kitaev QSL) in the AFM case, and (e)
h/|J| = 0.45 (intermediate QSL) in the AFM case. The dispersions
are shown along the red lines in the Brillouin zone depicted in the
top right. The color stands for nkμ − n̄kμ for the corresponding band
μ with the wave number k.

In this case, the dispersions in the FM and AFM cases are
identical. By introduction of h, these two kinds of bands
are hybridized, and exhibit anticrossing behavior, as shown
Figs. 5(b), 5(d), and 5(e); the flat band becomes dispersive
with a narrow bandwidth, whose typical energy is pushed up,
while the anticrossed dispersive band is pushed down, in a
different manner between the FM and AFM cases. At the same
time, the nodal points shift horizontally in the Brillouin zone
to the M ′ (�) point in the FM (AFM) case. In the AFM case, as
discussed in the previous study [68], the phase transition from
the low-field QSL to the intermediate QSL is accompanied
by a topological change of the Majorana bands. In both FM
and AFM cases, the nodal points disappear and the Majorana
bands are fully gapped in the forced-FM phase, as shown in
Fig. 5(c) for the FM case.

2. Ferromagnetic case

First, we discuss the time evolution of the Majorana
fermion states in the FM case. Figure 6(a) shows the time
evolution of the band structure after the field quench from
the Kitaev QSL state at h/|J| = 0.0420, which is just below
hc/|J| � 0.0421 [see Fig. 2(a)]. The overall band structures in
the first Brillouin zone are shown for t/|J|−1 = 0 and 4.0 in
Figs. 7(a) and 7(b), respectively.

Before quenching (t = 0), as discussed in Sec. IV B 1,
the anticrossing behavior is observed between the dispersive
and flat bands, which are dominated by {a, b} and {ā, b̄},
respectively. In this state, the hybridization between the two
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FIG. 6. Time evolutions of the dispersion Ekμ [Eq. (14)], the
hybridization between two kinds of Majorana fermions wk [Eq. (19)],
and the occupied DOS Docc [Eq. (16)] in the early-time stage after the
field quench from (a) h/|J| = 0.0420 (Kitaev QSL) in the FM case,
(b) h/|J| = 0.3 (Kitaev QSL) in the AFM case, and (c) h/|J| = 0.45
(intermediate QSL) in the AFM case. The dispersions are shown
along the red line in the Brillouin zone depicted in Fig. 5.

kinds of Majorana fermions, wk, takes a large value around
the anticrossing regions near the K point, as plotted in the top
panel of Fig. 6(a) [see also the color plot in Fig. 5(b)].

After quenching, the band structure shows substantial
time evolution around the anticrossing regions, as shown
in Fig. 6(a). In the same regions, two kinds of Majorana
fermions {a, b} and {ā, b̄} remain to be strongly hybridized
in the elapse of time, as shown in the top panel of Fig. 6(a).
We note that the hybridization wk shows rather large time
dependence around the M ′ point. We show the time evolu-
tion of wk at the M ′ point in Fig. 8. The result indicates
that wk shows a quasicoherent oscillation for a longer time.
This corresponds to the long-lived oscillation of the magne-
tization observed in Fig. 3(a), because the magnetization is
described by the hybridization of the two Majorana fermions

as Mz = i
2 (

∑
j∈A〈a jā j〉 − ∑

j′∈B〈b j′ b̄ j′ 〉). The hybridization
and anticrossing also account for the difference of the fre-
quencies of long-lived oscillations in K and K̄ discussed in
Sec. IV A 2 as follows. As shown in Fig. 5(b), the band
dominated by {a, b} ({ā, b̄}) is pushed down (up) at t = 0;
we confirm that this feature is roughly retained in the time
evolution after quenching (not shown). The result suggests
that the dominant energy scale for K by {a, b} is higher than
that for K̄ by {ā, b̄}, which is consistent with the results in
Figs. 3(b) and 3(c).

The most interesting point in the time evolution of the
Majorana states is that the occupied band is pushed above
zero energy around the K point after the quench, as shown
in Fig. 6(a). As quasiparticles at the zero-energy level can
annihilate without energy cost, the zero energy is regarded as
the Fermi level in this system. Thus, the appearance of the
positive-energy band indicates the appearance of the transient
“Fermi surface.” To show this more clearly, we present the
time evolution of the Fermi surface in Fig. 9(a). The point
node on the K-M ′ line at t = 0 develops into an oval-shaped
Fermi surface after the field quench [see also Figs. 7(a) and
7(b)]. The Fermi surface grows while time elapses, as shown
in the extended plot around the K point in the right panel of
Fig. 9(a).

We also calculate the time evolution of the DOS Docc(ε) in
Eq. (16). The result is shown in the right panel of Fig. 6(a). As
expected from the appearance of the transient Fermi surface,
we find that Docc(ε = 0) becomes nonzero for t > 0. Since
the low-energy excitations at the Fermi level play an essential
role in the thermodynamics and transport phenomena at low
temperatures, the appearance of the transient Fermi surface
by the field quench will affect the low-energy dynamical
properties significantly (see Sec. V).

It is worth noting that our Fermi surface does not define
the boundary between the occupied and unoccupied states
since the bands shown here remain to be occupied in the adi-
abatic time evolution as mentioned above. When we take into
account the energy dissipation, the transient occupied states
above the Fermi surfaces will become unoccupied on longer
timescales. Nonetheless, we expect that the transient Fermi
surfaces lead to interesting behaviors before dissipation, as
discussed in Sec. V.

3. Antiferromagnetic case: Kitaev QSL

Next, we present the time evolution of the Majorana
fermion states for the AFM Kitaev model. Figure 6(b) shows
the Majorana band structure, the hybridization wk, and the
DOS Docc for the field quench from the Kitaev QSL state
at h/|J| = 0.3 below hc1/|J| � 0.417. See also Figs. 7(c)
and 7(d) for the three-dimensional plots of the Majorana band
dispersions. As shown in Fig. 6(b), the overall dispersions are
shifted to a high-energy side immediately after quenching the
magnetic field. This can be understood from the energy redis-
tribution between the quasiparticles {a, b} and {ā, b̄} discussed
in Sec. IV A 3 as follows. After the quench, the energy of
interacting spin components corresponding to K is transferred
to that of noninteracting components corresponding to K̄ .
As the dispersion with the wide bandwidth is predominantly
composed of the Majorana fermions {a, b}, the upward shift
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FIG. 7. Three-dimensional plots of the time evolution of the dispersion Ekμ [Eq. (14)] in the first Brillouin zone for the field quench
from (a), (b) h/|J| = 0.0420 (Kitaev QSL) in the FM case, (c), (d) h/|J| = 0.3 (Kitaev QSL) in the AFM case, and (e)–(h) h/|J| = 0.45
(intermediate QSL) in the AFM case. The color represents the hybridization between two kinds of Majorana fermions wk [Eq. (19)] (see also
Fig. 6). The gray hexagons represent the first Brillouin zone, and the black curves on them indicate the zero-energy level corresponding to the
“Fermi surfaces” (see also Fig. 9).

can be attributed to such a sudden decrease of |K|. We note
that a similar effect is present also in the FM case, but it is
much smaller and difficult to see in Fig. 6(a).

After the sudden change, the band structure shows rela-
tively large time evolution in the region where the hybridiza-
tion wk is large [see the top panel of Fig. 6(b)], similarly
to the FM case in Fig. 6(a). We plot the time evolution of
wk at the M ′ point in Fig. 8. In contrast to the FM case,
this quantity shows a rapid increase in the early-time stage
followed by a decay with small oscillations. The result may
correspond to the absence of the low-frequency oscillation
in the magnetization in Fig. 4(a), since the magnetization is
related with the hybridization as discussed in Sec. IV B 2.

Furthermore, similarly to the FM case, we find the ap-
pearance of the positive-energy band and the transient Fermi

FIG. 8. Time evolutions of the hybridization between the two
kinds of Majorana fermions, wk in Eq. (19), at the M ′ point for three
cases in Fig. 6.

surface around the K point [Figs. 6(b), 7(d), and 9(b)]. This is
a common feature of the quench from the Kitaev QSL state
in the FM and AFM cases. Meanwhile, the Fermi surface
in the AFM Kitaev model is larger than that in the FM one.
This is again understood as the redistribution of the exchange
energy in the interacting spin components accumulated in the
magnetic field; the accumulation energy in the AFM case
should be larger than that in the FM one, which leads to the
larger size of the transient Fermi surface.

4. Antiferromagnetic case: Intermediate QSL

Figures 6(c) and 7(e)–7(h) show the time evolution of
the band dispersions for the quench from the intermediate
QSL phase in the AFM Kitaev model at h/|J| = 0.45. In
contrast to the previous cases for the Kitaev QSLs, the band
structure is largely reconstructed in a wide energy range after a
sudden upshift. Accordingly, the DOS also shows strong time
dependence, as plotted in the right panel of Fig. 6(c). We note
that, in this case, the hybridization wk becomes relatively large
in the whole Brillouin zone after the quench, including the
region away from the anticrossings. The large hybridization
allows us to observe two kinds of Majorana dynamics via the
magnetization, as seen in Fig. 4(d).

Corresponding to the drastic time evolution, there appears
the positive-energy band in many portions of the Brillouin
zone, such as around the M point and along the �-K and
�-M ′ lines, as shown in Fig. 6(c). This leads to the transient
Fermi surfaces, whose time dependence is more conspicuous
compared to the previous cases, as shown in Fig. 9(c) [see
also Figs. 7(e)–7(h)]. After quenching, a large Fermi surface
appears immediately along the ky direction centered around
the M point, and a small pocket also appears around the M ′

033007-10



NONEQUILIBRIUM MAJORANA DYNAMICS BY QUENCHING … PHYSICAL REVIEW RESEARCH 1, 033007 (2019)

FIG. 9. Time evolution of the “Fermi surfaces” in the early-time
stage after the field quench from (a) h/|J| = 0.0420 (Kitaev QSL)
in the FM case, (b) h/|J| = 0.3 (Kitaev QSL) in the AFM case, and
(c) h/|J| = 0.45 (intermediate QSL) in the AFM case. The dotted
lines indicate the Brillouin zone boundaries. Extended plots of the
Fermi surface around the K point are shown in the right panels of
(a) and (b).

point. The latter is an open Fermi surface on the Brillouin
zone boundary, but changes its topology into a closed one at
t/|J|−1 ∼ 5. This is regarded as a dynamical version of the
“Lifshitz transition” of the Majorana fermion system.

C. Time evolution of Majorana density of states

In the previous section, we found the appearance of the
transient Fermi surfaces by the magnetic-field quench. The

FIG. 10. Time evolution of the DOS at the Fermi level in (a) the
FM Kitaev model and (b) the AFM one.

corresponding time evolutions of the DOS were shown in
the right panels of Fig. 6. In this section, we discuss the
longer-time dynamics of the DOS. In Fig. 10, we show
the time evolution of the DOS at the Fermi level, D0 =
Docc(ω = 0), up to t/|J|−1 = 100. In the FM case [Fig. 10(a)],
before quenching, D0 is zero for all h because the system is
“semimetal” with the point nodes in the Kitaev QSL phase
for h < hc and it is gapped in the forced-FM phase for h > hc

(hc/|J| � 0.0421) [see Figs. 5(a)–5(c)]. After quenching, D0

suddenly becomes nonzero by the quench from the initial field
h < hc. In the wider time range, D0 stays almost constant with
a slow fluctuation, as plotted in Fig. 10(a). The overall value
of D0 increases with an increase of h, as shown in Fig. 10(a).
On the other hand, in the case of the field quench from h > hc,
D0 remains zero, as exemplified at h/|J| = 0.15 in Fig. 10(a).
This is due to the presence of the gap persisting in the time
evolution from the forced-FM state. The contrasting results
are explicitly shown by plotting the long-time average of the
DOS, Dave

0 , as a function of the initial field h in Fig. 11(a);
here we compute the average in the time range of 50 <

t/|J|−1 < 200. As shown in Fig. 11(a), Dave
0 becomes nonzero

for h > 0 and monotonically increases while increasing h, but
it vanishes above hc.

Figure 10(b) shows the time dependence of D0 in the AFM
case. After the field quench, large changes are observed com-
pared to the FM case, particularly in the case of the quench
from the intermediate QSL state between hc1/|J| � 0.417 and
hc2/|J| � 0.503, as discussed in the previous section. While
D0 is strongly enhanced in the early-time stage, it quickly
converges to almost constant for the longer time t/|J|−1 � 10.
Figure 11(b) shows the long-time average of the DOS, Dave

0 , in
the AFM case. As in the FM case in Fig. 11(a), Dave

0 increases
while increasing h, but suddenly jumps to a larger value at
hc1. We also find that Dave

0 shows a nonmonotonic change for
hc1 < h < hc2 [85].

In Fig. 11(b), we find that Dave
0 changes discontinuously at

hc1 despite the continuous transition in the equilibrium state
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FIG. 11. Initial field dependence of the long-time average of the
DOS at the Fermi level, Dave

0 , in the time range of 50 < t/|J|−1 <

200 for (a) the FM Kitaev model and (b) the AFM one.

[see Fig. 2(c)]. This suggests that the time evolution enhances
the instability inherent to the equilibrium system and yields
the large difference in the long-time behavior. This is one of
the significant features originating from the nonequilibrium
dynamics.

V. DISCUSSION

In this section, we discuss the results obtained in the
previous section, with a focus on the possibilities of the
experimental observation. In the transient dynamics, we find
distinct behaviors between the field quench from the Kitaev
QSL and that from the forced-FM state. The typical timescale
of these dynamics is t/|J|−1 ∼ 10–100. It corresponds to
1–10 picoseconds when we assume |J| ∼ 100–300 K, which
is expected in Kitaev candidate materials [20,46,86–89].
Although it might be difficult to control and measure the
magnetization directly in experiments within this timescale,
the optical techniques are likely applicable. For instance, the
optical control of the magnetization was achieved by using a
laser pulse in the femtosecond order, via the inverse Faraday
effect [90,91]. Moreover, the time evolution of the magne-
tization was observed by the time-resolved magneto-optical
Faraday/Kerr effect with the picosecond order resolution
[90,92]. Therefore, the present results may be observed by
the optical measurements in the Kitaev candidate materials
such as iridates and α-RuCl3, which enables us to examine
the spin fractionalization in the different viewpoint from the
equilibrium states and gives us the information on the lifetime
of the quasiparticles.

In addition to the magnetization, the time evolution of the
spin correlations could be measured by using the magnetic
x-ray scattering. In an equilibrium state, the spin correlations
of each spin component were separately observed by the
azimuthal angle dependence of the diffuse magnetic x-ray
scattering, which evidenced the presence of bond-dependent

interactions in the Kitaev candidate material Na2IrO3 [93].
We expect that, if a similar experiment can be performed
in the time domain, the time evolution of the spin corre-
lations, especially K which corresponds to the kinetic en-
ergy of the Majorana fermions {a, b}, may be measured
in experiments. Moreover, when the time-resolved inelas-
tic measurements are achieved, the calculations of the time
evolution of the dynamical spin correlations are needed for
comparison. But this issue is beyond the scope of the present
study.

In the AFM case, we find the distinct transient dynam-
ics between the low- and intermediate-field QSL phases as
mentioned above. By considering the fact that the topology
of the Majorana fermion bands are different between these
two phases [68], this suggests the possibility of differenti-
ating the topological nature of the equilibrium states by the
transient dynamics. Unfortunately, it is difficult to test this
interesting possibility for the available candidate materials,
such as iridates and α-RuCl3, as the Kitaev interactions are
predicted to be FM [20,27,28,34,88,94,95]. We note, however,
that the AFM Kitaev interactions are theoretically proposed
for f -electron based compounds [96].

We also find the transient Fermi surfaces by the field
quench. In the equilibrium states at zero field, the Kitaev QSL
on the honeycomb lattice does not have the Fermi surfaces
[97], while some extensions to three-dimensional lattices do
[98]. The appearance of the Fermi surfaces may cause the
Peierls instability, as discussed for the equilibrium state in
three dimensions [99]. The Peierls instability appears stronger
in lower dimensions. Thus, our results suggest that the Peierls
instability may appear in the transient dynamics, which never
happens in equilibrium. Although the energy dissipation is
neglected in our calculations, if the dissipation time is longer
than the typical timescale t/|J|−1 ∼ 10–100, such a Peierls
instability associated with the transient Fermi surfaces is ex-
pected to occur. It would lead to hidden phases, which cannot
be reached in equilibrium, such as dimerized phases through
the coupling to lattice deformations and symmetry-breaking
phases by spontaneous Majorana ordering via quantum many-
body effects. In the present situation with the magnetic field
along the Sz direction, the transient Fermi surfaces are highly
anisotropic and the resulting Peierls instability may occur
along the kx direction, particularly for the quench from the
intermediate state in the AFM case [see Fig. 9(c)].

Finally, we comment on the angle dependence of the
magnetic field. By tilting the static magnetic field from the Sz

direction, the Majorana band with the point nodes becomes
gapped and topologically nontrivial [10]. When the energy
transfer is sufficiently large in the field quench, it may collapse
the topological gap and induce transient Fermi surfaces with
the change of the topology of the Majorana fermion bands.
This is a dynamical topological transition. Such an interesting
issue is left for future study.

VI. CONCLUDING REMARKS

In summary, we investigated the nonequilibrium dynamics
of the Kitaev model triggered by quenching the magnetic
field. Using the time-dependent Majorana MF theory, which
takes into account the distinct energy scales of the fractional
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Majorana excitations, we examined the time evolutions of
the magnetization and spin correlations. We found that the
spin fractionalization manifests itself as two kinds of transient
dynamics in the case of the field quench from the Kitaev
QSL state, which is distinct from the conventional spin pre-
cession in the case from the forced-FM one. More peculiar
two-stage dynamics is observed for the field quench from
the intermediate QSL state in the AFM Kitaev model. We
discussed the origin of these peculiar dynamics from the
energy transfer between the two types of Majorana fermions.
We also revealed the time evolution of the Majorana band
structure and discussed the relation to the time evolutions
of the magnetization and spin correlations. In addition, we
found the appearance of the transient “Fermi surface” and
Majorana “Lifshitz transition,” which cannot be achieved in
static magnetic fields. We proposed the possible observations
of our results by the magneto-optical effects and the magnetic
x-ray scattering. We also discussed the possibility of emergent
phases through the Peierls instability and quantum many-body
effects between the Majorana fermions.

In the present study, we only addressed the magnetic field
quench. This is a first step toward a variety of intriguing
real-time dynamics anticipated in QSLs with fractional ex-
citations. Our method can be straightforwardly extended to
other time-dependent fields, such as pulse and ac magnetic
fields. Such extensions may reveal further peculiar transient
dynamics related with the fractional excitations.

Although our approach was limited to the magnetic field
along the Sz direction because of the framework of the Majo-
rana MF theory based on the Jordan-Wigner transformation,
it could be extended to models with non-Kitaev interactions
and the time-dependent magnetic field along any direction
by employing other MF approaches, such as the parton MF
theory [79,100–102]. Such an extension will pave the way for
further theoretical and experimental studies on the transient
dynamics of the Kitaev systems triggered by a greater vari-
ety of time-dependent fields, such as optical pumpings, spin
pumping, and spin current injection.
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APPENDIX: VALIDITY OF
TIME-DEPENDENT MF THEORY

In this Appendix, we discuss the validity of the time-
dependent Majorana MF theory introduced in Sec. III A by
calculating the dynamical spin structure factor in the limit
of h → 0 and comparing the results with the exact solutions.
Moreover, we also discuss the precision of the present method
by examining the time evolution of the conserved quantities.

1. Comparison of the dynamical spin structure factor
at zero field with the exact solution

In the limit of h → 0 in the field quench in Eq. (2), �(t ) =
Mz(t )/h is nothing but the relaxation function. Hence, by the
linear-response theory, the dynamical magnetic susceptibility
is calculated by

χ (ω) = �(0−) + iω
∫ ∞

0
ei(ω+iη)t�(t )dt, (A1)

where η is an infinitesimal real number. As the dynamical spin
structure factor at q = 0 is given by

S(q = 0, ω) = 1

N

∑
j j′

∫ ∞

−∞

dt

2π

〈
Sz

j (t )Sz
j′
〉
eiωt = 1

π
Imχ,

(A2)

we can obtain S(q = 0, ω) at zero field by the time-dependent
Majorana MF theory by taking h → 0.

Figure 12 displays the comparison between the time-
dependent Majorana MF results and the exact solutions
[18,21]. In the calculations, we take h/|J| = 0.0015 and
η/|J| = 0.00075, and calculate the time evolution up to
t/|J|−1 = 106 with �t/|J|−1 = 0.00667. In the FM case
shown in Fig. 12(a), the exact result exhibits the low-energy
coherent peak and the high-energy broad structure, which
predominantly originate from the localized and itinerant Ma-
jorana fermions, respectively. The spectrum is zero in the
low-energy part, reflecting the gap in the localized Majorana
excitations. In addition, in the broad structure, there is a small
dip associated with the van Hove singularity in the DOS of
itinerant Majorana fermions. All these characteristic features
are qualitatively reproduced by the present time-dependent

FIG. 12. Dynamical spin structure factor at q = 0, S (ω) =
S(q = 0, ω), for (a) the FM Kitaev model and (b) the AFM one. The
red lines indicate the results obtained by the Majorana MF theory
and the blue lines are the exact solutions [18,21]. The exact results
are calculated for N = 2 × 1002.
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Majorana MF theory, although the low-energy coherent peak
is considerably sharper than the exact one. This is due to
an overestimate of the lifetime of the localized Majorana
fermions in the MF theory. This might be improved by taking
into account the scattering between low-energy Majorana
fermions from fluctuations beyond the MF theory. We note
that our method also reproduces the low-energy spin gap
behavior, which cannot be obtained by the classical-spin
approach [103]. On the other hand, in the AFM case shown
in Fig. 12(b), the low-energy coherent peak is absent in the
exact solution, leaving the broad spectrum in the wide energy
range with a small dip due to the van Hove singularity.
This is also reproduced by our Majorana MF theory. These
agreements suggest that the present calculations can capture
the essential aspects of the time evolution of the fractional
Majorana excitations in the Kitaev model in both FM and
AFM cases.

We also examine the sum rule of the spectral weight:∫ ∞

0
S(q = 0, ω)dω = 1

4
± 〈

Sz
jS

z
j′
〉
z, (A3)

where + (−) is for the FM (AFM) case. The NN spin correla-
tion on the right-hand side is analytically evaluated [11]. We
confirmed that our Majorana MF results satisfy the sum rule
within good precision; the deviation is about 2% (0.5%) for
the FM (AFM) Kitaev model.

2. Conservation law

To further test the validity of the time-dependent Majorana
MF theory, we examine the time evolutions of the quantities
that should be conserved. In the present framework, in ad-
dition to the total energy E , the local quantity, iā j b̄ j′ on the
z bond 〈 j j′〉z, is also conserved. We test the conservation of
these quantities by calculating the deviation �A = (Amax −
Amin)/A(0−) for A(t ) = E (t ) and �̄(t ) = i〈ā j b̄ j′ 〉, where Amax

FIG. 13. Deviations from the conservation law for the total en-
ergy E and the local conserved quantity �̄(t ) = i〈ā j b̄ j′ 〉 in (a) the
FM Kitaev model and (b) the AFM one. See the text for the
definitions.

(Amin) is the maximum (minimum) value in the time range of
0 < t/|J| < 266.7. Figure 13 shows the results. Note that �̄

vanishes in the forced-FM phase, and hence, we do not show
��̄ above hc (hc2) in the FM (AFM) case. In the FM case, �E

and ��̄ increase while increasing h in the range of h < hc,
but they remain smaller than 10−2, as presented in Fig. 13(a).
These quantities show similar h dependence and even smaller
in the AFM case below hc2, as shown in Fig. 13(b). However,
above hc2, �E becomes larger than 10−2, which implies that
the data in the forced-FM phase in the AFM case are not
reliable in comparison with the other phases.
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