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Semiparametric estimation for incoherent optical imaging
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The theory of semiparametric estimation offers an elegant way of computing the Cramér-Rao bound for a
parameter of interest in the midst of infinitely many nuisance parameters. Here I apply the theory to the problem
of incoherent imaging under the effects of diffraction and photon shot noise, where the object may consist of an
arbitrary number of point sources and the moments of their distribution are the parameters of interest. Using a
Hilbert-space formalism designed for Poisson processes, I derive exact semiparametric Cramér-Rao bounds and
efficient estimators for both direct imaging and a quantum-inspired measurement method called spatial-mode
demultiplexing (SPADE). The results establish the superiority of SPADE even when little prior information
about the object is available.
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I. INTRODUCTION

Two fundamental problems confront incoherent optical
imaging: the diffraction limit [1,2] and the photon shot noise
[3,4]. To quantify their effects on the resolution rigorously,
the Cramér-Rao bound (CRB) on the error of parameter
estimation [5] has been widely used, especially in astronomy
and fluorescence microscopy [6–17]. Most previous studies,
however, assume that the object has a simple specific shape,
such as a point source or two, and only one or a few parame-
ters of the object are unknown. Such parametric models may
not be justifiable when there is little prior information about
the object. Without a limit on the number of point sources in
the object or a parametric model, the CRB seems intractable—
an infinite number of parameters are needed to specify the
object distribution, leading to a Fisher information matrix
with infinitely many entries, and then the infinite-dimensional
matrix has to be inverted to give the CRB. While there also
exist many studies on superresolution that can deal with more
general objects [17–20], they either ignore noise or use noise
models that are too simplistic to capture the signal-dependent
nature of photon shot noise.

To compute the CRB and to evaluate the efficiency of
estimators for general objects, here I propose a theory of semi-
parametric estimation for incoherent optical imaging. Semi-
parametric estimation refers to the estimation of a parameter
of interest in the presence of infinitely many other unknown
“nuisance” parameters [21,22]. The method has found many
applications in econometrics, biostatistics, and astrostatistics

*mankei@nus.edu.sg; https://blog.nus.edu.sg/mankei/

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[21]. A typical example is the estimation of the mean of a
random variable when its probability density is assumed to
have finite variance but otherwise is arbitrary. Thanks to a
beautiful Hilbert-space formalism [21,22], the semiparametric
theory is able to compute the CRB for such problems despite
the infinite dimensionality and also evaluate the existence and
efficiency of semiparametric estimators. Such problems are
exactly the type that bedevil the study of imaging thus far, and
here I show how the semiparametric theory can be used to
yield similarly elegant results for optical imaging.

The optics problem of interest here is the far-field imaging
of an object emitting spatially incoherent light [2,4], with the
most important applications being optical astronomy [6–9]
and fluoresence microscopy [10–14]. With a finite numeri-
cal aperture, the imaging system introduces a spatial band-
width limit to the waves, otherwise known as the diffraction
limit [1,2]. The standard measurement, called direct imaging,
records the intensity of the light on the image plane. Recently,
quantum information theory inspired the invention of an
alternative measurement called spatial-mode demultiplexing
(SPADE) [23], which has been shown theoretically [23–53]
and experimentally [54–60] to be superior to direct imaging
in resolving two sub-Rayleigh sources and estimating the
size and moments of a subdiffraction object. Most of the
aforementioned studies, however, assume parametric models
for the object. Exceptions include Refs. [24–27,51,57], which
consider the estimation of the moments of an arbitrary object,
but the results there are not conclusive—only the CRB for
direct imaging was computed exactly [25], while the CRB
for SPADE was evaluated only approximately [24,25,27].
Another problem is the existence and efficiency of unbiased
moment estimators; again, only approximate results have been
obtained so far [24,25]. Building on the established semipara-
metric theory [21,22], here I compute the exact semiparamet-
ric CRBs and also propose unbiased and efficient moment
estimators for both direct imaging and SPADE. These results
enable a fair and rigorous comparison of the two measurement
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methods, which proves the fundamental superiority of SPADE
for moment estimation, even when the object shape is un-
known.

This paper is organized as follows. Section II introduces
the Fisher information and the CRB for Poisson processes.
Section III presents the semiparametric CRB in terms of a
Hilbert-space formalism designed for such processes. Sec-
tion IV introduces the models of direct imaging and SPADE.
Section V computes the CRB for moment estimation with
direct imaging and proposes an efficient estimator. Section VI
shows how the CRB should be modified for a normalized
object distribution. Section VII computes the CRB for SPADE
and also proposes an efficient estimator. Section VIII uses the
CRBs to compare the performances of direct imaging and
SPADE, demonstrating the superiority of SPADE for subd-
iffraction objects. Section IX concludes the paper and points
out open issues, while the Appendixes detail the technical
issues that arise in the main text.

II. CRAMÉR-RAO BOUND FOR POISSON PROCESSES

For optical astronomy [4,6,8,9], fluorescence microscopy
[10–14], and even electron microscopy [15,16], Poisson noise
can be safely assumed. Suppose that each detector in a pho-
todetector array is labeled by x ∈ X , where X denotes the
detector space. Assume that the observed process, such as the
image recorded by a camera, is a Poisson random measure n
on X and its σ -algebra �, with a mean given by the intensity
measure n̄ on the same (X , �) [61]. n(A) for any A ∈ �

is then a Poisson variable with mean n̄(A). For example, if
X ⊆ R2 is a two-dimensional surface, then � is the set of
all subareas that can be defined on the surface, and n(A) =∫

x∈A dn(x) is the detected photon number over the area A.
For any vectoral function h : X → Rq on the detector space,

ȟ(n) =
∫

h(x)dn(x), (2.1)

a linear functional of n, is a random variable with statistics

E(ȟ) =
∫

h(x)dn̄(x) = ν(h), (2.2)

V (ȟ) = E(ȟȟ�) − E(ȟ)E(ȟ�) = ν(hh�), (2.3)

where E denotes the statistical expectation, V denotes the
covariance, ν denotes the average with respect to the intensity
measure n̄, � denotes the matrix transpose, and all vectors in
this paper are column vectors.

Suppose that n̄ depends on an unknown vectoral param-
eter θ ∈ � ⊂ Rp with p entries and has a density f (x|θ )
with respect to a dominating measure μ such that f (x|θ ) =
dn̄(x|θ )/dμ(x). The log-likelihood derivatives are given by
[62]

Š j (n|θ ) =
∫

∂

∂θ j
ln f (x|θ )dn(x) − ∂

∂θ j

∫
dn̄(x|θ ). (2.4)

As Š is a linear functional of n, its covariance, called the
Fisher information matrix, can be simplified via Eq. (2.3) and
is given by [62]

J = V (Š) =
∫

S(x)[S(x)]�dn̄(x) = ν(SS�), (2.5)

where S is a vector of detector-space functions given by

S j (x|θ ) = ∂

∂θ j
ln f (x|θ ). (2.6)

Here V , Š, n̄, S, and ν are all evaluated at the same θ ,
and I assume hereafter that all functions of θ are evaluated
implicitly at the same θ . Each Sj is hereafter called a score
function, borrowing the same terminology for Š in statistics
[21,22]. An important distinction is that, whereas E(Š j ) = 0,
ν(Sj ) does not have to be zero, since n̄ does not have to be
normalized.

Let β(θ ) be a scalar parameter of interest. If β(θ ) = θk , for
example, then all the other parameters in θ are called nuisance
parameters. For any unbiased estimator β̌(n), the CRB on its
variance is [5]

V (β̌ ) � u�J−1u = CRB, u j = ∂β

∂θ j
. (2.7)

J−1 seems intractable if θ is infinite dimensional. The next
section introduces a clever method.

III. SEMIPARAMETRIC CRAMÉR-RAO BOUND

The key to the semiparametric theory is to treat random
variables as elements in a Hilbert space [21,22]. Here I
introduce another Hilbert space for detector-space functions
on top of the statistical one for the purpose of computing the
CRB for Poisson processes. Define an inner product between
two scalar functions h1, h2 : X → R as

〈h1, h2〉 = ν(h1h2) =
∫

h1(x)h2(x)dn̄(x), (3.1)

and the norm as

||h|| =
√

〈h, h〉 =
√

ν(h2). (3.2)

With the inner product, a Hilbert space H can be defined as
the set of all square-summable functions, viz.,

H = {h(x) : ν(h2) < ∞}. (3.3)

Denote the set of score functions {S j} as S in a slight abuse
of notation. If the Fisher information Jj j = ν(S2

j ) < ∞ for all
j, S ⊂ H. Define the tangent space T ⊆ H of a parametric
model as the linear span of S, or

T = {w�S : w ∈ Rp} = span(S). (3.4)

Define also an “influence” function as any β̃ ∈ H that satisfies

ν(β̃S) = u, (3.5)

borrowing the name of a similar concept in statistics [21,22].
The Cauchy-Schwartz inequality ν(β̃2)[w�ν(SS�)w] �
(u�w)2 with w = [ν(SS�)]−1u then yields

ν(β̃2) � u�J−1u, (3.6)

the right-hand side of which coincides with the CRB given
by Eq. (2.7). A way of evaluating the CRB is to consider the
efficient influence, which is defined as the influence function
that saturates Eq. (3.6), viz.,

β̃eff = u�J−1S = ν(β̃S�)[ν(SS�)]−1S, (3.7)

CRB = ν
(
β̃2

eff

)
. (3.8)

033006-2



SEMIPARAMETRIC ESTIMATION FOR INCOHERENT … PHYSICAL REVIEW RESEARCH 1, 033006 (2019)

FIG. 1. The efficient influence β̃eff is the orthogonal projection of
any influence function β̃ ∈ H that satisfies Eq. (3.5) into the tangent
space T = span(S). The norm of β̃eff gives the CRB.

Equation (3.7) can be interpreted as the orthogonal projection
of any influence function β̃ ∈ H that satisfies Eq. (3.5) into T ,
viz.,

β̃eff = 	(β̃|T ) = arg min
h∈T

||β̃ − h||. (3.9)

Figure 1 illustrates this concept.
Consider now the semiparametric scenario. For the purpose

of this paper, it suffices to assume that the dimension of θ is
infinite but countable (p = ∞). The score functions are still
defined in the same way, but now there are infinitely many of
them. The tangent space should be modified to be the closed
linear span

T = span(S), (3.10)

so that projection into it is well defined [63], and the semi-
parametric CRB is still given by Eqs. (3.5), (3.8), and (3.9);
see Appendix A for a proof. This Hilbert-space approach
is tractable when finding a candidate influence function is
straightforward and the tangent space is so large that the
candidate is already in it or at least very close to it. If the
dimension of θ is uncountable, the tangent space and the CRB
can still be defined via the concept of parametric submodels
[21,22], although it is not needed here.

If β can be expressed as a functional β( f ), a useful way
of finding an influence function is to consider a functional
derivative of β( f ) with respect to h(x) defined as

β̇( f , h) = lim
ε→0

β((1 + εh) f ) − β( f )

ε
(3.11)

=
∫

β̃(x)h(x) f (x)dμ(x) = ν(β̃h), (3.12)

which leads to

∂β

∂θ j
= lim

ε→0

β( f + ε∂ f /∂θ j ) − β( f )

ε
(3.13)

= β̇( f , Sj ) = ν(β̃S j ) = u j, (3.14)

and the β̃(x) function obtained from the functional derivative
is an influence function that satisfies Eq. (3.5). The simplest
example is the linear functional

β( f ) =
∫

β̃(x) f (x)dμ(x) = ν(β̃ ), (3.15)

and β̃(x) is an influence function.
If the tangent space is so large that T = H, then a square-

summable influence function is already in H = T and there-
fore efficient. There are often some constraints that make T

image
plane

spatially
incoherent

sources

passive linear 
optics

detectors
estimator

FIG. 2. A far-field incoherent imaging system. See the main text
for definitions.

smaller, however, and the CRB is reduced as a result. For
example, if the constraint can be expressed as

γ ( f ) = 0, (3.16)

and its functional derivative is

γ̇ ( f , h) = ν(hγ̃ ), (3.17)

then

∂γ ( f )

∂θ j
= γ̇ ( f , Sj ) = ν(γ̃ S j ) = 〈γ̃ , S j〉 = 0, (3.18)

and it follows that γ̃ should be placed in the set that spans T ⊥,
the orthocomplement of T in H. In terms of T ⊥, the efficient
influence can be evaluated as

β̃eff = β̃ − 	(β̃|T ⊥). (3.19)

If T ⊥ = span(R), then

	(β̃|T ⊥) = ν(β̃R�)[ν(RR�)]−1R, (3.20)

which is still tractable if R has a low dimension.

IV. INCOHERENT OPTICAL IMAGING

Consider a distribution of spatially incoherent sources de-
scribed by the measure F on the object plane with coordi-
nate y, a far-field paraxial imaging system with point-spread
function ψ (z − y) for the field [2], further processing of the
field on the image plane with coordinate z via passive linear
optics with Green’s function κ (x, z), and Poisson noise at the
output detectors labeled by x ∈ X , as depicted by Fig. 2. For
simplicity, assume one-dimensional imaging such that y, z ∈
R; generalization for two-dimensional imaging is possible
[24,25] but not very interesting. The intensity can be described
by the mixture model [4,23–25,30]

f (x) =
∫ ∣∣∣∣

∫
κ (x, z)ψ (z − y)dz

∣∣∣∣
2

dF (y), (4.1)

where the image-plane coordinate z is normalized with respect
to the magnification factor, both y and z are normalized with
respect to the width of the point-spread function such that
they are dimensionless, and ψ is normalized as

∫ |ψ (x)|2dx =
1. This semiclassical Poisson model can be derived from
standard quantum optics [23,52,64].

For direct imaging with infinitesimal pixels, κ (x, z) =√
τδ(x − z), where τ is a positive conversion factor,
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x ∈ X = R denotes the position of each pixel, dμ(x) = dx,
and the image intensity obeys the convolution model

f (x) =
∫

H (x − y)dF (y), H (x) = τ |ψ (x)|2, (4.2)

which will be studied in Sec. V.
The most remarkable physics of the problem lies in the

possibility of improving the measurement via optics with a
different Green’s function κ . Quantum information theory
has shown that substantial improvement is possible for sub-
diffraction objects, and SPADE has been found to be quantum
optimal in many special cases [23–53]. In one version of
SPADE, κ∗(q, z) is the qth mode function in the point-spread-
function-adapted (PAD) basis [25,36], such that the output
intensity is given by

f (q) =
∫

H (q|y)dF (y), q ∈ X = N0, (4.3)

H (q|y) =
∣∣∣∣
∫

κ (q, z)ψ (z − y)dz

∣∣∣∣
2

, (4.4)

where μ is simply the counting measure and κ and H obey
special properties, as further discussed in Sec. VII. For a fair
comparison, the quantum efficiencies of direct imaging and
SPADE are assumed to be the same, meaning that [25]

∞∑
q=0

H (q|y) = τ, (4.5)

where τ is the same factor as that for direct imaging. Then the
expected photon number received in total, given by

N = E[n(X )] = n̄(X ) = ν(1) = τ

∫
dF (y), (4.6)

is also the same.

V. MOMENT ESTIMATION WITH DIRECT IMAGING

Consider the direct-imaging model given by Eq. (4.2).
Assume that H can be expanded in a Taylor series as

H (x − y) =
∞∑
j=0

(−1) j

j!

∂ jH (x)

∂x j
y j, (5.1)

which leads to

f (x) =
∞∑
j=0

(−1) j

j!

∂ jH (x)

∂x j
θ j, (5.2)

where the unknown parameters are the object moments de-
fined by

θ j =
∫

y jdF (y), j ∈ N0. (5.3)

For the CRB to hold, the parameter space should correspond
to the condition that F contains an infinite number of point
sources with different positions, as discussed in Appendix B.
The score function for each θ j is

S j (x) = (−1) j

j! f (x)

∂ jH (x)

∂x j
. (5.4)

It turns out that the tangent space T for this problem is
equal to the whole Hilbert space H under certain technical
conditions, as shown in Appendix C.

Let the parameter of interest be

β = u�θ =
∞∑
j=0

u jθ j, (5.5)

where u is independent of θ . To find a candidate influence
function, a trick [65] is to consider the image moments φ =
(φ0, φ1, . . . )� given by

φ j =
∫

φ̃ j (x)dn̄(x) = ν(φ̃ j ), (5.6)

where

φ̃ j (x) = x j, j ∈ N0 (5.7)

are the monomials. Assuming that all the moments of F and
H are finite such that all the moments of f are also finite, φ

can be related to the object moments via

φ j =
∫∫

x jH (x − y)dF (y)dx (5.8)

=
∫∫

(z + y) jH (z)dF (y)dz (5.9)

=
∫∫ j∑

k=0

(
j
k

)
z j−kykH (z)dF (y)dz (5.10)

=
∞∑

k=0

Cjkθk, (5.11)

where

Cjk = 1 j�k

(
j
k

) ∫
H (x)x j−kdx (5.12)

and

1proposition =
{

1 if proposition is true,

0 otherwise.
(5.13)

C is a lower-triangular matrix, and with Cj j = ∫
H (x)dx =

τ > 0, C−1 is well defined and also lower triangular even if
the dimension of C is infinite, as shown in Appendix D. The
object moments can then be related to the image moments by

θ = C−1φ, (5.14)

and β can be expressed as

β = u�θ = u�C−1φ = ν(u�C−1φ̃). (5.15)

According to Eq. (3.15), an influence function is

β̃(x) = u�C−1φ̃(x) = u�θ̃ (x), (5.16)

θ̃ (x) = C−1φ̃(x). (5.17)

Since T = H as shown in Appendix C, the β̃ given by
Eq. (5.16) belongs to H = T and is efficient according to
Eq. (3.9) as long as it is square summable. For example, if u
contains a finite number of nonzero entries, β̃ is a polynomial
of x and must be square summable, since all the moments of
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f are assumed to be finite. The CRB is hence

CRB(direct) = ν(β̃2) = u�ν(θ̃ θ̃�)u

= u�C−1ν(φ̃φ̃�)C−�u, (5.18)

where C−� = (C−1)�. This result coincides with that derived
in Ref. [25] via a more direct but less rigorous method, which
is repeated in Appendix E for completeness.

An unbiased and efficient estimator β̌(n) in terms of the
observed process n can be constructed from the efficient
influence as

β̌(n) =
∫

β̃(x)dn(x) = u�θ̌ (n), (5.19)

where the object moment estimator is

θ̌ (n) = C−1φ̌(n), φ̌(n) =
∫

φ̃(x)dn(x). (5.20)

β̌(n) is a linear filter of n, so its variance is V (β̌ ) = ν(β̃2),
which coincides with the CRB. It is important to note that
this estimator does not require any knowledge of the unknown
parameters, as φ̌(n) is simply the empirical moments of the
observed image, and C−1 is a lower-triangular matrix that
depends on the moments of the point-spread function H . The
estimator still works even if the object happens to consist of
a finite number of point sources and θ is on the boundary of
the parameter space, although its efficiency in that case is a
more difficult question, as explained in Appendix B. Unlike
some of the previous studies on superresolution [17–20], the
results here place no restriction on the separations of the point
sources and also account for Poisson noise explicitly.

VI. CONSTRAINED CRAMÉR-RAO BOUND

In imaging, the parameters of interest are often the mo-
ments with respect to a normalized object distribution with∫

dF (y) = 1. A simple way of modeling this is to assume
that θ0 = 1 is known. This constraint also makes the model
comparable to those in Refs. [24,26,52]. Then,

N = φ0 = τθ0 (6.1)

is known as well, implying the constraint γ ( f ) = ∫
f (x)dx −

N = 0. The constraint can be differentiated to yield
γ̇ ( f , Sj ) = ν(S j ) = 〈S j, 1〉 = 0, leading to T ⊥ = span(1).
The new efficient influence, according to Eqs. (3.19) and
(3.20), should therefore be

β̃eff = β̃ − 	(β̃|T ⊥) = β̃ − ν(β̃ )

ν(1)
= β̃ − β

N
. (6.2)

The constrained CRB is now

CRB(direct)
θ0=1 = ν

(
β̃2

eff

) = 1

N

[
ν0

(
β̃2

0

) − β2], (6.3)

β̃0(x) = N β̃(x) = u�(C/τ )−1φ̃(x), (6.4)

where ν0(h) = ν(h)/ν(1) is the normalized version of ν.
The CRB is necessarily lowered by the constraint. Other
approaches to the constrained CRB yield the same result, as
discussed in Appendix F.

To construct a near-efficient estimator, suppose that
n(X ) = ∫

dn(x) = L > 0 photons have been detected.

Then dn(x) = ∑L
l=1 1x=Xl , and the photon positions

{X1, X2, . . . , XL} are independent and identically distributed
according to the probability measure n̄/N . Consider the
estimator

β̌(n) = 1

L

∫
β̃0(x)dn(x) = 1

L

L∑
l=1

β̃0(Xl ). (6.5)

It is straightforward to show that

E(β̌|n(X ) = L) = ν0(β̃0) = β, (6.6)

V (β̌|n(X ) = L) = 1

L

[
ν0

(
β̃2

0

) − β2], (6.7)

which is close to the CRB given by Eq. (6.3) if L is close
to its expected value N . The results are then consistent with
standard results in semiparametric estimation concerning the
moments of a normalized probability measure [21].

VII. EVEN-MOMENT ESTIMATION WITH SPADE

Now consider the SPADE model given by Eqs. (4.3) and
(4.4) and the Fourier transforms

�(k) = 1√
2π

∫
ψ (z) exp(−ikz)dz, (7.1)

�q(k) = 1√
2π

∫
κ∗(q, z) exp(−ikz)dz. (7.2)

Suppose that � = {�q(k)} is the PAD basis [25,36] given by

�q(k) = √
τbq(k)�(k), q ∈ N0, (7.3)

where b = {bq(k) : q ∈ N0} is the set of orthonormal polyno-
mials defined by∫

|�(k)|2bq(k)br (k)dk = δqr . (7.4)

The polynomials exist for all q ∈ N0 as long as the support of
|�(k)|2 is infinite [66], and the orthonormality of � ensures
that the measurement can be implemented by passive linear
optics [23,30,36]. Equation (4.4) becomes

H (q|y) = τ

∣∣∣∣
∫

|�(k)|2bq(k) exp(−iky)dk

∣∣∣∣
2

(7.5)

= τ

∣∣∣∣∣∣
∫

|�(k)|2bq(k)
∞∑
j=0

(−iky) j

j!
dk

∣∣∣∣∣∣
2

. (7.6)

As the b polynomials are derived by applying the Gram-
Schmidt procedure to the monomials (1, k, k2, . . . )�, their
basic properties include

∫ |�(k)|2bq(k)krdk = 0 if r <

q,
∫ |�(k)|2bq(k)kqdk = 0, and bq(k) = (−1)qbq(−k) if

|�(k)|2 is even, as is often the case in optics. These properties
lead to

H (q|y) =
∞∑
j=0

Cq jy
2 j, (7.7)
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where C is an upper-triangular matrix (Cq j = 0 if j < q) with
positive diagonal entries (Cqq > 0). Equation (4.3) becomes

f (q) =
∞∑
j=0

Cq jθ2 j, (7.8)

which depends on the even moments

θ2 j =
∫

y2 jdF (y), j ∈ N0. (7.9)

The score function with respect to each θ2 j becomes

S j (q) = 1

f (q)

∂ f (q)

∂θ2 j
= Cq j

f (q)
. (7.10)

Appendix G proves that T = span(S) = H.
To find a candidate influence function, suppose that

Eq. (7.8) can be inverted to give

θ2 j =
∞∑

q=0

(C−1) jq f (q). (7.11)

An influence function for β = u�θ according to Eq. (3.15) is
therefore

β̃(q) = u�θ̃ (q), θ̃2 j (q) = (C−1) jq. (7.12)

Since T = H, this β̃ belongs to T and is efficient as long as it
is square summable. The CRB is hence

CRB(SPADE) = ν(β̃2) = u�ν(θ̃ θ̃�)u

= u�C−1DC−�u, (7.13)

Djk = f ( j)δ jk. (7.14)

A more direct but heuristic way of deriving Eq. (7.13) is
shown in Appendix H. An unbiased and efficient estimator
in terms of the observed detector counts n is

β̌(n) =
∞∑

q=0

β̃(q)n(q) = u�
∞∑

q=0

θ̃ (q)n(q). (7.15)

This estimator has a variance V (β̌ ) = ν(β̃2) = CRB(SPADE),
requires no knowledge of any unknown parameter, and still
works even if the object happens to consist of a finite number
of point sources, with no restriction on their separations. If
θ0 = 1, the constrained CRB can be derived in ways similar
to Sec. VI and Appendix F.

To estimate the odd moments of F via SPADE, variations
of the PAD basis are needed [24,25]. The model is much more
complicated and a derivation of the CRB and the efficient
estimator is too tedious to work out here, but the upshot is
the same: it can be shown that the tangent space for the
problem encompasses the whole Hilbert space H, the efficient
influence can be retrieved from the relation β = ν(β̃ ), and an
unbiased and efficient estimator is β̌(n) = ∫

β̃(x)dn(x).

A. Gaussian point-spread function

More explicit results can be obtained and the assumptions
can be checked more carefully by assuming the Gaussian

point-spread function

ψ (z) = 1

(2π )1/4
exp

(
− z2

4

)
. (7.16)

The PAD basis becomes the Hermite-Gaussian basis, and it
can be shown that [23,24,57]

H (q|y) = τ exp

(
−y2

4

)
(y/2)2q

q!
. (7.17)

The C matrix in Eq. (7.7) can be determined by expanding
exp(−y2/4) = ∑∞

j=0(−y2/4) j/ j!, giving

Cq j = 1 j�q
τ (−1) j−q

4 jq!( j − q)!
. (7.18)

It is not difficult to check that the matrix inverse of C is

θ̃2 j (q) = (C−1) jq = 1q� j
4 jq!

τ (q − j)!
, (7.19)

which is a degree- j polynomial of q.
∑∞

q=0 θ̃2 j (q) f (q)
is the jth factorial moment of f and indeed equal to
θ2 j , since H (q|y) is Poisson and its factorial moment is∑∞

q=0 θ̃2 j (q)H (q|y) = y2 j [67]. In general, each degree- j mo-
ment of H (q|y) is a degree- j polynomial of y2, so each degree-
j moment of f (q) is a linear combination of the moments of
F up to degree 2 j. All the moments of f are therefore finite as
long as all the moments of F are finite. If u has a finite number
of nonzero entries, the influence function given by Eqs. (7.12)
is a polynomial of q, so ν(β̃2) < ∞, and β̃ ∈ H is ensured.

B. Bandlimited point-spread function

Another important example is the bandlimited point-spread
function given by

�(k) = 1|k|<1√
2

. (7.20)

b is then the well-known set of Legendre polynomials [68].
Appendix I shows the detailed calculations; here I list the
results only. Equation (7.5) becomes

H (q|y) = τ (2q + 1) j2
q (y), (7.21)

where jq(y) is the spherical Bessel function of the first kind
[68, Eq. (10.47.3)]. An influence function for estimating θ2 j

with θ2 j = ν(θ̃2 j ) is

θ̃2 j (q) = 1q� j
(2 j + 1)!!(2 j − 1)!!

τ

(
q + j

2 j

)
, (7.22)

where !! denotes the double factorial [68]. θ̃2 j (q) is a degree-
2 j polynomial of q, so β̃(q) is also a polynomial of q if u
contains a finite number of nonzero entries. As long as all the
moments of F are finite, all the moments of f can also be
shown to be finite, and ν(β̃2) < ∞ is ensured.

Notice that the direct-imaging theory in Sec. V breaks
down for this bandlimited point-spread function, as the
second and higher even moments of H (x) = τ |ψ (x)|2 =
(τ/π ) sinc2(x) are all infinite. The CRB in that case remains
an open problem, although it is possible to apodize the point-
spread function optically such that all its moments become
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finite and the semiparametric estimator given by Eq. (5.19)
has a finite variance. For example, if

�(k) ∝ 1|k|<1 exp

(
− 1

k2 − 1

)
, (7.23)

then �(k) is infinitely differentiable despite the hard band-
width limit [69] and all the moments of |ψ (x)|2 are finite [25].

VIII. COMPARISON OF IMAGING METHODS

The advantage of SPADE over direct imaging occurs in
the subdiffraction regime, where the width � of the object
distribution F with respect to the origin is much smaller than
the width of the point-spread function ψ [24–26,52]. As the
width of ψ is normalized as 1, the regime is defined as

� � 1, (8.1)

and the object moments scale as

θ j = θ0O(� j ). (8.2)

With the attainable CRBs given by Eqs. (5.18) and (7.13) at
hand, I can now compare direct imaging and SPADE on the
same semiparametric footing. Consider the estimation of a
specific moment θk with

u j = δ jk . (8.3)

For direct imaging in the subdiffraction regime, the image
becomes close to the point-spread function, viz.,

f (x) ≈ θ0H (x) = N |ψ (x)|2, (8.4)

where N , the expected photon number received in total, is
given by Eq. (4.6). With Cjk = τO(1) and ν(φ̃φ̃�) = NO(1),
the CRB becomes

CRB(direct) = θ2
0

N
O(1). (8.5)

For SPADE on the other hand, notice that the C and C−1

matrices are upper-triangular, meaning that each f (q) depends
only on θ2q and higher-order moments, implying

f (q) = NO(�2q). (8.6)

The CRB for estimating θk , where k is even, becomes

CRB(SPADE) = θ2
0

N
O(�k ), (8.7)

which is much lower than Eq. (8.5) when � � 1 and k � 2.
This is consistent with earlier approximate results [24,25].
An intuitive explanation of the enhancement, as well as
a discussion of the limitations of SPADE, can be found
in Ref. [52]. The constrained CRB with θ0 = 1 becomes
[O(�k ) − θ2

k ]/N = O(�k )/N , which is on the same order of
magnitude as the fundamental quantum limit [26].

More exact and pleasing results can be obtained if ψ is
Gaussian and given by Eq. (7.16). Consider for example the
estimation of the second moment θ2. For direct imaging, it can
be shown that

CRB(direct) = 1

τ
(2θ0 + 4θ2 + θ4) = θ2

0

N
O(1). (8.8)

FIG. 3. The semiparametric CRBs for the second moment θ2

given by Eqs. (8.8) and (8.9) vs the object size � in log-log scale,
if the point-spread function is the Gaussian given by Eq. (7.16) and
the object happens to be the flat top given by Eq. (8.10). Both the
CRBs and � are normalized such that they are dimensionless.

For SPADE, on the other hand,

CRB(SPADE) = 1

τ
(4θ2 + θ4) = θ2

0

N
O(�2), (8.9)

which not only beats direct imaging by a significant amount
in the subdiffraction regime but is in fact superior for all
parameter values. To further illustrate the difference between
the two methods, suppose that the object happens to be a flat
top given by

dF (y) = θ0

�
1|y|<�/2dy. (8.10)

Do note that the semiparametric CRBs do not assume the
knowledge of this object shape, which is specified here only
for the purpose of plotting examples of the CRBs. With θ2 =
θ0�

2/12 and θ4 = θ0�
4/80, Fig. 3 plots Eqs. (8.8) and (8.9)

against � in log-log scale. The gap between the two curves in
the � � 1 regime is striking.

With the constraint θ0 = 1, the CRBs become

CRB(direct)
θ0=1 = 1

N

(
2 + 4θ2 + θ4 − θ2

2

) = O(1)

N
, (8.11)

CRB(SPADE)
θ0=1 = 1

N

(
4θ2 + θ4 − θ2

2

) = O(�2)

N
. (8.12)

It is noteworthy that Eq. (8.12) is exactly equal to the quantum
limit given by Ref. [52, Eq. (E15)], meaning that SPADE is
exactly quantum optimal—at all parameter values—for esti-
mating the second moment. This is consistent with previous
results concerning the estimation of two-point separation [23]
and object size [24,28], but note that the previous results
assume that the object shape is known, whereas the CRBs and
the estimators here assume the opposite.
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IX. CONCLUSION

The semiparametric theory set forth solves an important
and difficult problem in incoherent optical imaging: the eval-
uation of the CRB and the efficient estimation of object
parameters when little prior information about the object is
available. The theory gives exact and achievable semiparamet-
ric CRBs for both direct imaging and SPADE, establishing
the superiority and versatility of SPADE beyond the special
parametric scenarios considered by previous studies.

Despite the elegant results, the theory has a few shortcom-
ings. On the mathematical side, the conditions for the theory
to hold seem difficult to check in the case of direct imaging
with a non-Gaussian point-spread function, especially when
the point-spread function has infinite moments. It is an open
question whether this is merely a technicality or a hint at
a whole new regime of statistics. On the practical side, the
theory may be accused of assuming ideal conditions for both
measurements, such as infinitesimal pixels for direct imaging,
the availability of infinitely many modes for SPADE, perfect
specification and knowledge of the optical systems, and the
absence of excess noise. Reality is necessarily uglier, but the
results here remain relevant by serving as fundamental limits
(via the data-processing inequality [52,70]) and offering in-
sights into the essential physics and statistics. The theoretical
and experimental progress on SPADE and related methods
so far [23–60,71–73] has provided encouragement that the
theory has realistic potential, and the general results here
should motivate further research into the wider applications
of quantum-inspired imaging methods.

An interesting future direction is to generalize the semi-
parametric formalism for quantum estimation [74,75]. By
treating the symmetric logarithmic derivatives of the quan-
tum state ρ as the scores in the L2

h(ρ) space proposed by
Holevo [75] and adopting a geometric picture [76], a quantum
generalization of the semiparametric CRB can be envisioned.
Whether it can solve any important problem, however, such as
the quantum limit to incoherent imaging [26,27], remains to
be seen.
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APPENDIX A: PROOF OF THE SEMIPARAMETRIC CRB
FOR POISSON PROCESSES

Define the inner product between two random variables ř1

and ř2 as

(ř1, ř2) = E(ř1ř2), (A1)

and the norm as

|||ř||| =
√

(ř, ř) =
√
E(ř2). (A2)

Let the Hilbert space of zero-mean random variables be

Ř = {ř : E(ř) = 0,E(ř2) < ∞}, (A3)

and define

Ť = span(Š) ⊆ Ř, (A4)

where Š is defined by Eq. (2.4). Let δ̌ ∈ Ř be any random
variable that satisfies

E(δ̌Š) = u. (A5)

The semiparametric CRB is [21,22]

E(δ̌2) � CRB = E
(
δ̌2

eff

)
, (A6)

δ̌eff = 	(δ̌|Ť ) = arg min
ȟ∈Ť

|||δ̌ − ȟ|||. (A7)

The proof can be done via a Pythagorean theorem [22] without
recourse to the Cauchy-Schwartz inequality or the existence of
J−1. Š j is called a score and δ̌ an influence in statistics [21,22];
this paper uses the same terminology for S and β̃ in light of
their resemblance to the statistical quantities.

The resemblance can be turned into a precise correspon-
dence for a Poisson random measure by considering the
subspace Ȟ ⊂ Ř of random variables that are linear with
respect to n. Any element ȟ ∈ Ȟ can be expressed as

ȟ = Uh =
∫

h(x)[dn(x) − dn̄(x)], (A8)

where U is a surjective linear map from H to Ȟ. Since

(Uh1,Uh2) = 〈h1, h2〉 ∀h1, h2 ∈ H (A9)

by virtue of Eq. (2.3), Ȟ is isomorphic to H and U is unitary
[63], and since Ť ⊆ Ȟ and Š = US, Ť is isomorphic to T .
Picking a δ̌ ∈ Ȟ with

δ̌ = U β̃ =
∫

β̃(x)[dn(x) − dn̄(x)] (A10)

leads to

E(δ̌Š) = ν(β̃S) = u, δ̌eff = U β̃eff , (A11)

where β̃eff is given by Eq. (3.9) because of Eq. (A7) and the
isomorphisms. The CRB becomes

CRB = E
(
δ̌2

eff

) = ν
(
β̃2

eff

)
, (A12)

which is Eq. (3.8).

APPENDIX B: THE MOMENT PARAMETER SPACE

Define an s × s Hankel matrix with respect to a real-
number sequence θ = (θ0, θ1, . . . )� as

M (s)
jk (θ ) = θ j+k, j, k ∈ {0, 1, . . . , s − 1}. (B1)

If θ is a moment sequence that arises from a nonnegative
measure F ,

w�M (s)w =
∫ ⎛

⎝ s−1∑
j=0

w jy
j

⎞
⎠

2

dF (y) (B2)

is nonnegative for any real vector w, and all Hankel matrices
are positive semidefinite, viz.,

M (s) � 0 ∀s ∈ N1. (B3)

Conversely, any sequence with Hankel matrices that obey
Eq. (B3) can be expressed in the form of Eq. (5.3) with a
nonnegative F by virtue of Hamburger’s theorem [77].
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For the CRB to hold for a p-dimensional θ , the parameter
space � should be an open subset of Rp [70,78]. Intuitively,
the requirement makes sense because all the parameters in
θ are unknown and θ should be allowed to vary in a neigh-
borhood; otherwise, the problem would be overparametrized.
If � is not an open subset, the parameter space would be
constrained and the CRB may be modified [78]. When all the
moments are unknown parameters, consider the set

� = {θ : M (s)(θ ) > 0 ∀s ∈ N1}. (B4)

Each θ ∈ � corresponds to a measure with infinite support
size r = ∞ [77]. The proof can be done by observing that
the polynomial in Eq. (B2) has at most s − 1 zeros and
the integral is strictly positive for any w = 0 if and only if
r � s, and therefore the constraint for � is satisfied if and
only if r = ∞. For r < ∞, F can be expressed in terms of
its support {Yj : 0 � j � r − 1,Yj < Yj+1} and weights {Fj >

0 : 0 � j � r − 1} as

dF (y) =
r−1∑
j=0

Fj1y=Yj ,
dF (y)

dy
=

r−1∑
j=0

Fjδ(y − Yj ). (B5)

In the context of optics, r is the minimum number of point
sources that can describe the object distribution. The assump-
tion of Eq. (B4) as the parameter space is consistent with
the infinite-support assumption for semiparametric estimation
with mixture models [21, Sec. 6.5], and it also makes intuitive
sense, at least as a necessary condition—with r point sources,
there are only 2r unknown parameters, and the problem would
be overparametrized if all the moments are assumed to be
unknown. Further inequality constraints on θ may be needed
to ensure the convergence of the Taylor series in Eqs. (5.2)
and (7.8), although they should not affect the CRB as long as
θ obeys and stays away from them [78].

The boundary of � corresponds to measures with finite
support size r < ∞. If s � r, then M (s) > 0 and M (s) is full
rank (rank = s), but if s > r, I can write

M (s) = V � diag(F )V, (B6)

Vjk = Y k
j , diag(F ) jk = 10� j�r−1Fjδ jk, (B7)

where V and diag(F ) are both s × s matrices. V is the Van-
dermonde matrix and invertible since {Yj : 0 � j � s − 1},
which should match the support of F for the first r ele-
ments, can be assumed to be distinct [79]. With M (s) � 0
and diag(F ) � 0, Sylvester’s law of inertia [79] implies that
the rank of M (s) is the same as the rank of diag(F ), which
is r. In other words, the rank of M (s) is min(r, s), and any
finite r means that M (s) is rank deficient and does not satisfy
the strict M (s) > 0 for all s > r. Whether the CRB still holds
for θ on the boundary is a difficult question, considering that
the parameter space here is infinite dimensional and it is not
obvious how existing finite-dimensional results regarding the
CRB on a boundary [78] can be applied.

APPENDIX C: TANGENT SPACE FOR THE
DIRECT-IMAGING MODEL

Consider the tangent space T given by Eq. (3.10) and the
score functions given by Eq. (5.4) for direct imaging. First

note that S ⊂ H, as the Fisher information Jj j = 〈S j, S j〉 =
ν(S2

j ) is assumed to be finite for all j. Recent calculations in
quantum estimation theory suggest that this assumption is rea-
sonable for any measurement [26]. To prove T = span(S) =
H, the standard method is to show that the only element in H
orthogonal to S is 0 [63]; that is,

〈h, S j〉 = 0 ∀ j ∈ N0 (C1)

implies h = 0 (almost everywhere with respect to n̄). Here, I
list a few approaches with various levels of rigor.

The first approach is to consider the set of orthogonal
polynomials

a =
{

a j (x) =
∞∑

k=0

Ajkφ̃k (x) : j ∈ N0, 〈a j, ak〉 = δ jk

}
,

(C2)

where A is a lower triangular matrix with nonzero diagonal
entries and can be determined by applying the Gram-Schmidt
procedure to the monomials φ̃(x) given by Eq. (5.7) [66].
Under rather general conditions on f , the polynomials form
an orthonormal basis of H [66], viz.,

H = span(a), (C3)

and I can write Eq. (C1) as

〈h, S j〉 =
∞∑

k=0

〈h, ak〉〈ak, S j〉 = 0 ∀ j ∈ N0, (C4)

or, more compactly,

B�w = 0, wk = 〈h, ak〉, Bk j = 〈ak, S j〉. (C5)

If the only solution to Eq. (C5) is w = 0, then the only solu-
tion to Eq. (C4) is h = 0. This is equivalent to the condition
that B� is injective.

Integration by parts yields

Bk j = (−1) j

j!

∫
ak (x)

∂ jH (x)

∂x j
dx =

∞∑
l=0

AklCl j, (C6)

where C is the same as Eq. (5.12). Since both A and C are
lower triangular with nonzero diagonal entries, B = AC is also
lower triangular with nonzero diagonal entries, and B� has a
well-defined matrix inverse (B�)−1 = (B−1)� = A−�C−� in
the sense that

B�(B�)−1 = (B�)−1B� = I, (C7)

where I is the identity matrix; see Appendix D for details. If
the matrices were finite-dimensional, the existence of a matrix
inverse would imply

(B�)−1(B�w) = [(B�)−1B�]w = w, (C8)

and the only solution to Eq. (C5) would be w = 0. This proof
is not entirely satisfactory, however, as Eq. (C8) assumes that
the product of the infinite-dimensional matrices is associative.
Associativity assumes that the order of the sums involved
in the matrix product can be interchanged, but it cannot be
guaranteed for infinite-dimensional matrices. In other words,
the existence of a matrix inverse for B� may not imply that
B� is injective.
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A more rigorous approach is to define

χy(x) =
∞∑
j=0

y jS j (x), y ∈ Y ⊂ R, (C9)

and notice that Eq. (C1) implies

〈h, χy〉 =
∫

h(x)
∞∑
j=0

y j (−1) j

j!

∂ jH (x)

∂x j
dx (C10)

=
∫

h(x)H (x − y)dx = 0 ∀y ∈ Y . (C11)

The unique solution to Eq. (C11) is h = 0 if the family
{H (x − y) : y ∈ Y} satisfies a property called completeness
in statistics [5]. For example, if H is Gaussian, {H} is a
full-rank exponential family for any open subset Y ⊂ R and
therefore complete [5]. An even more rigorous formulation of
this approach [21] is to treat 〈h, χy〉 as an operator that maps
h ∈ H to a function of y in another Hilbert space and then
show that the null space of the operator consists of only h = 0.
The proof again boils down to the requirement that {H} should
be complete; see Ref. [21, Sec. 6.5].

APPENDIX D: INVERSE OF AN INFINITE-DIMENSIONAL
TRIANGULAR MATRIX

Let C be an infinite-dimensional matrix with entries in-
dexed by ( j, k) ∈ N2

0 . Define its formal matrix inverse C−1

as another infinite-dimensional matrix that satisfies
∞∑

l=0

Cjl (C
−1)lk = δ jk . (D1)

If C is lower triangular with nonzero diagonal entries, viz.,

Cjk = 0 if k > j, Cj j = 0, (D2)

then C−1 can be found by a recursive relation as follows.
Define C(s) as the s × s upper-left submatrix of C. Write C(s+1)

and (C−1)(s+1) as the partitions

C(s+1) =
(

C(s) 0

c� Css

)
, (D3)

(C−1)(s+1) =
(

(C−1)(s) 0

d� (C−1)ss

)
. (D4)

Given (C−1)(s) = (C(s) )−1,

d� = −c�(C(s) )−1

Css
, (C−1)ss = 1

Css
, (D5)

and the recursion starts from (C−1)(1) = (C(1) )−1 with one
element (C−1)00 = 1/C00. The matrix inverse of an infinite-
dimensional upper-triangular matrix can be defined in a simi-
lar way.

Although the product of infinite-dimensional matrices may
not be associative, it can still be proved by induction that
D(Cu) = (DC)u for any vector u if D and C are lower
triangular, because

D(Cu) =
∞∑

k=0

Djk

∞∑
l=0

Cklul =
j∑

k=0

Djk

k∑
l=0

Cklul (D6)

involves finite sums only. Thus, it is safe to assume that
C−1(Cu) = (C−1C)u = u and C(C−1u) = (CC−1)u = u if C
is lower triangular with nonzero diagonal entries.

APPENDIX E: AN ALTERNATIVE DERIVATION OF THE
CRAMÉR-RAO BOUND FOR DIRECT IMAGING

Consider the problem described in Sec. V. Since the
polynomials given by Eq. (C2) are an orthonormal basis,
the information matrix for the moment parameters can be
expressed as

Jjk = 〈S j, Sk〉 =
∞∑

l=0

〈S j, al〉〈al , Sk〉, (E1)

meaning that J = B�B, where B = AC is given by
Eq. (C6). Ignoring the complications of multiplying infinite-
dimensional matrices, the CRB becomes

J−1 = B−1B−� = C−1A−1A−�C−�. (E2)

To evaluate A−1A−�, notice that the orthonormality of a can
be written as

〈a j, ak〉 =
∞∑

l=0

∞∑
m=0

Ajl〈φ̃l , φ̃m〉Akm = δ jk, (E3)

where φ̃ is the monomials given by Eq. (5.7). In other words,

Aν(φ̃φ̃�)A� = I, A−1A−� = ν(φ̃φ̃�), (E4)

giving

J−1 = C−1ν(φ̃φ̃�)C−�. (E5)

This leads to Eq. (5.18) for the parameter β = u�θ .

APPENDIX F: ALTERNATIVE APPROACHES TO THE
CONSTRAINED CRAMÉR-RAO BOUND

One way of deriving the constrained CRB if θ0 is known
is to consider the information matrix J̃ with respect to the pa-
rameters ϑ = (θ1, θ2, . . . )� without θ0. Then θ = (θ0, ϑ

�)�,
and J̃ can be written as the submatrix of J , or

J =
(

J00 j�

j J̃

)
, (F1)

where j is a column vector. Ignore the complications of
dealing with infinite-dimensional matrices and partition J−1

similarly as

J−1 =
(

E00 e�

e Ẽ

)
. (F2)

Then, it is straightforward to show that

J̃−1 = Ẽ − ee�

E00
. (F3)

Let ϑ̃ = (θ̃1, θ̃2, . . . )�, and observe that θ̃0 = 1/C00 from
Eqs. (5.17), (5.12), and (5.6). Then, Eq. (5.18) implies that

Ẽ = ν(ϑ̃ ϑ̃�), (F4)

e = ν(ϑ̃ θ̃0) = ν(ϑ̃ )

C00
= ϑ

C00
, (F5)

E00 = ν(θ̃0θ̃0) = ν(1)

C2
00

= φ0

C2
00

. (F6)
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Hence,

J̃−1 = ν(ϑ̃ ϑ̃�) − ϑϑ�

φ0
, (F7)

which implies Eq. (6.3) if the parameter of interest is defined
as β = u�θ with u0 = 0.

Yet another way of deriving the constrained CRB can be
found in Ref. [78], which can be shown to lead to the same
result here.

APPENDIX G: TANGENT SPACE FOR THE SPADE MODEL

The proof is similar to the first approach in Appendix C.
Consider H = span(a) in terms of an obvious orthonormal
basis

a = {a j (q) = δ jq/
√

f ( j) : j ∈ N0}. (G1)

Any h ∈ H orthogonal to the S given by Eq. (7.10) obeys

〈h, S j〉 =
∞∑

k=0

〈h, ak〉〈ak, S j〉 = 0 ∀ j ∈ N0, (G2)

which can be written as

B�w = 0, wk = 〈h, ak〉, (G3)

Bjk = 〈a j, Sk〉 = Cjk√
f ( j)

. (G4)

As C is upper triangular with nonzero diagonal entries and
f > 0 is assumed, B� is lower triangular with nonzero di-
agonal entries, and induction can be used to prove that the
only solution to B�w = 0 is w = 0, or equivalently h = 0.
Hence, T = span(S) = H. The proof is easier than the one in
Appendix C because B� here is lower triangular rather than
upper triangular.

An alternative proof, similar to the second approach in
Appendix C and Ref. [21, Sec. 6.5] but less fruitful in this
case, is to define

χy(x) =
∞∑
j=0

y2 jS j (x), y ∈ Y ⊂ R, (G5)

consider

〈h, χy〉 =
∞∑

q=0

h(q)H (q|y) = 0, (G6)

and use the completeness of {H (q|y) : y ∈ Y} to prove the
unique solution h = 0. If H is Poisson, for example, then {H}
is a full-rank exponential family and therefore complete [5].

APPENDIX H: AN ALTERNATIVE DERIVATION
OF THE CRAMÉR-RAO BOUND FOR SPADE

Consider the problem described in Sec. VII. With the
orthonormal basis given by Eq. (G1) and the B matrix given by
Eq. (G4), the information matrix with respect to the moment
parameters can again be expressed as J = B�B according to
Eq. (E1). With Eq. (G4), B−1 becomes

(B−1) jq = (C−1) jq

√
f (q). (H1)

Ignoring the complications of multiplying infinite-
dimensional matrices, the CRB J−1 = B−1B−� is

(J−1) jk =
∞∑

q=0

(C−1) jq f (q)(C−1)kq = C−1DC−�, (H2)

where D is given by Eq. (7.14) and the CRB for β = u�θ

coincides with Eq. (7.13).

APPENDIX I: CALCULATIONS CONCERNING SPADE
FOR A BANDLIMITED POINT-SPREAD FUNCTION

Consider the point-spread function given by Eq. (7.20).
The standard Legendre polynomials are defined in
terms of

1

2

∫ 1

−1
Pq(k)Pp(k)dk = 1

2q + 1
δqp, (I1)

such that the orthonormal version is

bq(k) =
√

2q + 1Pq(k). (I2)

The Fourier transform of the polynomial is [68,
Eq. (18.17.19)]

1

2

∫ 1

−1
bq(k) exp(iky)dk =

√
2q + 1 jq(y), (I3)

where jq(y) is the spherical Bessel function of the first kind
[68, Eq. (10.47.3)]. Then, Eq. (7.21) follows from Eqs. (7.5)
and (I3).

Let

H̃ (q|y) = H (q|y)

τ
= (2q + 1) j2

q (y). (I4)

From Ref. [68, Eq. (10.60.2)], one can derive the useful
formula

∞∑
q=0

H̃ (q|y)Pq(k) = sinc w =
{

(sin w)/w, w = 0,

1, w = 0,
(I5)

w = y
√

2 − 2k. (I6)

For example, since Pq(1) = 1, one can check that∑∞
q=0 H̃ (q|y) = 1 in accordance with Eq. (4.5). Using

the facts

sinc w = 1

2

∫ 1

−1
exp(iwz)dz =

∞∑
l=0

(−1)lw2l

(2l + 1)!
, (I7)

dw

dk
= − y

w
, P( j)

q (1) = d jPq(k)

dk j

∣∣∣∣
k=1

, (I8)

it can also be shown that
∞∑

q=0

H̃ (q|y)P( j)
q (1) = d j sinc w

dk j

∣∣∣∣
k=1

= y2 j

(2 j + 1)!!
, (I9)

which leads to
∞∑

q=0

f (q)P( j)
q (1) = τθ2 j

(2 j + 1)!!
. (I10)
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An influence function for estimating θ2 j is hence

θ̃2 j (q) = (2 j + 1)!!

τ
P( j)

q (1), (I11)

which obeys θ2 j = ν(θ̃2 j ). To derive an explicit expression for
P( j)

q (1), consider the Rodrigues formula [68, Eq. (14.7.13)]

Pq(k) = 1

2qq!

dq

dkq
(k2 − 1)q, (I12)

which leads to

Pq(k) =
q∑

l=0

(
q
l

)(
q + l

l

)(
k − 1

2

)l

, (I13)

P( j)
q (1) = 1q� j (2 j − 1)!!

(
q + j

2 j

)
, (I14)

and Eq. (7.22) results.
To bound the moments of H̃ and f , consider a lower bound

on the binomial coefficient for j � 1 given by [80, pp. 1186](
q + j

2 j

)
� (q + j)2 j

(2 j)2 j
� q2 j

(2 j)2 j
, (I15)

such that each even moment of H̃ can be bounded as
∞∑

q=0

H̃ (q|y)q2 j =
j−1∑
q=0

H̃ (q|y)q2 j +
∞∑

q= j

H̃ (q|y)q2 j (I16)

� ( j − 1)2 j + (2 j)2 j

(2 j − 1)!!

∞∑
q=0

H̃ (q|y)P( j)
q (1)

(I17)

= ( j − 1)2 j + (2 j)2 jy2 j

(2 j − 1)!!(2 j + 1)!!
. (I18)

This means that each even moment of f (q) is bounded as

ν(q2 j ) � τ

[
( j − 1)2 jθ0 + (2 j)2 jθ2 j

(2 j − 1)!!(2 j + 1)!!

]
. (I19)

With ν(q0) = ν(1) = τθ0, ν(q2 j ) < ∞ for all j ∈ N0 as long
as θ0 and θ2 j are finite. Odd moments can be bounded via the
Cauchy-Schwartz inequality [ν(q j )]2 � ν(1)ν(q2 j ). Hence,
all the moments of f are finite as long as all the moments
of F are finite.
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