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1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore

2International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland
3Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics,

University of Gdańsk, 80-308 Gdańsk, Poland
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We show that any multiqudit entanglement witness leads to a nonseparability indicator for quantum optical
fields, which involves intensity correlations. We get, e.g., necessary and sufficient conditions for intensity
or intensity-rate correlations to reveal polarization entanglement. We also derive separability conditions for
experiments involving multiport interferometers, now feasible with integrated optics. We show advantages of
using intensity rates rather than intensities, e.g., a mapping of the Bell inequalities to ones for optical fields. The
results have implication for studies of nonclassicality of “macroscopic” systems of undefined or uncontrollable
number of “particles.”
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Nonclassicality due to entanglement initially was studied
using quantum optical multiphoton interferometry, see, e.g.,
Ref. [1]. The experiments were constrained to defined photon
number states, e.g., the two-photon polarization singlet [2].
This includes Greenberger-Horne-Zeilinger (GHZ) [3] in-
spired multiphoton interference, with an interpretation that
each detection event signals one photon. Spurious events of
higher photon number counts contributed to a lower interfer-
ometric contrast. Still, states of undefined photon numbers,
e.g., the squeezed vacuum, can be entangled [4–6].

This form of entanglement of quantum optical fields
served, e.g., to show that a strongly pumped two-mode
(bright) squeezed state allows one to directly refute the ideas
of EPR [7], as it approximates their state, and a form of Bell’s
theorem can be shown for it [4]. The trick was to use displaced
parity observables. Recently, it has been shown that this is also
possible for four-mode bright squeezed vacuum [8], which
can be produced via type II parametric down-conversion,
see, e.g., Refs, [5,6]. In this case, the state approximates a
tensor product of two EPR states, and interestingly can also
be thought of as a polarization “supersinglet” of undefined
photon numbers [9]. The approach of Ref. [8] used (effec-
tively) intensity observables, which are less experimentally
cumbersome.

With the birth of quantum information science and technol-
ogy, entanglement became a resource. We have an extended
literature on detection of entanglement for systems of finite
dimensions, essentially “particles”, see e.g., Ref. [10]. It is
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well known that not all entangled states violate Bell inequal-
ities. Still there is theory of entanglement indicators, called
usually witnesses, which allow to detect entanglement, even
if a given state for finite-dimensional systems (essentially,
qudits) does not violate any known Bell inequalities. The case
of two-mode entanglement for optical fields was studied in
trailblazing papers [11,12], which discussed “two-party con-
tinuous variable systems,” and with a direct quantum optical
formalism in Ref. [13]. The entanglement conditions reached
in the papers did not involve intensity correlations.

An entanglement condition for four-mode fields, which
was borrowing ideas from two spin-1/2 (two-qubit) corre-
lations, involved correlations Stokes operators and was first
discussed in Ref. [5]. The resulting indicator was used to mea-
sure efficiency of an “entanglement laser.” The output of the
“laser” was bright four-mode vacuum. We shall present here
the most extensive generalization of such an approach, i.e.,
entanglement indicators for optical fields which are deriva-
tives of multiqudit entanglement witnesses involving intensity
correlations. In Ref. [14], we give examples of entanglement
conditions based on such an approach. Some of them are
more tight versions of the entanglement conditions mentioned
above.

As a growing part of the experimental effort is now directed
at nonclassical features of bright (intensive “macroscopic”)
beams of light, e.g., Refs. [15–21] so the time is ripe for a
comprehensive study of such entanglement conditions. All
that may lead to some new schemes in quantum communi-
cation and quantum cryptography, perhaps on the lines of
Ref. [9]. The emergence of integrated optics allows now to
construct stable multiport interferometers [22–29], and is our
motivation of going beyond two times mode case.

We present a theory of mapping multiqudit entanglement
witnesses [10] into entanglement indicators for quantum opti-
cal fields, which employ intensity correlations or correlations
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FIG. 1. The experiments (two parties). Two multimode beams
propagate to two spatially separated measurement stations. Each
station consists of a d input d output tunable multiport beamsplitter-
interferometer (MPBS) and detectors at its outputs. For polarization
measurements put dA = dB = 2, and treat the paths as polarization
modes.

of intensity rates. By intensity rates we mean the ratio of
intensity at a given local detector and the sum of intensities
at all local detectors (in some case the second approach
leads to better entanglement detection). The method may find
applications also in studies of nonclassicality of correlations
in “macroscopic” many-body quantum systems of undefined
or uncontrollable number of constituents, e.g., Bose-Einstein
condensates [30], other specific states of cold atoms [31,32].

The essential ideas are presented for polarization mea-
surements by two observers and the most simple model of
intensity observable: photon number in the observed mode.
Next, we present further generalization of our approach, and
examples employing specific indicators involving intensity
correlations for unbiased multiport interferometers. We dis-
cuss generalizations to multiparty entanglement indicators.
We show that the use of rates leads to a modification of
quantum optical Glauber correlation functions, which gives
a new tool for studying nonclassicality, and that it also gives
a general method of mapping standard Bell inequalities into
ones for optical fields.

We discuss spatially separated stations, X = A, B, . . . with
(passive) interferometers of dX input and output ports, Fig. 1.
In each output, there is a detector which measures inten-
sity. One can assume either a pulsed source, sources acting
synchronously [33,34] or that the measurement is performed
within a short time gate. Each time gate, or pulsed emission, is
treated as a repetition of the experiment building up averages
of observables.

Stokes parameters. For the description of polarization of
light, the standard approach uses Stokes parameters. Using
the photon numbers they read 〈�̂ j〉 = 〈â†

j â j − â†
j⊥ â j⊥〉, where

j, j⊥ denote a pair of orthogonal polarizations of one of
three mutually unbiased polarization bases j = 1, 2, 3, e.g.,
{H,V }, {45◦,−45◦}, {R, L}. The zeroth parameter 〈�̂0〉 is the
total intensity: 〈N̂〉 = 〈â†

j â j + â†
j⊥ â j⊥〉. Alternative normal-

ized Stokes observables were studied by some of us [35–37].
They were first introduced in Ref. [38], however a different
technical approach was used. Following Ref. [35], one can

put 〈Ŝ j〉 = 〈�̂ (â†
j â j−â†

j⊥ â j⊥ )

N̂
�̂〉, and 〈Ŝ0〉 = 〈�̂〉, where �̂ =

1 − |�〉〈�| and |�〉 is the vacuum state for the considered
modes, â j |�〉 = â j⊥|�〉 = 0. Operationally, in the rth run of
an experiment, we register photon numbers in the two exits of
a polarization analyzer, nr

j and nr
j⊥ , and divide their difference

by their sum. If nr
j + nr

j⊥ = 0, the value is put as zero. This
does not require any additional measurements, only the data
are differently processed than in the standard approach. In
Refs. [35–37], examples of the two-party entanglement condi-
tions and Bell inequalities using normalized Stokes operators
were given. Here we present a general approach.

Map from two-qubit entanglement witnesses to entan-
glement indicators for fields involving Stokes parameters.
Pauli operators �σ = (σ̂1, σ̂2, σ̂3) and σ̂0 = 1 form a basis in
the real space of one-qubit observables. Thus any two-qubit
entanglement witness Ŵ has the following expansion: Ŵ =∑

μ,ν wμνσ̂
A
μ ⊗ σ̂ B

ν , where μ, ν = 0, 1, 2, 3 and wμν are real
coefficients. We have 〈Ŵ 〉sep � 0, where 〈·〉sep denotes an
average for a separable state. We will show that with each
witness Ŵ one can associate entanglement indicators for
polarization measurements involving correlations of Stokes
observables for quantum optical fields. The maps are σ̂ A

μ ⊗
σ̂ B

ν → ŜA
μŜB

ν and σ̂ A
μ ⊗ σ̂ B

ν → �̂A
μ�̂B

ν , and they link Ŵ with its

quantum optical analogues ŴS = ∑
μ,ν wμν ŜA

μŜB
ν , and Ŵ� =∑

μ,ν wμν�̂
A
μ�̂B

ν , which fulfill 〈ŴS〉sep � 0 and 〈Ŵ�〉sep � 0.
The proof goes as follows.

Normalized Stokes operators case. It is enough to prove
that for any mixed state � one can find a 4 × 4 density matrix

R̂
AB
� for a pair of qubits, such that

〈ŴS〉�
〈�̂A�̂B〉�

= TrŴ R̂
AB
� . (1)

First, we show that (1) holds for any pure state |ψAB〉.
Let us denote the polarization basis H and V as x̂H =

x̂1 and x̂V = x̂2. Normalized Stokes operators in arbitrary
direction can be put as �m · �SX , where �m is an arbitrary unit

real vector, or in the matrix form
∑

kl �̂X x̂†
k ( �m·�σ )kl x̂l

N̂X �̂X , with

x̂ = â or b̂ depending on the beam X , whereas ŜX
0 reads∑

kl �̂X x̂†
k δkl x̂l

N̂X �̂X . We introduce a set of states

∣∣�AB
km

〉 = âk b̂m
1√

N̂AN̂B
�̂A�̂B|ψAB〉, (2)

where k, m ∈ {1, 2}. This allows us to put

〈ψAB|ŜA
μŜB

ν |ψAB〉 =
2∑

k,l=1

2∑
m,n=1

σ kl
μ σ mn

ν

〈
�AB

km

∣∣�AB
ln

〉
= Trσ̂ A

μ ⊗ σ̂ B
ν R̂AB

ψ , (3)

where the matrix elements of R̂AB
ψ are 〈�AB

km|�AB
ln 〉. As a

Gramian matrix, R̂AB
ψ is positive. Except for |ψAB〉 describ-

ing vacuum at one or both sides, we have 0 < TrR̂AB
ψ =

〈�A�̂B〉 � 1. Thus, R̂
AB
ψ = R̂AB

ψ /〈�̂A�̂B〉 is an admissible
density matrix of two qubits.

For mixed states �, i.e., convex combinations of |ψAB
λ 〉’s

with weights pλ, one gets R̂AB
� = ∑

λ pλR̂AB
λ which is
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positive definite, and its trace is
∑

λ pλTrR̂AB
λ � 1. Thus af-

ter the re-normalization one gets a proper two-qubit density

matrix R̂
AB
� . As purity of a field state |ψAB

λ 〉 does not warrant

that the corresponding R̂AB
λ is a projector, R̂

AB
� does not have to

have the same convex expansion coefficients in terms of pure
two-qubit states, as � in terms of |ψAB

λ 〉’s.
For any separable pure state of two optical beams

|ψAB〉prod, defined as F †
A F †

B |�〉, where F †
X is a polynomial

function of creation operators for beam (modes) X , and |�〉
is the vacuum state of both beams, the matrix R̂AB factor-
izes: R̂AB = R̂AR̂B. Simply, prod〈�AB

km|�AB
ln 〉prod factorizes to

〈�A
k |�A

l 〉〈�B
m|�B

n 〉, where 〈�X
k |�X

l 〉 are elements of matrix R̂X

and |�X
l 〉 = x̂l

1√
N̂X

�̂X F †
X |�〉. As 〈�|FX �̂X F †

X |�〉−1R̂X can be

shown to be a qubit density matrix and 〈Ŵ 〉sep � 0, therefore
for pure separable states of the optical beams 〈ŴS〉prod � 0.
Obviously, 〈ŴS〉sep � 0 also for all mixed separable states.

Standard Stokes operators case. Any standard Stokes oper-
ator can be put as �m · ��X = ∑

kl x̂†
k ( �m · �σ )kl x̂l . We introduce

state vectors |�AB
jk 〉 = â j b̂k|ψAB〉. One has

〈ψAB|�̂A
μ�̂B

ν |ψAB〉 = Trσ̂ A
μ σ̂ B

ν P̂AB, (4)

where the matrix P̂AB has entries 〈�AB
km|�AB

ln 〉, it is positive

definite, and its trace is 〈N̂AN̂B〉. Thus P̂
AB = P̂AB/〈N̂AN̂B〉

is an admissible two-qubit density matrix, and one has

〈Ŵ�〉�/〈N̂AN̂B〉� = TrŴ P̂
AB
� . All that leads to 〈Ŵ�〉sep � 0.

Note that, for a general state R̂
AB
� does not have to be equal to

P̂
AB
� . Still R̂

AB = P̂
AB

for states of defined photon numbers in
both beams.

Reverse map. Any linear separability condition expressible
in terms of correlation functions of normalized Stokes pa-
rameters reads

∑
μν ωμν〈ŜA

μŜB
ν 〉sep � 0. As two-photon states,

with one at A and the other at B, are possible field
states, thus for any separable such state we must have∑

μν ωμν〈ŜA
μŜB

ν 〉sep−2−ph � 0. This is algebraically equivalent
to

∑
μν ωμν〈σ̂μ ⊗ σ̂ν〉sep � 0, for any two-qubit state. We get

an entanglement witness. Therefore, we have an isomorphism.
Similar proof applies to standard Stokes observables.

Examples. In Ref. [14], we show some examples of en-
tanglement indicators which can be derived with the above
method. This includes a necessary and sufficient conditions
for detection of entanglement of two optical beams with
correlations of Stokes parameters of the two considered kinds.

Detection losses. Consider the usual model of losses: a per-
fect detector in front of which is a beamsplitter of transmission
amplitude η, with the reflection channel describing the losses.
Then, 〈�̂A

μ�̂B
ν 〉 scales down as ηAηB (see Sec. II in Ref. [14]),

where ηX for X = A, B is the local detection efficiency. We
have a full resistance of entanglement detection, using any
Ŵ�, with respect to such losses. A different character of
losses may lead to threshold efficiencies.

For the normalized Stokes parameters, it is enough to
consider only pure states, because mixed ones, as convex
combinations of such, cannot introduce anything new in
entanglement conditions linear with respect to the density
matrix. Any pure state is a superposition of Fock states |F 〉 =
|nA

i , nA
i⊥ , nB

j , nB
j⊥〉, where nX

i denotes the number of i polarized

photons in beam X , and ŜA
μŜB

ν are diagonal with respect to
the Fock basis related with them. Thus, the dependence on
efficiencies of the value of an entanglement indicator, in the
case of a pure state, depends on the behavior of its Fock
components. One can show, see Sec. II in Ref. [14], that
〈Fη|ŜA

μŜB
ν |Fη〉 = HF 〈F |ŜA

μŜB
ν |F 〉, where |Fη〉 is the state |F 〉

after the above described losses in both channels, and HF =
〈Fη|ŜA

0 ŜB
0 |Fη〉, which reads

∏
X=A,B[1 − (1 − ηX )mX

], where
mX is the total number of photons in channel X , before the
losses. Expanding |F 〉 in terms of Fock states with respect to
different polarizations than i, i⊥ and j, j⊥, does not change
the values of mX , and thus the formula stays put for any
indices. Again we have a strong resistance of the entangle-
ment indicators with respect to losses. Especially for states
with high photon numbers, the entanglement conditions based
on normalized Stokes parameters, may be more resistant to
losses, because 0 < η < 1, one has η < 1 − (1 − η)n.

Multiparty case. Consider three parties, and the case of
indicators of genuine three-beam entanglement. Any genuine
three-qubit entanglement witness Ŵ (3) has the property that
it is positive for pure product three-qubit states |ξ 〉AB,C =
|ψ〉AB|φ〉C , for similar ones with qubits permuted, and for
all convex combinations of such states. With any pure partial
product state of the optical beams, e.g., |�〉AB,C = F †

ABF †
C |�〉,

where F †
AB is an operator built of creation operators for beams

A and B, etc., one can associate, in a similar way as above, a

partially factorizable three-qubit density matrix R̂
AB
ψ R̂

C
φ . Thus

the homomorphism works. Generalizations are obvious.
General theory. Consider a beam of dA quantum optical

modes propagating toward a measuring station A, and a beam
of dB modes toward station B. We associate with the situation
a dA × dB-dimensional Hilbert Space, CdA ⊗ CdB , which con-
tains pure states of a pair of qudits of dimensions dA and dB.
For X = A, B, let V̂ X

i , with i = 1, . . . , d2
X , be an orthonormal,

i.e., TrV̂ X
i V̂ X

j = δi j , Hermitian basis of the space of Hermitian
operators acting on CdX . Therefore products V̂ A

i ⊗ V̂ B
j form an

orthonormal basis of the space of Hermitian operators acting
on CdA ⊗ CdB . Thus any entanglement witness for the pair of
qudits, Ŵ , can be expanded into

Ŵ =
d2

A∑
j=1

d2
B∑

k=1

w jkV̂
A
j ⊗ V̂ B

k , (5)

with real w jk . The optimal expansion (with the minimal
number of terms) is to use a Schmidt basis for Ŵ .

Each V̂ X
j can be decomposed to a linear combination of

its spectral projections linked with their respective eigen-
bases, |x( j)

l 〉, where x = a or b consistently with X and l =
1, . . . , dX . If one fixes a certain pair of bases in CdA and
CdB as “computational ones,” i.e., starting ones, denoted as
|lx〉, one can always find local unitary matrices U X ( j) such
that U X ( j)|lx〉 = |x( j)

l 〉. The construction of Reck et al. [39]
fixes (phases in) a local multiport interferometer, which per-
forms such a transformation. We shall call such interfer-
ometers U X ( j) ones. In the case of field modes a passive
interferometer performs the following mode transformation:∑

k U X ( j)lk x̂†
k = x̂†

l ( j), where x̂†
l ( j) is the photon creation

operator in the lth exit mode of interferometer U X ( j).

032041-3



JUNGHEE RYU et al. PHYSICAL REVIEW RESEARCH 1, 032041(R) (2019)

A two-party entanglement witness ŴR for optical fields,
which uses correlations of intensity rates behind pairs of
U X ( j) interferometers can be constructed as follows. For the
output lx of an interferometer, one defines rate observables
as r̂lx = �̂X n̂lx

N̂X �̂X , where N̂X = ∑dX
lx=1 n̂lx . The witness Ŵ

expanded in terms of the computational basis:

Ŵ =
dA∑

k,m

dB∑
l,n

wklmn|ka, lb〉〈ma, nb|, (6)

allows us to form an entanglement witness for fields:

ŴR =
∑
k,m

∑
l,n

wklmn�̂
A�̂B â†

k b̂†
l âmb̂n

N̂AN̂B
�̂A�̂B. (7)

For any pure state of the quantum beams |�〉

〈�|ŴR|�〉
〈�|�̂A�̂B|�〉 = TrŴ R̂, (8)

where the matrix R̂ has elements rklmn

rklmn = 1

〈�|�̂A�̂B|�〉 〈�|�̂A�̂B â†
k b̂†

l âmb̂n

N̂AN̂B
�̂A�̂B|�〉. (9)

Using a generalization of the earlier derivations, one can show
that R̂ is a two-qudit density matrix, and so on.

The actual measurements, to be correlations of local ones,
should be performed using the sequence of pairs of U X ( j)
interferometers, which enter the expansion of the two-qudit
entanglement witness (5). In the entanglement indicator the
rates at output xl ( j) of the given local interferometer U X ( j)
are multiplied by the respective eigenvalue of V̂ X

j related with

the eigenstate |x( j)
l 〉.

To get an entanglement witness for intensities ŴI we
take Ŵ and replace the computational basis kets and bras by
suitable creation and annihilation operators:

ŴI =
dA∑

k,m

dB∑
l,n

wklmnâ†
k b̂†

l âmb̂n. (10)

For any pure state of the quantum beams |�〉, one has
〈�|ŴI |�〉

〈�|N̂AN̂B|�〉 = TrŴ P̂, where the matrix P̂ has elements
1

〈�|N̂AN̂B|�〉 〈�|â†
k b̂†

l âmb̂n|�〉,and has all properties of a two-
qudit density matrix.

Example showing further extension to unitary operator
bases. Let d be a power of a prime number. Consider dA =
dB = d beams experiment (see Fig. 1), with families of U X (m)
interferometers which link the computational basis of a qudit
with an unbiased basis m, belonging to the full set of d + 1
mutually unbiased ones [40,41]. We introduce a set of unitary
observables for a qudit: q̂k (m) = ∑d

j=1 ω jk| j(m)〉〈 j(m)|,with
| j(m)〉 = U (m)| j〉 and it is the jth member of mth mutually
unbiased basis, and ω = exp(2π i/d ). Operators q̂k (m)/

√
d

with k = 1, . . . , d − 1 and m = 0, . . . , d and q̂0(0)/
√

d form
an orthonormal basis in the Hilbert-Schmidt space of all d × d
matrices (see Sec. III in Ref. [14]). Thus we can expand any

qudit density matrix as

� = 1√
d

[
c0,0q̂0(0) +

d∑
m=0

d−1∑
k=1

cm,kq̂k (m)

]
, (11)

where cm,k = Trq̂†
k (m)�/

√
d, and c0,0 = 1/

√
d . As the basis

observables are unitary the expansion coefficients of an en-
tanglement witness operator in terms of such tensor products
of such bases are in general complex. This is no problem for
theory, but renders useless a direct application in experiments,
as one cannot expect the experimental averages to be real, and
thus one has to introduce modifications. Below we present
one.

The condition Tr�2 � 1 can be put as

1

d
+ 1

d

d∑
m=0

d−1∑
k=1

|Tr�q̂k (m)|2 � 1. (12)

Thus, applying Cauchy-Schwartz estimate, we get immedi-
ately a separability condition for two qudits:

d∑
m=0

d−1∑
k=1

∣∣Tr�AB
sepq̂A

k (m)q̂B†
k (m)

∣∣ � (d − 1). (13)

Our general method defines a Cauchy-Schwartz-like separa-
bility condition homomorphic with (13) as

d∑
m=0

d−1∑
k=1

∣∣〈Q̂A
k (m)Q̂B†

k (m)
〉
sep

∣∣ � (d − 1)〈�̂A�̂B〉sep, (14)

where

Q̂X
k (m) =

d∑
j=1

�̂X
ω jk n̂X

j (m)

N̂X
�̂X . (15)

Here, n̂X
j (m) = x̂†

j (m)x̂ j (m) is a photon number operator for
output mode j of a multiport m, at station X . For generalized
observables based on intensity, one can introduce χ̂k (m) =∑d

j=1 ω jk n̂ j (m) to get the following separability condition:

d∑
m=0

d−1∑
k=1

∣∣〈χ̂A
k (m)χ̂B†

k (m)
〉
sep

∣∣ � (d − 1)〈N̂AN̂B〉sep. (16)

Reference [14] presents other examples.
Implications for optical coherence theory. The approach

can be generalized further. Let us take as an example
Glauber’s correlation functions for optical fields, say G(4) in
the form of 〈ÎA(�x, t )ÎB(�x′, t ′)〉, where the intensity operator
has the usual form of IX (�x, t ) = F̂ †

X (�x, t )F̂X (�x, t ), with normal
ordering requiring that operator F̂X (�x, t ) is built out of local
annihilation operators. The idea of normalized Stokes oper-
ators suggests the following alternative correlation function
�4(�x, t ; �x′, t ′) given by〈

�A�B ÎA(�x, t )ÎB(�x′, t ′)∫
a(A) dσ (�x)ÎA(�x, t )

∫
a(B) dσ (�x′)ÎB(�x′, t ′)

�A�B

〉
,

(17)
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where a(X ) denotes the overall aperture of the detectors in location X . Obviously one has
∫

a(A) dσ (�x)
∫

a(B) dσ (�x′)�4(�x, t ; �x′, t ′) =
〈�A�B〉, and for fixed t and t ′, one can define

�(�x, �y, �x′�y′)t,t ′ = 〈�A�B〉−1

〈
�A�B F̂ †

A (�y, t )F̂A(�x, t )F̂ †
B (�y′, t ′)F̂B(�x′, t ′)∫

a(A) dσ (�x)ÎA(�x, t )
∫

a(B) dσ (�x′)ÎB(�x′, t ′)
�A�B

〉
,

which behaves like a proper two-particle density matrix,
provided one constrains the range of �x, �y, �x′, �y′ to appropriate
sets of apertures. As our earlier considerations use simplified
forms of (17), it is evident that such correlation functions may
help us to unveil nonclassicality in situations in which the
standard ones fail, see, e.g., Ref. [8].

Bell inequalities. The above ideas allow one to introduce
a general mapping of qudit Bell inequalities to the ones for
optical fields. A two-qudit Bell inequality for a final number
of local measurement settings α and β has the following
form:

∑
αβ

dA∑
i=1

dB∑
j=1

Ki j
αβPi j (α, β )

+
dA∑

i=1

∑
α

Ni
αPi(α) +

dB∑
j=1

∑
β

M j
βPj (β ) � LR, (18)

where Pi j (α, β ) denotes the probability of the qudits ending
up respectively at detectors i and j, when the local set-
ting are as indicated, and

∑
j Pi j (α, β ) = Pi(α) and Pj (β ) =∑

i Pi j (α, β ). The coefficient matrices K, N, M are real, and
LR is the maximum value allowed by local realism. The bound
is calculated by putting Pi j (α, β ) = Di(α)D j (β ) and Pi(α) =
Di(α), Pj (β ) = D j (β ), with constraints 0 � Di(α/β ) � 1,

and
∑dA/B

i=1 Di(α/β ) = 1. As for a given run of a quantum
optical experiment local measured photon intensity rates
ri(α) and r j (β ) satisfy exactly the same constraints. We can

replace Pi j (α, β ) → 〈ri(α)r j (β )〉LR, and Pi(α) → 〈ri(α)〉LR,
etc., where 〈.〉LR is an average in the case of local realism. The
bound LR stays put. To get a Bell operator we further replace
the above by rate observables r̂i(α)r̂ j (β ), etc. Thus any (mul-
tiparty) Bell inequality, see, e.g., Ref. [42], can be useful in
quantum optical intensity (rates) correlation experiments. The
presented methods for entanglement indicators and the Bell
inequalities allow also to get steering inequalities for quantum
optics.

Conclusions. We present tools for a construction of entan-
glement indicators for optical fields, inspired by the vast lit-
erature [10] on entanglement witnesses for finite dimensional
quantum systems. The indicators would be handy for more
intense light beams in states of undefined photon numbers,
especially in the emerging field of integrated optics multi-
spatial mode interferometry (see Ref. [14] for examples). One
may expect applications in the case of many-body systems,
e.g., for an analysis of nonclassicality of correlations in Bose-
Einstein condensates, like in the ones reported in Ref. [43].
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[35] M. Żukowski, W. Laskowski, and M. Wieśniak, Phys. Rev. A
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[36] M. Żukowski, W. Laskowski, and M. Wieśniak, Phys. Scr. 91,
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