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Self-pulsing in Fabry-Perot lasers: An analytic scenario
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We analyze multimode instabilities in the Fabry-Perot laser. It is well known that in the case of a ring cavity
the multimode instability can arise only when the pump parameter is several times above threshold. We focus
on the parametric conditions that allow for the adiabatic elimination of the atomic polarization only. Under
such conditions no multimode instability is possible in the ring configuration. By investigating the stability of
the stationary solutions in a fully analytical manner, we demonstrate that, on the contrary, in the Fabry-Perot
case a multimode instability can arise very close to threshold and is governed by a remarkably simple formula.
Numerical solutions of the dynamical equations confirm this scenario and describe the self-pulsations generated
by this instability.
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The usefulness of the investigations on instabilities and
pattern formation in nonlinear optical systems is demon-
strated, for example, by the realization of microresonator-
based Kerr frequency combs, especially those generated by
cavity solitons [1,2]. Their behavior is governed by an equa-
tion [called the Lugiato-Lefever equation (LLE) in the fol-
lowing] formulated in 1987 [3], 20 years before the discov-
ery of Kerr frequency combs; for a discussion of the LLE
and its connections with microresonator frequency combs,
see Refs. [4–7]. Combined with the ability to miniaturize
and integrate on chip, soliton Kerr frequency combs have
already found applications, e.g., in dual-comb spectroscopy,
frequency synthesis, low-noise microwave generation, laser
frequency ranging, and astrophysical spectrometer calibration
[5,7].

These works concern systems without population inver-
sion, that display optical bistability. The first multimode op-
tical instabilities that were predicted [8–10] were concerned,
instead, with ring lasers. The linear stability analysis of the
stationary solution of the Maxwell-Bloch equations under
resonant conditions [6] for the ring laser shows that these
instabilities arise at least nine times above threshold, a feature
that severely limits the practical interest of the self-pulsing
generated by them.

According to common wisdom, multimode instabilities
in lasers are favored by the presence of an inhomogeneity
in the gain medium, that weakens the competition among
cavity modes leading to single-mode behavior. One example
is inhomogeneous broadening (spectral hole burning) and, as
a matter of fact, the instability threshold in inhomogeneously
broadened lasers can be substantially lower [6,11,12].
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Another example is Fabry-Perot lasers, because different
cavity modes interact with atoms in different spatial posi-
tions owing to the standing wave configuration (spatial hole
burning). A good deal of theoretical and experimental work
has been done in order to correctly understand multimode
emission in Fabry-Perot cavity lasers, starting with the ap-
proximate model provided by the Tang-Statz-deMars equa-
tions [13]. We refer the interested reader to Refs. [14–17] and
references therein. However, to our knowledge, there is no
systematic study of instabilities in Fabry-Perot lasers in the
framework of the fundamental Maxwell-Bloch equations [6].
The investigations in the literature (see, e.g., Refs. [18,19])
offer only numerical solutions of these equations for selected
values of the parameters. A linear stability analysis is lacking,
and there is no picture of the domain in parameter space that
is most favorable for self-pulsing.

In this Rapid Communication we start from the equations
that govern the dynamics of Fabry-Perot lasers [20] and
demonstrate that for what concerns multimode instabilities the
most relevant scenario arises when the longitudinal relaxation
rate γ‖ of population inversion is much smaller than the
transverse relaxation rate γ⊥ of the atomic polarization, in
sharp contrast with the ring cavity case. We focus on the
resonant configuration and on the parametric conditions that
allow for the adiabatic elimination of the atomic polarization
(for example, the conditions that characterize class-B lasers)
and show analytically that the linear stability analysis leads
to a remarkably simple formula for the instability boundary.
Our analytical and numerical results demonstrate that the
multimode instability and the consequent self-pulsing arise
very close to the laser threshold. We do expect that this
surprising result will stimulate important experimental work.

The complexity of the Fabry-Perot case is due to the fact
that there are two field envelopes, one propagating in the
forward and the other in the backward direction. In Ref. [20]
we consider a cavity that occupies the interval 0 � z � L and
show that, by considering the symmetrically doubled cavity
in the interval −L � z � L and appropriately defining the
dynamical variables in the additional interval −L � z � 0, it
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is possible to reformulate the dynamical equations in terms of
the forward propagating envelope only [21],

c̃
∂FF (z, t )

∂z
+ ∂FF (z, t )

∂t

= −k

[
FF (z, t ) − A

2π

∫ π

−π

dϕ e−iϕP(z, ϕ, t )

]
, (1a)

γ −1
⊥

∂P(z, ϕ, t )

∂t
= [FF (z, t )eiϕ + FF (−z, t )e−iϕ]

× D(z, ϕ, t ) − P(z, ϕ, t ), (1b)

γ −1
‖

∂D(z, ϕ, t )

∂t
= − 1

2 {[FF (z, t )eiϕ + FF (−z, t )e−iϕ]

× P∗(z, ϕ, t ) + c.c.} − [D(z, ϕ, t ) − 1], (1c)

where FF (z, t ) denotes the forward propagating envelope,
P(z, ϕ, t ) and D(z, ϕ, t ) indicate the normalized atomic po-
larization and population inversion of the two-level atoms,
respectively, and c̃ = c/nB is the light velocity in the medium,
with nB being the background refractive index. We assume
that the medium fills the cavity; the case where the medium
occupies only part of the cavity will be considered in
Ref. [22]. The cavity damping rate k is defined as k = c̃T/2L,
where T � 1 is the intensity transmissivity coefficient of the
cavity mirrors, and A is the pump parameter with A = 2gL/T ,
where g is the atom-field coupling constant [6]. Time is
indicated as t , while there are two distinct spatial variables, the
slow spatial variable z (which varies on the scale of the cavity
length) and the fast spatial variable ϕ = ω0z/c̃ which varies
from −π to +π and is related to the wavelength scale [23,24];

ω0 is the cavity frequency which coincides with the atomic
transition frequency. In the additional interval −L � z � 0 the
quantities FF (z, t ), P(z, ϕ, t ), and D(z, ϕ, t ) are defined as

FF (z, t ) = FB(−z, t ), (2a)

P(z, ϕ, t ) = P(−z,−ϕ, t ), (2b)

D(z, ϕ, t ) = D(−z,−ϕ, t ), (2c)

where FB(z, t ) is the backward propagating envelope. As a
consequence of Eq. (2a), the boundary condition for FF (z, t )
in the interval −L � z � L is [20]

FF (L, t ) = FF (−L, t ). (3)

If we expand FF (z, t ), P(z, ϕ, t ), and D(z, ϕ, t ) as follows,

FF (z, t ) =
+∞∑

n=−∞
f̃n(t )ei πn

L z−iαnt , (4a)

P(z, ϕ, t ) =
+∞∑

n=−∞
p̃n(ϕ, t )ei πn

L z−iαnt , (4b)

D(z, ϕ, t ) =
+∞∑

n=−∞
dn(ϕ, t )ei πn

L z, (4c)

where

αn = π c̃

L
n, (5)

and insert Eqs. (4a)–(4c) into Eqs. (1a)–(1c), we obtain the
modal equations [20]

d f̃n(t )

dt
= −k

[
f̃n(t ) − A

2π

∫ π

−π

dϕ e−iϕ p̃n(ϕ, t )

]
, (6a)

γ −1
⊥

∂ p̃n(ϕ, t )

∂t
= −(1 − iα̃n) p̃n(ϕ, t ) + eiαnt

∑
n′

e−iαn′ t f̃n′ (t )[dn−n′ (ϕ, t )eiϕ + dn+n′ (ϕ, t )e−iϕ], (6b)

γ −1
‖

∂dn(ϕ, t )

∂t
= −1

2
e−iαnt

∑
n′

[ f̃n′ (t ) p̃∗
n′−n(ϕ, t )eiϕ + e−2iαn′ t f̃n′ (t ) p̃∗

−n′−n(ϕ, t )e−iϕ + f̃ ∗
n′ (t ) p̃n+n′ (ϕ, t )e−iϕ

+ e2iαn′ t f̃ ∗
n′ (t ) p̃n−n′ (ϕ, t )eiϕ] − [dn(ϕ, t ) − δn,0]. (6c)

Next, we assume conditions that allow for the adiabatic elimination of the atomic polarization (not to be confused with the
rate equation approximation), i.e.,

k, γ‖ � γ⊥, α1 � γ‖. (7)

We set the time derivative of p̃n equal to zero and perform a time average in Eqs. (6a)–(6c) over a time interval that is small with
respect to k−1 and γ −1

‖ and long with respect to α−1
1 . By substituting into Eqs. (6a) and (6c) the expression of p̃n found in this

way, one arrives at the following set of modal equations,

d f̃n(t )

dt
= −k

{
f̃n(t ) − A

1 − iα̃n

1

2π

∫ π

−π

dϕ e−iϕ f̃n(t )[d0(ϕ, t )eiϕ + d2n(ϕ, t )e−iϕ]

}
, (8a)

γ −1
‖

∂d2n(ϕ, t )

∂t
= −1

2

{
δn,0

∑
n′

∣∣ f̃n′ (t )
∣∣2

1 + iα̃n′
[d0(ϕ, t ) + d∗

2n′ (ϕ, t )e2iϕ] +
∣∣ f̃−n(t )

∣∣2

1 + iα̃−n
[d0(ϕ, t )e−2iϕ + d∗

−2n(ϕ, t )]

+δn,0

∑
n′

∣∣ f̃n′ (t )
∣∣2

1 − iα̃n′
[d0(ϕ, t )+d2n′ (ϕ, t )e−2iϕ]+

∣∣ f̃n(t )
∣∣2

1 − iα̃n
[d0(ϕ, t )e2iϕ +d2n(ϕ, t )]

}
−[d2n(ϕ, t )−δn,0], (8b)
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FIG. 1. Boundary of the multimode instability domain in the
plane of the variables X and α̃n [see Eq. (13)]. We consider only
the positive values of α̃n.

where α̃n = αn/γ⊥. When n is odd, dn(ϕ, t ) obeys the trivial
equation ∂dn(ϕ, t )/∂t = −γ‖dn(ϕ, t ) and therefore does not
generate instabilities [20].

Finally, we consider a uniform (i.e., independent of z)
nontrivial stationary solution of Eqs. (1a)–(1c), which corre-
sponds to a stationary solution of Eqs. (8a) and (8b) with

f̃n,s = f̃0,sδn,0, dn,s(ϕ) = δn,0

1 + 4X cos2 ϕ
, (9)

and X = f̃ 2
0,s is obtained by inverting the relation [6]

A = 2X
√

1 + 4X√
1 + 4X − 1

. (10)

If we linearize Eqs. (8a) and (8b) for n 
= 0 taking into account
that f̃n,s and dn,s(ϕ) vanish for n 
= 0, we obtain the equations

d f̃n(t )

dt
= −k

[
f̃n(t ) − A

1 − iα̃n

1

2π

∫ π

−π

dϕ f̃n(t )d0,s(ϕ)

]
,

(11a)

∂d2n(ϕ, t )

∂t
= −γ‖d2n(ϕ, t ). (11b)

The second equation does not lead to any instability. If we
insert Eq. (9) into Eq. (11a) and integrate over ϕ, we get

d f̃n(t )

dt
= −k

[
1 − A

1 − iα̃n

1√
1 + 4X

]
f̃n(t ). (12)

If we set f̃n(t ) = eλnt f̃n(0) and use Eq. (10), we have a
multimode instability when Re(λn) > 0, i.e., when there is at
least one pair of modes n such that

0 � |α̃n| <

√√
1 + 4X − 1

2
. (13)

The upper boundary of the instability domain, which is
shown in Fig. 1, is well approximated by |α̃n| = √

X for
X � 1 and by |α̃n| = X 1/4 for X � 1. By taking into account
that α̃n = αn/γ⊥ and Eqs. (5) and (7), Eq. (13) is conveniently
reformulated as

γ‖L

π c̃
� |n| <

γ⊥L

π c̃

√√
1 + 4X − 1

2
. (14)

It is important to note that in the case of a ring cavity the equa-
tion corresponding to Eq. (12) does not lead to any multimode
instability, hence the instability defined by Eq. (13) is specific
for the Fabry-Perot (FP) configuration. A remarkable feature
of this instability is that it is independent of the value of the
ratio k/γ‖.

In order to confirm the possibility of a multimode FP
instability near threshold, with the associated self-pulsing, we
have solved numerically the dynamical equations (1), inde-
pendent of any adiabatic elimination, for X = 0.01 which,
using Eq. (10), gives A = 1.03, very close to the threshold
A = 1 [6]. In the numerical simulations we have considered
parametric values compatible with the adiabatic elimination of
the atomic polarization, i.e., with conditions (7). Furthermore,
since k/γ⊥ = T α̃1/(2π ) and T is assumed to be much smaller
than unity, we assume also that k/γ⊥ � α̃1.

Figure 2 gives an example of our simulations for k/γ⊥ =
10−7/2, γ‖/γ⊥ = 10−3 so that k/γ‖ = 1/

√
10, α̃1 = 0.02.

From the figure one sees the time evolution of the modal
intensities, the spectrum, the self-pulsing, and the spatial
profile of the total intensity at regime. We have performed
similar simulations, for example, in the case k/γ⊥ = 10−3,
γ‖/γ⊥ = 10−7/2, which corresponds to k/γ‖ = √

10, and in
the case k/γ⊥ = 10−7/2, γ‖/γ⊥ = 10−7/2, which corresponds
to k/γ‖ = 1. For all considered values of k/γ⊥, γ‖/γ⊥ we have
verified that there is instability for α̃1 = 0.01, 0.02, . . . , 0.09
and that there is no instability for α̃1 = 0.11, in agreement
with the instability boundary shown in Fig. 1 when X = 0.01.

Figure 2(c2) shows the frequency comb that arises in this
case. Condition α1 � γ‖ [see Eq. (7)] limits the number of
lines of the comb. This condition drops in the case of adiabatic
elimination of all atomic variables, that will be analyzed in
Ref. [22].

As for the cavity length, if we take nB = 1.5, γ⊥ > 1012

(as, e.g., in solid state lasers), L = 1 cm, we have α̃1 � 0.06,
hence there is instability for the value X = 0.01 considered in
our simulations. It is necessary that the population grating in
the Fabry-Perot cavity is not washed out by carrier diffusion,
hence edge emitting semiconductor lasers cannot be consid-
ered, and the same is true for vertical cavity surface emitting
semiconductor lasers, because they are too short. An example
of a device that suffers from the multimode instability de-
scribed in this Rapid Communication is provided by a single
section quantum dot Fabry-Perot laser (see Ref. [19], where
frequency comb aspects are also discussed).

It is important to observe that the possibility of a mul-
timode instability for a Fabry-Perot laser with values of
the pump current not much higher than threshold has been
demonstrated experimentally in quantum cascade lasers [25].
In this case the ratio γ‖/γ⊥ is much smaller than unity, but
α1 is not much larger than γ‖, so that it does not fully
fit the conditions (7) considered in this Rapid Communi-
cation. This configuration will be considered in Ref. [22],
also with respect to frequency combs in quantum cascade
lasers [26,27].

In the case of optical bistability or a laser with an in-
jected signal [6] there is a stationary monochromatic field
injected in the cavity. Assuming that the frequency of the
input field is resonant with the cavity and the atoms, these
cases are described by Eqs. (1) provided that a constant term,
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FIG. 2. The parametric values are k/γ⊥ = 10−7/2, γ‖/γ⊥ = 10−3, so that k/γ‖ = 10−1/2, α̃1 = 0.02. The temporal unity is the inverse of
γ⊥, and the initial condition is only slightly displaced from the uniform (single-mode) stationary solution. (a1)–(a4) refer to the time evolution
over the first 6 × 106 temporal units, during which only the intensities of the three central modes attain their stationary values. (b1)–(b4) refer
to the time evolution over 108 temporal units, during which the intensities of all other modes considered in the simulation attain their stationary
values. (c1)–(c4) refer to the time evolution over the last round-trip time. (a1), (b1), and (c1) show the time evolution of the modal intensities,
(a2), (b2), and (c2) show the power spectrum at the end of the simulation, (a3), (b3), and (c3) show the time evolution of the output intensity,
and (a4), (b4), and (c4) show the spatial configuration of the total intensity at several instants of time, and the gray lines get lighter with time.

corresponding to the input field, is added in the square bracket
in Eqs. (1a). Therefore the linearized equations (11) remain
unchanged in the case of optical bistability or a laser with
an injected signal, and we can ask whether the multimode
instability pointed out here for a Fabry-Perot laser under
conditions (7) does or does not persist in these cases.

For the laser with an injected signal Eq. (12) holds un-
changed but A and X are independent parameters. One easily
finds that there is a multimode instability for

α̃2
n <

A√
1 + 4X − 1

. (15)

In the case of optical bistability the medium is an absorber
instead of an amplifier, i.e., A = −2C is negative [6], with C
being the bistability parameter, and it is immediate to check
that the instability does not persist.

Finally, it is worth noting the remarkable simplicity of
formula (13) that governs the self-pulsing behavior pointed
out here in the case of a free-running Fabry-Perot laser. We
trust that our near-threshold instability with respect to the
well-known scenario of ring laser instabilities will activate
more experimental work on self-pulsing instabilities in Fabry-
Perot lasers.
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