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We present an exactly solvable p-wave pairing model for two bosonic species. The model is solvable in any
spatial dimension and shares some commonalities with the p + ip Richardson-Gaudin fermionic model, such
as a third-order quantum phase transition. However, contrary to the fermionic case, in the bosonic model the
transition separates a gapless fragmented singlet pair condensate from a pair Bose superfluid, and the exact
eigenstate at the quantum critical point is a pair condensate analogous to the fermionic Moore-Read state.
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I. INTRODUCTION

Integrable Richardson-Gaudin (RG) models [1,2] based
on the su(2) fermion pair algebra have attracted a lot of
attention in recent years, starting with studies of the metal-
to-superconductor transition in ultrasmall grains [3], where
the original Richardson’s exact solution of the BCS model [4]
was rediscovered, to their generalization to a broad range of
phenomena in interacting quantum many-body systems [5,6].
The rational or XXX family of integrable RG models has
been extensively studied, and includes the constant pairing
Hamiltonian (BCS model) [7–9], the central spin model [10],
generalized Tavis-Cummings models [11], and, more recently,
open quantum systems [12]. The hyperbolic or XXZ family is
much less investigated. The notable p + ip model of p-wave
fermionic pairing [13–15] is an exception, having the Moore-
Read (MR) Pfaffian, proposed for the non-Abelian quantum
Hall fluid with filling fraction 5/2 [16,17], as the ground
state at a given coupling strength. Another recent finding is
a number conserving version of the Kitaev wire which hosts
topologically trivial and nontrivial superfluid phases [18].
Interestingly, its repulsive version in the strong coupling limit
has been shown to be related to the quantum Hall Hamiltonian
projected onto the lowest Landau level subspace [19].

Contrary to the fermionic case, su(1,1) bosonic RG models
are unexplored territory. Richardson introduced the bosonic
constant pairing Hamiltonian [20], later generalized to study
condensate fragmentation for repulsive pairing interactions
[21], and the transition from spherical to γ -unstable nuclei in
the nuclear interacting boson model [22,23]. The hyperbolic
su(1,1) RG, proposed in Ref. [2], has only been employed
to demonstrate the integrability of the celebrated Lipkin-
Meshkov-Glick model in the Schwinger boson representation
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[6,24,25]. In this Rapid Communication we derive an inte-
grable two bosonic species p-wave pairing Hamiltonian, and
study its quantum phase diagram. We are motivated by the
recent experimental observation of broad p-wave resonances
in ultracold 85Rb and 87Rb atomic mixtures [26,27] that
could lead to stable thermodynamics phases dominated by
p-wave attractive interactions. Mean-field studies based on a
two-channel model predict three phases [28]: (a) an atomic
Bose-Einstein condensate (BEC) for large negative detuning,
(b) a molecular BEC for large positive detuning, and (c) an
atomic-molecular BEC for intermediate detuning. Quantum
fluctuations may stabilize the atomic-molecular phase for cer-
tain densities giving rise to the formation of polar superfluid
droplets [29]. Our exactly solvable attractive one-channel
p-wave model displays two phases (see Fig. 1), a gapless
fragmented BEC of singlet pairs, where each of the species
condenses into the lowest finite momentum (gray area), and a
gapped pair Bose superfluid (white area).

II. HYPERBOLIC su(1,1) RG INTEGRALS OF MOTION

The hyperbolic su(1,1) model for two bosonic species a
and b in momentum k space is based on the interspecies pair
operators

K+
k,Q = b†

k+Qa†
−k − a†

k+Qb†
−k, K−

k,Q = (K+
k,Q)†,

Kz
k,Q = N̂k,Q

2
+ 1, N̂k,Q = nb

k+Q + nb
−k + na

k+Q + na
−k,

(1)

where nb
k = b†

kbk and na
k = a†

kak. In order to satisfy
the su(1,1) algebra [K−

k,Q, K+
k′,Q] = 2δk,k′Kz

k,Q and
[Kz

k,Q, K±
k′,Q] = ±δk,k′K±

k,Q, and to avoid double counting, we
restrict momenta k and Q to have the component along one
of the dimensions, for instance kx, larger than zero, kx > 0
and Qx > 0. As we will see below this does not restrict the k
values in the Brillouin zone. The operator K+

k,Q, that creates
a two-species pair with center-of-mass momentum Q, is
antisymmetric under the exchange of species. If we interpret
both species as the two components of a pseudospin 1/2, the
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FIG. 1. Quantum phase diagram of the p-wave bosonic Hamil-
tonian, Eq. (6), in the parameter space g = GL and ρ = N/(2L),
where N is the number of bosons and 2L the size of the lattice.
The gray area indicates the singlet pair fragmented BEC phase,
separated from the pair Bose superfluid phase (PBS) by a critical
line gc. In the superfluid phase, the Volovik line, depicted by the
lower dashed line, delineates the phase region where the minimum
of the quasiparticle energy is at momentum kmin = 0, while to the
right of the upper dashed line it is at kmin = π . Between these two
lines, 0 < kmin < π . All pairons diverge to infinity at g∞. Symbols
indicate the couplings used below at density ρ = 0.2. The horizontal
dashed line is ρ = 0.299 433. The inset shows the behavior of the
pairing gap � vs coupling strength g at density ρ = 0.2.

pair operator K+
k,Q creates a singlet state. The pseudospin-1/2

bosons define an independent and commuting su(2) spin
algebra generated by Sz

k,Q = (nb
k+Q + nb

−k − na
k+Q − na

−k )/2,

S+
k,Q = b†

k+Qak+Q + b†
−ka−k, S−

k,Q = (S+
k,Q)†. Although we

will focus on the Q = 0 case, these commuting algebras can
be exploited to describe Larkin-Ovchinnikov-Fulde-Ferrell-
type phases and/or mass imbalance two-component cold
atom gases as described in Ref. [9] for fermionic systems.

In terms of the su(1,1) generators (1), the hyperbolic inte-
grals of motion for Q = 0 are [2,6]

Rk = Kz
k − 2λ

∑
k′( �=k)>0

[
ηkηk′

η2
k − η2

k′
(K+

k K−
k′ + K−

k K+
k′ )

− η2
k + η2

k′

η2
k − η2

k′
Kz

kKz
k′

]
, (2)

where ηk are arbitrary odd functions of k. The sum k′ > 0
means that the component k′

x should be positive.
For a fixed number of bosons N = 2M + ν, where M is

the number of singlet boson pairs and ν the total number of
unpaired bosons, the eigenvalues of the integrals of motion

are

rk = dk

⎡
⎣1 + 2λ

∑
k′( �=k)>0

dk′
η2

k + η2
k′

η2
k − η2

k′
− 2λ

M∑
α=1

eα + η2
k

eα − η2
k

⎤
⎦,

where dk = νk/2 + 1, νk is the seniority quantum number
(number of unpaired bosons) of level k, and ν = ∑

k>0 νk.
The spectral parameters eα , so-called pairons, are roots of the
Richardson equations (α = 1, . . . , M)

∑
k>0

dk

η2
k − eα

+
M∑

β=1(β �=α)

1

eβ − eα

+ Q̃

eα

= 0, (3)

with

Q̃ = − 1

4λ
+ M − 1 + ∑

k>0 dk

2
.

Each independent solution of the Richardson equations (3)
defines a common eigenstate of the integrals of motion (2),

|�M,ν〉 =
M∏

α=1

(∑
k>0

ηk

η2
k − eα

K+
k

)
|ν〉, (4)

where the state |ν〉, with ν unpaired bosons, satisfies K̂−
k |ν〉 =

0 for all k, and K̂z
k|ν〉 = dk|ν〉.

By combining the integrals of motion Rk with the
Hellmann-Feynman theorem [14], the occupation probabili-
ties can be obtained from the expectation value

〈
�M,ν

∣∣Kz
k

∣∣�M,ν

〉 = dk

(
1 − 2λ2

M∑
α=1

2η2
k(

η2
k − eα

) ∂eα

∂λ

)
, (5)

where the pairon derivatives can be obtained from the deriva-
tives of Eq. (3) leading to a linear set of equations. For ease of
presentation we consider next a one-dimensional version of
the p-wave model. It is straightforward to extend our model
to higher dimensions as has been done in the fermionic case
[13,14].

III. THE p-WAVE BOSE HAMILTONIAN

The p-wave pairing Bose Hamiltonian we want to study is
given by

H =
∑

k

η2
k (a†

kak + b†
kbk )

− G

4

∑
k,k′

ηkηk′ (b†
ka†

−k − a†
kb†

−k )(bk′a−k′ − ak′b−k′ ), (6)

where ηk = sin(k/2) and η2
k = (1 − cos k)/2. Assuming an-

tiperiodic boundary conditions, the allowed k values are k =
±π/2L,±3π/2L, . . . ,±(2πL − π )/2L, with 2L the size of
the chain and L the number of su(1,1) copies. We have
chosen antiperiodic boundary conditions to explicitly exclude
the k = 0 state. This state cannot support singlet pairs and,
therefore, it will be excluded from the dynamics of p-wave
pair scattering. This model Hamiltonian, which written in
terms of the su(1, 1) generators is

H =
∑
k>0

η2
k N̂k − G

∑
k,k′>0

ηkηk′K+
k K−

k′ , (7)
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FIG. 2. Pairons eα for a finite system with M = 10 pairs and L =
50 levels (ρ = M/L = 0.2). Cases displayed correspond to the five
symbols indicated in Fig. 1. Coupling strengths G are indicated by
numbers close to the respective symbols. Horizontal lines depict η2

k

levels. See Ref. [30] for an animation of the pairon evolution as a
function of G for 0 < G < G∞.

can be derived from the hyperbolic su(1,1) RG integrals of
motion (2), by using the linear combination

H = 2x
∑
k>0

η2
k Rk − 2Z − G

∑
k>0

dk (1 − dk )η2
k ,

where x = [1 + 2λ(M + L + (ν/2) − 1)]−1, Z = ∑
k>0 η2

k ,
and G = 4λ/[1 + 2λ(M − 1 + ∑

k>0 dk )].
Our p-wave Hamiltonian (7) has an explicit U(1) symme-

try, i.e., conservation of the total number of bosons, and a
pseudospin invariance that basically preserves the polarization
Sz = ∑

k Sz
k , that is, the difference between the number of

bosonic species. Here, we will focus on an unpolarized mix-
ture of atoms characterized by Sz = 0, although the polarized
case (Sz �= 0) is contained in our exact solution. For instance,
an excess of a atoms manifests through the seniorities νk

specifying the k states occupied by the unpaired a atoms.
Eigenvalues of (7) can be determined from the integrals of

motion, using the same linear combination, which, after using
Eq. (3), gives

E =
∑
k>0

η2
kνk + 2

M∑
α=1

eα. (8)

Let us analyze next the way the ground state evolves as a
function of coupling strength G � 0 (Fig. 2). Each indepen-
dent solution of the Richardson equations (3) provides a set of

M pairons that define both the energy eigenvalue (8) and the
corresponding eigenstate (4). The ground state (with ν = 0)
for weak coupling G has the pairons distributed in the real
interval between zero and the minimum η2

π/2L = sin2(π/4L).
At Gn = 2/(2L + 2M − n − 1), n pairons collapse to zero. In
between collapses, the n pairons expand as complex conjugate
pairs forming an arc in the complex plane around zero. The
whole set of M pairons collapses to zero at the critical point

Gc = 2

2L + M − 1
,

where the exact (non-normalized) ground state becomes a
condensate of singlet pairs

|�M〉BMR =
(∑

k>0

1

ηk
K+

k

)M

|0〉, (9)

which is algebraically analogous to the MR state of the p + ip
fermionic model [13,14], and, therefore, we will call it Bose
Moore-Read (BMR) state.

Naively, in an extended system, one would expect that the
ground state of the BEC phase, 0 � G � Gc, corresponds to a
zero-momentum condensate for each species

|�〉 = a†M
0 b†M

0 |0〉, (10)

since, as we will see, the quasiparticle gap � vanishes. This
state has maximum spin S = M. For mesoscopic systems, it
has been shown that the correct ground state at weak coupling
is a fragmented singlet pair BEC [31,32], which in momentum
space becomes

|�〉 = (
K+

kmin

)M |0〉 = (
b†

kmin
a†

−kmin
− a†

kmin
b†

−kmin

)M |0〉, (11)

with kmin = π/2L for the antiperiodic chain. Note that in this
phase, the exact ground state has a mixture of complex pairons
close to zero and real pairons in the interval [0, η2

π/2L]. For
large L the pairons will cluster around zero and the exact
ground state (4) will tend to the BMR state (9) which is repre-
sentative of the whole phase. The BMR state is controlled by
kmin, and therefore it converges to the singlet pair condensate
in the large L limit. Interestingly, in the thermodynamic limit
the states (11) and (10), as well as condensates with other spin
quantum numbers S, become degenerate. A weak repulsive in-
teraction may destabilize those degenerate spin states against
the singlet pair condensate [32].

For G > Gc the pairons distribute along an arc that expands
in the complex plane as G increases (Fig. 2). At

G∞ = 2

M − 1
,

the absolute value of all pairons diverges to infinity. This
divergence does not affect the energy since imaginary parts
cancel out pairwise in (8) and the real parts combine to
give E = 2GM

∑
k>0 η2

k . Infinite pairon energies have been
observed previously in fermionic hyperbolic models [18] and
they were related to a duality associated to the particle-hole
symmetry [33]. At this point the exact ground state can be
expressed as a different pair condensate

|�M〉G∞ =
(∑

k

ηk K+
k

)M

|0〉. (12)
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In turn, in the fermionic case we find that this state appears as
the highest-energy eigenstate in the repulsive pairing region.

In Fig. 1, at density ρ = 0.2, we show five distinct symbols
covering all distinct areas of the phase diagram, at couplings
g = 0.5, 1.2, 1.8, 5.0, and 6.8, with g = GL. Figure 2 displays
pairons of a finite-sized system with M = 10 and L = 50, for
these same five values. As discussed above, the first point with
G < Gc has ten pairons distributed in the real positive axis
below η2

π/2L (see the right inset). After the pairons collapse to
zero at Gc, they form an arc in the complex plane that expands
for increasing values of G. This is the case for the remaining
four couplings that lay in between Gc and G∞, two of them
which can be seen in the left inset while the other two in the
central figure.

IV. QUANTUM PHASE DIAGRAM

The thermodynamic limit is obtained in the limit of
N, L → ∞ with constant density ρ = N/(2L) and rescaled
interaction strength g = GL. In this limit, the Richardson
equations (3) transform into the boson gap and number equa-
tions [8,14]

π

g
=

∫ π

0

η2
k

Ek
dk, ρ = 2

π

∫ π

0
v2

k dk, (13)

with quasiboson energies Ek and occupation probabilities v2
k ,

Ek =
√(

η2
k − μ

)2 − 4η2
k�

2, v2
k = 1

2

(
η2

k − μ

Ek
− 1

)
,

(14)

where μ is the chemical potential and � the gap. Though Ek

in (14) may, in principle, be complex, we have numerically
verified that in the large attractive g limit, Eqs. (13) have
solutions μ ≈ −γ1g and � ≈ γ2g, with γ1,2 positive constants
satisfying 4γ 2

2 < γ 2
1 . This latter condition guarantees that the

quasiboson energies, given by Ek ≈ gγ1

√
1 − (4γ 2

2 /γ 2
1 )η2

k ,
are always real, even in the limit g → ∞. The ground-state
energy density E ≡ E/L for a given density ρ in the thermo-
dynamic limit is given by

E = −4�2

g
− 1 + 2

π

∫ π

0

η2
k

(
η2

k − μ
)

Ek
dk. (15)

The critical coupling of the exact solution in the finite-
size case becomes gc = limL,N→∞[GcL] = 2/(2 + ρ) in the
thermodynamic limit. The gap � is zero at weak pairing up to
the critical value gc. The inset of Fig. 1 shows the behavior of
the gap for ρ = 0.2. It increases monotonically for g > gc. In
the same thermodynamic limit, the coupling where all pairons
diverge becomes g∞ = limL,N→∞[G∞L] = 2/ρ (Fig. 1).

We are interested in establishing the nature of the nonan-
alyticities of E at the critical point. It turns out that E = 0,
for 0 < g < gc and is nonanalytic at g = gc with a third-order
phase transition to a pair superfluid phase [14,34]. Close to
g − gc ≈ 0+, it behaves as

E ≈ −π2

3

(
g̃

g

)2( g̃

g
− 12

g − 1

ge2(2−gc )
e

2(gc−1)
g̃

)
, (16)

where g̃ = (g − gc)/gc (see the Appendix). Interestingly, the
behavior of E close to gc depends on ρ only through its
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FIG. 3. Energy density E as a function of g. Continuous lines are
the thermodynamic limit solution while the dashed line is the exact
E for M = 10 and L = 50. Second- and third-order derivatives of E
are displayed in the insets.

critical value gc. The first- and second-order derivatives at
the critical point are zero, while the third-order derivative is
∂3

gE	g−gc→0+ = −2π2/g6
c, signaling a discontinuity of third

order. This is illustrated in Fig. 3 for ρ = 0.2 where, more-
over, E is compared with the exact energy density for M = 10
and L = 50.

V. NATURE OF EXCITATIONS

In Fig. 4 we show the quasiboson energies for the five
values of g indicated in Fig. 1. The quasiboson energies
change from Ek = sin2(k/2) in the gapless pair condensate
phase (g = 0.5), to a complex dispersion in the pair Bose
superfluid phase. For μ + 2�2 � 0, Ek is a monotonous
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FIG. 4. Quasiparticle energies for ρ = 0.2 and the same cou-
plings as those indicated in Fig. 1. For g = 1.1, the inset zooms in
the low-k region, showing that kmin �= 0. The lower inset displays the
occupation probabilities.
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increasing function with minimum at kmin = 0 and energy
Ekmin = |μ| (g = 1.8). The previous condition is fulfilled in the
superfluid phase only for small densities ρ < 0.299 433 in a
finite coupling interval. The region is indicated by the area
with diagonal lines in Fig. 1. The boundary of this region,
the so-called Volovik line [13] defined by a superfluid with
the minimum quasiboson energy at k = 0, is given by μ +
2�2 = 0. For 0 < μ + 2�2 < 1, Ek has a minimum at kmin =
2 arcsin (

√
μ + 2�2), satisfying 0 < kmin < π (g = 1.1, 5.0).

The region of the phase diagram where Ek has this dispersion
is indicated by the white area in Fig. 1. The previous con-
dition is fulfilled for any density, and gives the form of the
quasiboson dispersion immediately after the quantum phase
transition. For μ + 2�2 � 1 (area with horizontal lines in
Fig. 1), the quasiboson dispersion is a monotonous decreasing
function with a minimum at kmin = π (g = 6.8).

The occupation probabilities in momentum space are dis-
played in the lower inset of Fig. 4 for the five values of g
indicated in Fig. 1. Continuous lines are the thermodynamic
limit solution and symbols correspond to the exact solution for
the finite-size case calculated using Eq. (5). For g = 0.5 the
system is condensed in kmin, resulting in a delta distribution in
the thermodynamic limit. At gc, in that limit, the macroscopic
occupation at kmin → 0 jumps to zero and then the maximum
of the distribution moves to finite k values. This jump in the
k = 0 momentum state resembles the one observed in the
p + ip and RG Kitaev models [14,18] and the s-d RG model
of Ref. [35]. In the fermionic case, this fact has been linked to
a topological phase transition [14,18]. For g = 1.1 and 1.8 the
profiles broaden and maxima get displaced to larger values of
k. Finally, for g = 5.0 and 6.8 the profiles are inverted with a
maximum occupation at k = π .

VI. OUTLOOK

We introduced an exactly solvable two-species p-wave
bosonic model and established its quantum phase diagram in
the attractive sector. Only the case of a balanced mixture with
equal masses (ma = mb) and zero center-of-mass momentum
Q has been studied in depth. Imbalanced binary mixtures
(ν �= 0, ma �= mb) and finite Q pairs are contained within our
exactly solvable model. The exact, finite and thermodynamic
limit, treatments of the p-wave pairing Bose Hamiltonian (7),
although seemingly similar, have profound physical differ-
ences from its fermionic counterpart [13–15,33] despite the
fact that both cases share a third-order quantum phase tran-
sition. In the fermionic case the latter separates two gapped
superfluid phases and has a topological character [18]. In
the bosonic case one of the phases is gapless and displays a
fragmented BEC condensate with macroscopic occupations
of both species in the lowest finite momentum pair states
(−k, k), while the other is a gapped pair Bose superfluid
(PBS). Moreover, while for fermions the critical coupling
takes place at the Read-Green point, with one pairon at zero
energy and the other M − 1 pairons with real and negative
energies, for bosons the phase transition takes place at the
equivalent of the fermionic Moore-Read point with all pairons
collapsing to zero energy. It is at this critical point that the
exact bosonic ground state is a pair condensate with ampli-
tudes fixed by the single-particle energies.

Motivated by a theoretical prediction [36], recent experi-
ments discovered an ultradilute quantum liquid in ultracold
bosonic systems. Apparently, there is no unique mechanism
leading to such a liquid state since it has been observed
in single-species dipolar systems [37] and Bose (potassium)
mixtures [38,39]. Can one obtain a quantum liquid phase
in p-wave Bose systems? This question has been recently
addressed in Ref. [29], and answered in the affirmative for a
particular model. Our PBS represent a (fixed-point) number-
conserving candidate for such quantum liquid phase. The pair-
ing interaction in (7) may thus provide an effective mechanism
for its emergence. Although the superfluid gap protects that
state from expansion in finite geometries, further studies in
trapped potentials are required to identify a possible self-
bound quantum liquid droplet. On the experimental side, it
is crucial to have a precise understanding of the spectrum of
excitations to compare to our theoretical predictions.
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APPENDIX: NONANALYTIC BEHAVIOR AT THE
QUANTUM CRITICAL POINT

One can write the boson gap and number equations (13), in
the thermodynamic limit, as

π (ρ + 1) =
∫ 1

0
dx

x − μ√
x − x2

√
x2 − 2ax + μ2

, (A1)

π

g
=

∫ 1

0
dx

x√
x − x2

√
x2 − 2ax + μ2

, (A2)

where the following change of variables has been performed:
x = η2

k , and a = μ + 2�2.
We are interested in characterizing the behavior of physical

quantities, such as the chemical potential μ, superfluid gap �,
and ground-state energy density E , near the phase transition
g ≈ gc where a nonanalyticity develops. Close to the transi-
tion, and for couplings g > gc, μ < 0 and a > 0, such that
a > δ = μ2 − a2 > 0. We need to determine the behavior of
the above integrals in the limit δ → 0+. A few algebraic steps
lead to∫ 1

0
dx

1√
x − x2

√
x2 − 2ax + μ2

δ→0+= Id ,

Id =
√

1

a − a2
[log 16 + 2 log(a − a2) − log δ]. (A3)

Similar manipulations result in∫ 1

0
dx

x − a√
x − x2

√
x2 − 2ax + μ2

δ→0+= π − 4 arcsin
√

a.
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Therefore, the resulting gap and number equations close to
the critical point become

πρ = −4 arcsin
√

a + (a − μ)Id , (A4)

π

g
= π − 4 arcsin

√
a + a Id , (A5)

or equivalently

ρ + 1 = 1

g
− μ

a

(
1

g
− 1 + 4

π
arcsin

√
a

)
, (A6)

and whose consistency can be checked by taking the limit
a → 0, g → gc. This gives ρ + 1 = 2/gc, as expected from
the exact solution. On the other hand, we would like to
determine the behavior of the gap � and chemical potential
μ as a function of ρ and g close to the transition. It turns out
to be more convenient to write a − �2 = μ + �2 = μ�, and
find solutions for μ and �,

μ ≈ −
(π

2

)2
(

g − gc

ggc

)2

, (A7)

� ≈ 4 e2(gc−2)e
2gc (gc−1)

g−gc . (A8)

What is the behavior of the ground-state energy density E ,
Eq. (15),

E = −4�2

g
− 1 + 2

π

∫ 1

0
dx

x(x − μ)√
x − x2

√
x2 − 2ax + μ2

,

close to the phase transition? Following the same strategy,
close to the transition point,∫ 1

0
dx

x(x − μ)√
x − x2

√
x2 − 2ax + μ2

δ→0+= π

2
[2(a(ρ + 1) − μ) + 1]

+ 2(
√

a(1 − a) + (2μ − 1) arcsin
√

a),

and to first order in powers of �, it results in

E ≈ −π2

3

(
g̃

g

)2( g̃

g
− 12

g − 1

ge2(2−gc )
e

2(gc−1)
g̃

)
, (A9)

where g̃ = (g − gc)/gc, displaying a discontinuity of third
order as indicated in the main text.
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