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Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe2
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We observe a set of three replica luminescent peaks at ∼21.4 meV below the dark exciton, and negative and
positive dark trions (or exciton polarons) in monolayer WSe2. The replica redshift energy matches the energy of
the zone-center E ′′-mode optical phonons. The phonon replicas exhibit a parallel gate dependence and the same
g-factors as the dark excitonic states, but follow the valley selection rules of the bright excitonic states. While
the dark states exhibit an out-of-plane transition dipole and valley-independent linearly polarized emission in the
in-plane directions, their phonon replicas exhibit an in-plane transition dipole and valley-dependent circularly
polarized emission in the out-of-plane directions. Our results and symmetry analysis show that the K-valley dark
exciton decays into a left-handed chiral phonon and a right-handed photon, whereas the K ′-valley dark exciton
decays into a right-handed chiral phonon and a left-handed photon. Such valley selection rules of chiral phonon
replicas can be utilized to identify the valleys of the dark excitonic states and explore their chiral interactions
with phonons.

DOI: 10.1103/PhysRevResearch.1.032007

Monolayer transition metal dichalcogenides (TMDs), such
as MoS2 and WSe2, are two-dimensional (2D) semiconduc-
tors with remarkable excitonic properties [1–3]. They host
tightly bound excitons at two time-reversal valleys (K, K ′),
where spin-orbit coupling splits each band into two subbands
with opposite spins [4–14]. If the electrons and holes come
from bands with the same electron spin, they form bright
excitons with a short lifetime (<10 ps) and relatively weak
valley polarization due to the intervalley exchange interaction
[Fig. 1(a)] [15]. But if the electrons and holes come from
bands with opposite spins, they form dark excitons with a
long lifetime (>100 ps) and relatively strong valley polariza-
tion due to the suppression of radiative recombination and
intervalley exchange interactions [Fig. 1(b)] [16,17]. These
excitons can further couple to the Fermi sea to form trions
[14,18] or exciton polarons [19–21] (hereafter we denote
all of them as “trions” for simplicity). In monolayer WS2

and WSe2, the dark excitonic states can accumulate a large
population because their energy level lies below the bright ex-
citonic level [16,17,22–31]. These distinctive properties make
the TMD dark excitonic states much better candidates than
bright excitonic states for exciton transport, condensation, and
valleytronic applications [32–34].

Detecting and manipulating the valley pseudospin of
the dark excitonic states is, however, challenging because
the usual valley selection rules of bright excitons are not
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applicable for dark excitons. The bright excitons exhibit in-
plane (IP) transition dipoles and couple selectively to light
with right-handed (left-handed) circular polarization in the
K (K ′) valley [Fig. 1(a)] [35–38]. We can therefore conve-
niently access their valley pseudospin by light helicity. But
the dark excitonic states exhibit out-of-plane (OP) transition
dipoles and couple to vertically polarized light for both valleys
[Fig. 1(b)] [17,22–31]. The lack of valley selection rules poses
a great challenge to study the dark-state valley dynamics.
In the search for new valley selection rules, the high-order
processes, such as the decay of a dark exciton into a photon
and a phonon, may exhibit valley selectivity. Li et al. recently
reported a phonon replica of neutral dark exciton in mono-
layer WSe2 [39], but their results are insufficient to establish
rigorous valley selection rules for dark excitons and trions.

In this Rapid Communication, we experimentally establish
the valley and chirality selection rules for both dark excitons
and trions in their chiral phonon replica emission in mono-
layer WSe2. Our experiment reveals a set of three replica
luminescent peaks at ∼21.4 meV below the dark exciton,
and negative and positive dark trions. The redshift energy
(∼21.4 meV) matches the energy of the zone-center E ′′-mode
optical phonons in monolayer WSe2 [40–42]. The replica
emission exhibits a parallel gate dependence and the same
g-factors as the original dark states, but follows distinct optical
selection rules. While the original dark states exhibit OP
dipoles and valley-independent linearly polarized emission
in the IP directions, their phonon replicas exhibit IP dipoles
and valley-dependent circularly polarized emission in the OP
directions, similar to the characteristics of the bright excitonic
states [Fig. 1(c)]. Our results and symmetry analysis show
that the K-valley dark exciton decays into a left-handed chiral
phonon and a right-handed photon, whereas the K ′-valley
dark exciton decays into a right-handed chiral phonon and a
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FIG. 1. (a)–(c) Band configurations, transition dipole, and opti-
cal emission of (a) bright exciton, (b) dark exciton, and (c) dark-
exciton chiral phonon replica at the K valley in monolayer WSe2.
The arrows denote the electron spin. A dark exciton can decay into a
chiral phonon and a photon with opposite chirality.

left-handed photon. The replica PL intensity can be accounted
for by first-principles calculations. Such valley-selective chi-
ral phonon replicas can be utilized to identify the valley
pseudospin of the dark excitonic states and explore the chiral
exciton-phonon interactions.

We measure the photoluminescence (PL) from ultraclean
monolayer WSe2 devices encapsulated by boron nitride on
Si/SiO2 substrates under continuous 532-nm laser excitation
at temperature T ∼ 4 K [43]. Although the dark-state PL
propagates in the IP directions, we can partially capture it
with a wide-angle microscope objective [numerical aperture
(NA) = 0.6] in the OP direction [16,28,43–47]. Figure 2(a)
displays a gate-dependent PL map. The exceptional quality
of our device allows us to observe a panoply of emission
features, including the bright A exciton (A0) and trions (A−

1 ,
A−

2 , A+), and dark exciton (D0) and trions (D−, D+) [16,17].
Notably, a PL peak emerges at ∼21.4 meV below each of
the D0, D−, and D+ peaks [Figs. 2(a) and 2(b)]. We denote
them as D0

p, D−
p , and D+

p , respectively. We have fit the spectra
with multiple Lorentzian functions and extracted their PL
intensity and energy. Both their intensity and energy shift
show a similar gate dependence as the D0, D−, and D+
peaks [Figs. 2(c) and 2(d)]. We can visualize the parallel gate
dependence in a second-derivative PL map (d2I/dE2), where
the replica features are much sharpened [Fig. 2(e)].

The D0
p, D−

p , and D+
p peaks exhibit almost the same g-

factors as the D0, D−, and D+ peaks when we measure their
Zeeman effect under an out-of-plane magnetic field (B). The
magnetic field can induce different band gaps in the two
valleys [48–51]. The difference between the two valley gaps
is the valley Zeeman splitting energy �E = gμBB, where g
is the effective g-factor and μB = 57.88 μeV/T is the Bohr
magneton. Figures 3(a)–3(f) display the B-dependent second-
derivative PL maps (the raw data is in the Supplemental
Material [43]). From the linear Zeeman shift we can extract
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FIG. 2. (a) Gate-dependent photoluminescence (PL) map of a monolayer WSe2 device encapsulated by boron nitride. We denote the bright
excitonic states (A0, A+, A−

1 , A−
2 ), dark excitonic states (D0, D−, D+), and dark states phonon replicas (D0

p, D−
p , D+

p ). (b) The cross-cut PL
spectra at the charge neutrality point (gate voltage Vg = –0.3 V), electron side (Vg = 2 V), and hole side (Vg = –2 V). (c) PL intensity and (d)
PL photon energy of the dark excitonic states and replicas as a function of gate voltage. The replica energy is upshifted for 21.4 meV for
comparison. (e) The second energy derivative (d2I/dE 2) of the PL map in (a).
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FIG. 3. (a)–(f) Magnetic-field-dependent second-derivative PL map (d2I/dE 2) of monolayer WSe2 on the electron side [(a), (b) gate
voltage Vg = 1.5 V], near the charge neutrality point (CNP) [(c), (d) Vg = –0.2 V], and on the hole side [(e), (f) Vg = –1.5 V]. We excite the
sample with a linearly polarized 532-nm laser and collect the PL with right-handed (top row) or left-handed helicity (bottom row). (g) The
Zeeman energy shift of one branch of the dark states and their replicas. The replica energy is upshifted for 21.4 meV for comparison. The
Zeeman-splitting g-factors from linear fits are denoted.

the g-factors. The D0
p, D−

p , and D+
p peaks and the D0, D−, and

D+ peaks have almost the same g-factors between −9.2 and
−9.9 [Fig. 3(h)].

The parallel gate dependence and same g-factors strongly
indicate that D0

p, D−
p , and D+

p are the replicas of the D0,
D−, and D+ peaks. We assign the D0

p, D−
p , and D+

p peaks
as the E ′′-mode phonon replicas because the redshift energy
(∼21.4 meV) matches the E ′′ optical phonon energy in mono-
layer WSe2 [40,52–55]. Similar E ′′ phonon replicas have been
reported in quantum-dot excitons in monolayer WSe2 [40]. In
our experiment, the E ′′ phonon replica is found only for the
dark excitonic states, not for the bright excitonic states.

Although D0
p, D−

p , and D+
p are the replicas of the dark

states, they appear to follow the optical selection rules of the
bright states. In the magneto-PL experiment for Fig. 3, we
excite the sample with a linearly polarized laser and detect
the PL with right- or left-handed helicity. Such measurements
detect the dark states from both valleys because they emit
linearly polarized light. But they detect the bright states only
from one valley because the bright states emit right-handed
(left-handed) light from the K (K ′) valley. Correspondingly,
in our PL maps the D0, D−, and D+ peaks are each split into
two branches under a magnetic field, corresponding to the two
valleys [Figs. 3(a)–3(f)]. But the bright states only show a
Zeeman shift with no splitting, because we can only detect one
valley. Remarkably, the three replica peaks exhibit the same
behavior as the bright states—they also only show a Zeeman
shift with no splitting. In the right-handed PL detection, they
shift in parallel with the lower branch of the dark states;
we only observe the phonon replicas from the K valley. In
the left-handed PL detection, they shift in parallel with the
higher branch of the dark states; we only observe the phonon
replicas from the K ′ valley. The helicity of the phonon replicas
therefore tells us the valley pseudospin of the original dark
states.

We have further obtained the transition dipole orientation
of the phonon replicas. Tang et al. recently developed a special
method to measure the dipole direction of the excitonic emis-
sion [17]. They deposit monolayer WSe2 on a planar GaSe
waveguide, which collects the light emission in the IP direc-
tions from both the IP and OP dipoles in monolayer WSe2. By
measuring the polarization of such emission, they can resolve
the PL components from the IP and OP dipole [43]. We have
extracted the exciton and replica PL intensity from their data
and plot them as a function of polarization angle in Fig. 4. The
dark and bright states exhibit perpendicular PL polarizations
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FIG. 4. The PL intensity of the bright excitonic states (triangle),
dark excitonic states (square), and dark-state phonon replicas (dots)
as a function of polarization angle in the in-plane collection geome-
try. The angles corresponding to in-plane (IP) and out-of-plane (OP)
dipoles are denoted.
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TABLE I. Symmetry quantum numbers for the electronic bands
(c↑, c̄↓, v↑) at the K point and the E ′′ chiral phonons (�+, �−) at the
zone center for monolayer WSe2.

c↑ c̄↓ v↑ �+ �−

σh i −i i −1 −1
C3 + 1

2 − 1
2 − 1

2 +1 −1

because they have OP and IP dipoles, respectively. Notably,
the phonon replicas have the same polarization as the bright
states, indicating that they are associated with the IP dipole.

The optical selection rules and the IP dipole of the phonon
replicas can be explained by the symmetry of the electron and
phonon states by group theory (see Supplemental Material
for details [43]). The electronic states at the K/K ′ point
possess the C3h symmetry point group, including the OP
mirror symmetry (σ̂h) and IP threefold rotation symmetry
(Ĉ3). An eigenfunction ψ transforms as Ĉ3ψ = e−i 2π

3 C3ψ and
σ̂hψ = σhψ , where C3 and σh are the respective Ĉ3 and σ̂h

quantum numbers for ψ . Table I lists these quantum numbers
for the spin-up and spin-down conduction bands (c↑, c̄↓) and
the spin-up valence band (v↑) at the K point. The hat on c̄↓
denotes that it is not purely spin-down, but contains a small
spin-up component from coupling to a higher spin-up band by
spin-orbit coupling [49,56]. Such spin mixing is necessary for
the dark exciton to emit light. Under the symmetry operations,
the v-c interband transition matrices transform as [56,57]

〈c| p̂±|v〉 = 〈c|Ĉ−1
3 Ĉ3 p̂±Ĉ−1

3 Ĉ3|v〉
= ei 2π

3 [C3(c)−C3(v)∓1]〈c| p̂±|v〉,
〈c| p̂±|v〉 = 〈c|σ̂−1

h σ̂h p̂±σ̂−1
h σ̂h|v〉 = σ ∗

h (c)σh(v)〈c| p̂±|v〉,
〈c| p̂z|v〉 = 〈c|Ĉ−1

3 Ĉ3 p̂zĈ
−1
3 Ĉ3|v〉 = ei 2π

3 [C3(c)−C3(v)]〈c| p̂z|v〉,
〈c| p̂z|v〉 = 〈c|σ̂−1

h σ̂h p̂zσ̂
−1
h σ̂h|v〉 = −σ ∗

h (c)σh(v)〈c| p̂z|v〉.
(1)

Here, the momentum operators p̂± = p̂x ± i p̂y and p̂z are
associated with the IP chiral dipole and OP dipole, respec-
tively. They transform as Ĉ3 p̂±Ĉ−1

3 = e∓i 2π
3 p̂±, σ̂h p̂±σ̂−1

h =
p̂±, Ĉ3 p̂zĈ

−1
3 = p̂z, and σ̂h p̂zσ̂

−1
h = −p̂z. For a matrix element

to be finite, the prefactor after the symmetry transformation
must be one. From Table I, we can verify that only 〈c↑| p̂+|v↑〉
and 〈c̄↓| p̂z|v↑〉 can be finite, whereas other transition matrix
elements are all zero. Therefore, the bright and dark excitons
in the K valley are coupled exclusively to right-handed light
and vertically polarized light, respectively [28,35–38].

When the atoms move due to the lattice vibration, the
original states are no longer eigenstates. In particular, the
electron-phonon coupling will renormalize the c̄↓ band into

| ¯̄c↓〉 = |c̄↓〉 + 〈c↑,� |Ĥep|c̄↓〉
Ec̄↓ − Ec↑ − h̄�

|c↑〉 . (2)

Here, |�〉 denotes an E ′′ phonon with frequency �. In the chi-
ral mode, the W atoms stay stationary and the Se atoms rotate
counterclockwise or clockwise, giving rise to right-handed

K

Photon 

K’

Photon 

W

(a) (b)

Se

Chiral phonons

LO TO

FIG. 5. (a) The configurations of the doubly degenerate zone-
center E ′′ phonons in monolayer WSe2. The W atoms are stationary
and the Se atoms move laterally. The vibration can be decomposed
into the LO and TO modes with linear Se atomic motion or left-
handed and right-handed chiral modes with rotational Se atomic
motion. (b) The phonon-assisted radiative recombination of the dark
exciton. The dark exciton can decay into a pair of phonon and photon
with opposite chirality.

(�+) or left-handed (�−) phonons [Fig. 5(a)]. These phonons
have odd mirror parity to mix the bright and dark states with
opposite mirror parity. The chiral phonons also have three-
fold rotation symmetry with quantum numbers C3(�±) = ±1
(Table I). Upon a Ĉ3 rotation, the matrix element transforms
as

〈c↑,� |Ĥep|c̄↓〉 = ei 2π
3 [1+C3(�)]〈c↑,�| Ĥep|c̄↓〉. (3)

The matrix element can only be finite for the left-handed
phonon with C3(�−) = −1. Therefore, the K-valley dark
exciton only emits the left-handed chiral phonon.

The dark exciton can obtain oscillator strength from the
bright exciton through the electron-phonon coupling Ĥep and
recombine through the ¯̄c↓ − v↑ transition by the electron-light
interaction Ĥel . The Fermi’s golden rule gives the transition
rate [39]

P¯̄c↓−v↑ ∝ |〈v↑, ω,�|Ĥel | ¯̄c↓〉|2

∝
∣
∣
∣
∣

〈v↑, ω,�|Ĥel |c↑,�〉〈c↑,� |Ĥep|c̄↓〉
Ec̄↓ − Ec↑ − h̄�

∣
∣
∣
∣

2

. (4)

Here, |ω〉 denotes a photon with frequency ω.
〈v↑, ω,�|Ĥel |c↑,�〉 corresponds to the matrix element
〈v↑| p̂|c↑〉 for the bright-exciton transition. Therefore, the
chiral phonon replica follows the intensity and selection rules
of the bright exciton.

By combining the phonon and photon selection rules, we
conclude that the dark exciton emits a left-handed chiral
phonon and a right-handed photon in the K valley. By the
time-reversal symmetry, it emits a right-handed chiral phonon
and a left-handed photon in the K ′ valley [Fig. 5(b)]. These
selection rules still hold even after we include the excitonic
effect, because the exciton Hamiltonian has the same symme-
try as the states at the K/K ′ point. Our experimental results
are fully consistent with these selection rules.
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While the excitonic effect does not modify the selection
rules, it can substantially enhance the intensity of the phonon
replicas. In particular, the finite k-space extent of the exciton
envelope functions allows coupling to phonons with finite
momentum. Only one chiral component of these phonons will
contribute to the transition, so the chiral phonon selection
rules still hold. We have calculated the replica intensity in
a full excitonic picture with the density functional theory.
The calculated intensity ratio between the replica and dark
exciton is ID0

p
/ID0 ≈ 0.02. This is close to the experimental

ratio (ID0
p
/ID0 ≈ 0.05) after we correct the different collection

efficiency for the IP and OP emission in our setup (see
Supplemental Material [43]). Our experiment shows differ-
ent replica ratios for dark trions (ID+

p
/ID+ ≈ 0.02; ID−

p
/ID− ≈

0.07). This indicates that the coupling to the Fermi sea can
affect the phonon replica emission.

In summary, we have observed chiral phonon repli-
cas of dark excitons and trions in monolayer WSe2. The
replicas exhibit rigorous chirality and valley optical selec-
tion rules, which allow us to access the dark-state valley

pseudospin. The valley-selective replica emission can po-
tentially be utilized to explore the valley dynamics of dark
excitons and trions, such as to image their valley Hall effect.
The replica process may also be used to generate phonons
with selective chirality for the exploration of chiral phonon
physics.
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[6] K. Kośmider, J. W. González, and J. Fernández-Rossier, Large
spin splitting in the conduction band of transition metal
dichalcogenide monolayers, Phys. Rev. B 88, 245436 (2013).

[7] K. F. Mak and J. Shan, Photonics and optoelectronics of 2D
semiconductor transition metal dichalcogenides, Nat. Photonics
10, 216 (2016).

[8] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins
in layered transition metal dichalcogenides, Nat. Phys. 10, 343
(2014).

[9] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li,
O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz,
Exciton Binding Energy and Nonhydrogenic Rydberg Series in
Monolayer WS2, Phys. Rev. Lett. 113, 076802 (2014).

[10] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J.
Shan, Tightly Bound Excitons in Monolayer WSe2, Phys. Rev.
Lett. 113, 026803 (2014).

[11] A. V. Stier, N. P. Wilson, K. A. Velizhanin, J. Kono, X. Xu,
and S. A. Crooker, Magnetooptics of Exciton Rydberg States
in a Monolayer Semiconductor, Phys. Rev. Lett. 120, 057405
(2018).

[12] E. Liu, J. van Baren, T. Taniguchi, K. Watanabe, Y.-C. Chang,
and C. H. Lui, Magnetophotoluminescence of exciton Ryd-
berg states in monolayer WSe2, Phys. Rev. B 99, 205420
(2019).

[13] S.-Y. Chen, Z. Lu, T. Goldstein, J. Tong, A. Chaves, J.
Kunstmann, L. S. R. Cavalcante, T. Woźniak, G. Seifert,
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