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Long-time persistence of hydrodynamic memory boosts microparticle transport
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In a viscous fluid, the past motion of an accelerating particle is retained as an imprint on the vorticity
field, which decays slowly as t−3/2. At low Reynolds number, the Basset-Boussinesq-Oseen (BBO) equation
correctly describes nonuniform particle motion, capturing hydrodynamic memory effects associated with this
slow algebraic decay. Using the BBO equation, we numerically simulate driven single-particle transport to show
that memory effects persist indefinitely under rather general driving conditions. In particular, when driving forces
do not vary smoothly, hydrodynamic memory substantially lowers the effective transport friction. Remarkably,
this enables coasting over a spatially uneven potential that otherwise traps particles modeled with pure Stokes
drag. Our results provide direct physical insight into the role of particle-fluid coupling in nonequilibrium
microparticle transport.
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Introduction. In the pioneering work of Alder and Wain-
wright [1], molecular dynamics simulations of hard-spheres
liquid argon revealed a long-time tail in the velocity auto-
correlation function, which decays as t−3/2. Whereas standard
Langevin theory predicts exponential decay over a Brownian
relaxation time τB, this algebraic decay is caused by viscous
coupling between nonuniform particle motion and unsteady
flow generated in the ambient fluid [1–3]. As a particle
accelerates, so does the fluid it displaces, inducing a virtual
mass force that augments the particle’s apparent inertia. The
particle also imparts momentum to the fluid as vorticity, which
diffuses over a particle radius in a kinematic time τν propor-
tional to the fluid density. A particle that translates over its
own radius before the ambient fluid relaxes thus experiences
a delayed self-interaction due to the vorticity generated by its
past motion [4]. This retarded force is known as the Basset
history force, which underlies the slow t−3/2 decay associated
with hydrodynamic memory.

These unsteady forces, which arise when τν � τB where
the (fluid) bath’s inertia becomes significant, are captured by
the Basset-Boussinesq-Oseen (BBO) equation [5–7] [Eq. (1)],
a remarkably general description that applies not just to
macroscopic objects; it applies to Brownian motion well
into the nanoscale [8–10], as substantiated by recent experi-
ments directly probing the microscopic velocities and colored
noise spectra of optically trapped particles [11–16]. Theo-
retical efforts have been essential to understanding the BBO
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description [17], not to mention yielding analytical solutions
for simple external forces that furnish physical intuition at the
level of individual trajectories. Although analytical solutions
are infeasible for general forcing, advances in the computation
of the history force have made numerical simulation increas-
ingly viable [18–20].

These important advances notwithstanding, it is common
to neglect fluid inertia a priori—often at low Reynolds
number—especially because memoryless models are ubiqui-
tous, conceptually simple, and computationally efficient. It
may be reasoned, perhaps, that memory effects can be safely
ignored if both τν and τB are much shorter than relevant
observation timescales, such as the time to establish steady
state behavior. The memoryless assumption, however, tacitly
implies that τν � τB; these timescales are not well separated
in dense media (e.g., liquids), even when Re � 1 [21–23].
This is indeed the case for the myriad mesoscopic phenom-
ena at submicron scales such as conformational changes in
biomacromolecules [24,25], unsteady motion of microswim-
mers [26–28], active subcellular transport [29–31], and col-
loidal flows [4,32], not to mention particle dispersion in tur-
bulent flows and the atmosphere [33–37], sediment transport
in rivers and pipes [38–42], and other engineering applications
[43–46].

In this Rapid Communication, we unambiguously show
that neglecting the history force can lead to qualitatively
incorrect particle transport under general forcing conditions,
including oscillating steady states. Building upon previous
analytical results, we use numerical simulations to demon-
strate that hydrodynamic memory does not merely protract
the transient relaxation to steady state but also persists indefi-
nitely under a significant parameter regime, implying that the
BBO description may be necessary regardless of observation
timescales. We begin by examining time-dependent square-
wave driving to physically illustrate how the history force,
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which models the transient retention of momentum by the
fluid bath, improves the conversion efficiency of input work
into kinetic energy of a particle. For driving frequencies below
τ−1
ν , hydrodynamic memory considerably lowers the effective

friction, which, as we show, leads to enhanced transport in a
tilted periodic potential, whereas pure Stokes dissipation tends
to suppress itinerant behavior.

Problem overview. Consider a microsphere [47] of radius
R, mass m, and density ρs in an incompressible fluid of density
ρ and viscosity η, with no-slip boundary conditions. In the
limit of low Reynolds number and Mach number, nonuniform
motion is described by the BBO equation [5–7],

mev̇ + ζSv(t ) + ζS

√
τν

π

∫ t

t0

v̇(τ )√
t − τ

dτ = F(x, t ). (1)

The second term—the quasisteady component—is the famil-
iar Stokes drag with friction coefficient ζS = 6πηR, which
defines the Brownian relaxation time, τB = me/ζS. Unsteady
flow introduces two additional forces: (1) the virtual mass
force, where ma = 2

3πR3ρ is the added mass and me = m +
ma is the effective mass; (2) the Basset history force, a
convolution over past acceleration. Here, the kinematic time,
τν = R2/ν, which depends on the kinematic viscosity of the
fluid, ν = η/ρ, quantifies the time for vorticity to diffuse over
a distance R.

It is instructive to consider Eq. (1) in dimensionless form.
First, we introduce the following dimensional scales, which
we use in the ensuing analyses (also cf. Arminski and Wein-
baum [48]):

tc = τB, Ec = kBT, vc = vth, (2)

where vth = √
kBT/me is the thermal speed, and the dimen-

sionless time is t̃ = t/tc, dimensionless velocity is ṽ = v/vc,
and so on. Accordingly, length is scaled by Lc = vthτB, mass
by Mc = me, force by Fc = kBT/vthτB, power by Pc = kBT/τB,
and friction by ζS. By introducing β = 9ρ

2ρs+ρ
, one may show

that the particle and fluid timescales are related by β = τν/τB

[48,49]. Redefining t̃ as t , ṽ as v, and so on, one obtains the
following dimensionless form:

v̇ + v(t ) +
√

β

π

∫ t

t0

v̇(τ )√
t − τ

dτ = F(x, t ). (3)

In the present analyses, we assume neutral buoyancy—
pertinent to many processes in liquid water—so ρs = ρ, β =
3, and the history term is of order unity by Eq. (3). In this
case, the history force can be neglected only if F varies in
such a way that a particle always moves near terminal speed
(i.e., v̇ ∼ 0).

Many strategies have been used to either derive Eq. (1)
itself (or closely related forms) or shed light on the alge-
braic decay of the correlation functions, including techniques
based on Navier-Stokes [3,50,51], fluctuating hydrodynamics
[52–54] (i.e., Landau-Lifschitz Navier-Stokes [2]), mode cou-
pling theory [55–57], and kinetic theory [58,59], among oth-
ers [1,60,61]. In the case of hydrodynamic Brownian motion,
F may consist of deterministic time-dependent and conserva-
tive components, as well as thermal fluctuations [49,62,63];
respectively, F(x, t ) = f (t ) − ∇U (x) + ξ(t ). By the second
fluctuation-dissipation theorem (FDT), the Basset memory

kernel implies that ξ is a colored noise process [64,65]. In
the limit of vanishing fluid inertia, ρs � ρ, τν � τB, and the
history force vanishes; ξ then becomes a white noise process
and Eq. (1) reduces to a memoryless Markovian description
(i.e., a conventional Langevin equation).

The full non-Markovian dynamics of Eq. (1) are quite
complicated, which obfuscates the physical picture. We there-
fore focus on zero-temperature dynamics in one dimension;
the finite-temperature case will be treated in a follow-up
study. We obtain numerical solutions using an extended phase
space method wherein an exponential sum approximates the
memory kernel [66]. A distinct advantage of this approach—
sometimes called Markovian embedding—is that it also sys-
tematically generates the correct thermal noise correlations
(obeying the FDT) as a weighted sum of white noises [67–70].
While the numerical method is not the focus of this study,
our results support the practicability of such an approach in
modeling driven hydrodynamic Brownian motion [69]. For
brevity, we refer to spherical particles obeying Eq. (1) as BBO
beads; likewise, we have Stokes beads when fluid inertia is
neglected (i.e., β → 0 and me → m).

Energy flow for a square pulse. The case of a finite-
duration square or sawtooth pulse acting on a particle—with
and without the Basset history force—was studied analytically
by Arminski and Weinbaum [48]. It was shown that the
maximum bead displacement 	xmax depends only on the total
impulse Jmax = ∫

Fdt and not the dynamics or wave form;
in dimensionless form, 	xmax = Jmax, an important result we
use later. Thus, assuming beads start and end at rest, the
history term only acts to alter the details of bead motion on
intermediate timescales. Here, we revisit the square pulse case
to: (1) examine the history force from the standpoint of energy
flow; (2) establish a point of contact between our numerical
results and known analytical solutions. Accordingly, we con-
sider BBO and Stokes beads, initially at rest, acted upon by
a force f (t ) = f0 for 0 � t � τ0. We then compute the net
work and instantaneous power term-by-term for the equation
of motion and directly compare BBO and Stokes beads. It is
seen that the history force transiently retains energy, which
can be redistributed to a BBO bead as kinetic energy (i.e.,
momentum) at later times.

Figure 1 shows results for a “long” pulse (relative to τB)
of duration τ0 = 10τB, where f0 = 1

10 Fc and 	xmax = Lc. Due
to the history force and, to a lesser extent, the virtual mass
force, a BBO bead responds more gradually than a Stokes
bead [Fig. 1(b)], taking tens of τB to reach 80% of its long-time
displacement [Fig. 1(a)]. On the other hand, since the force
is constant during the driving phase (t < τB), the total input
work and peak power is evidently lower for a BBO bead
[Figs. 1(c) and 1(d)]. Figure 1(b) details how input work is
apportioned between the instantaneous kinetic energy, total
heat loss (through Stokes dissipation), and fluid stress energy
lost through vorticity diffusion (through the history term).

In particular, Stokes dissipation irreversibly converts ki-
netic energy into heat and is always positive. By contrast,
the instantaneous power dissipation through the history force
abruptly switches sign shortly into the relaxation phase
[t > 10τB; Fig. 1(d)], illustrating the transfer of energy back
to the BBO bead from the fluid. This particular effect is less
pronounced for short- and medium-duration pulses, though
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FIG. 1. Stokes versus BBO beads for a single square pulse.
BBO beads have a smoother net displacement (a) and instantaneous
velocity (c) due to the history force, which returns energy to the bead
for t > 10τB [(b), (d); blue]. Stokes beads dissipate energy purely as
heat [(b), (d); dashed red]. Pulse duration τ0 = 10τB and amplitude
f0 = 1

10 Fc. All panels: Stokes, dotted lines; BBO, solid lines. Panels
(a), (c): Shared horizontal axes. Panels (b), (d): Shared horizontal
axes; lines color coded by (force) term.

the overall intermediate-time behavior is quite similar [71]. In
any case, a BBO bead takes longer to displace than a Stokes
bead but, since hydrodynamic memory improves momentum
retention, the same displacement is achieved with less work.

Temporal square wave forcing. Extending the single-pulse
results to a square wave is straightforward if the pulses are
spaced arbitrarily far apart; since each pulse is isolated, it is
clear that the energy saved per pulse (due to the history force)
can be sustained over an arbitrary number of cycles. Likewise,
it is reasonable to expect that the energy saved per pulse will
remain finite as long as the pulse spacing is nonzero, leading
to an efficiency enhancement in the transport of a BBO bead.
To this end, we quantify the trade-off between input energy,
total displacement, and overall transport speed by defining an
effective friction ζ t by analogy with Stokes’ law,

Ft = ζ tvt , (4)

where we have introduced the effective velocity,

vt = 1

t

∫ t

0
v(τ ) dτ = 	xt

t
, (5)

and the effective driving force,

Ft = 1

	xt

∫ t

0
F (x, τ )v(τ )dτ = Wt

	xt
, (6)

where Wt is the net input work and 	xt = x(t ) − x(0) is
net displacement. Note that force balance in steady state
implicitly defines an effective drag force via Ft ∼ −F drag.
Using Eqs. (4) to (6), it is easy to compute running estimates
of the effective friction.

We now consider BBO and Stokes beads driven by square
waves with period τ = 10τB, pulse width τ0, and amplitude f0,
holding fixed the impulse per cycle, Jcyc = f0τ0 = √

mekBT .
Figure 2 compares the effective displacement, velocity, driv-
ing force, and friction as pulse width is varied. By t = 250τB,

FIG. 2. For time-periodic driving with fixed impulse per cycle,
BBO (solid lines) and Stokes (dotted) beads achieve comparable
net displacements (a) and effective velocities (b), but BBO beads
are more easily driven (c), reducing effective friction (d). Period
τ = 10τB; pulse width τ0 and force f0 are varied.

BBO and Stokes beads achieve around 90% and 100%, re-
spectively, of the maximum possible displacement (	xmax =
25Lc) [Fig. 2(a)], consistent with the expectation that the total
impulse determines the long-time displacement. Moreover, as
Jcyc also determines the cycle-averaged momentum input rate,
BBO and Stokes beads achieve similar effective velocities
[Fig. 2(b)] [72].

For always-on forcing (i.e., 100% duty cycle), the effective
driving (and drag) force is fixed and the effective friction
quickly approaches ζS [black; Figs. 2(c) and 2(d)], which is
the expected quasisteady behavior. By contrast, increasing the
abruptness of the pulses (shorter duration, larger magnitude)
increases the effective driving force, especially in the case
of Stokes beads [red and blue, Fig. 2(c)]. Given that the
history force attenuates acceleration during the forcing phase
[cf. Fig. 1(c)], which reduces the velocity and, in turn, input
work [cf. Fig. 1(b)], this is expected. It follows that a BBO
bead’s effective friction is comparable to a Stokes bead’s
for a constant (always-on) force but is lower for intermittent
forcing.

Tilted periodic potential with gaps. We now consider beads
in a tilted “periodic gap potential,” which dovetails with the
preceding square-wave analysis. The potential has a wave-
length λ, overall tilt F0, and a piecewise-linear construction
that alternates between downward-sloped segments of con-
stant, positive force and gaps, flat segments of length d with
zero force (Fig. 3, black or gray line). This simple construction
is sufficient to illustrate the role of the Basset term in the
(un)trapping of beads while providing a clear physical picture.
We also show that our conclusions extend straightforwardly to
experimentally realizable models such as the tilted washboard
potential, which has broad physical relevance [73–78].

Beads are initialized with zero velocity at the top of a
downhill segment so that they initially feel a constant force of
magnitude Fmax = F0( λ

λ−d ) [79]. Upon reaching the first gap,
the total energy input is W = −	U0, where 	U0 = −F0λ,
and coasting begins. It is clear that a bead must coast past
the first gap so as to achieve sustained transport; otherwise, it
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FIG. 3. Tilted periodic gap potential (black line) with wavelength
λ, gaps of length d , and tilt F0 (red dashes). Here, an itinerant BBO
bead progresses beyond the first gap, but a Stokes bead is trapped.
Downhill regions have a slope Fmax = F0( λ

λ−d ), which steepens as
the gap size d increases. A tilted washboard potential (dashed black
line) with local minima is shown for comparison.

becomes trapped indefinitely. Recalling that 	xmax = Jmax, it
can be seen that knowing the gap size d and initial momen-
tum input is sufficient to determine whether trapping occurs.
The momentum input is just the initial impulse, J∗ = Fmaxt∗,
where t∗ is the time to arrive at the first gap; since Fmax

is constant, t∗ controls whether trapping occurs, though it
is determined by solving the specific equation of motion.
However, t∗

BBO � t∗
Stokes because the history force reduces the

acceleration of a BBO bead [Fig. 2(b)], so we can deduce that
J∗

BBO � J∗
Stokes. Since long-time displacement only depends on

J∗, BBO beads coast farther than Stokes beads; if BBO beads
get trapped, so do Stokes beads.

For a bead that becomes itinerant, the average energy input
per unit distance is simply given by the tilt F0, which also
sets a lower bound on the effective driving or drag force,
Ft � F0. Once a bead covers a distance large compared to
the wavelength (	xt/λ � 1), then W ∝ 	xt and Eq. (6)
implies that Ft → F0. Recall that time-periodic driving, by
contrast, fixes the momentum input rate, which largely con-
strains the effective velocity but not the effective driving force
[cf. Figs. 2(b) and 2(c)]. Accordingly, we expect that the
effective velocity will be the prevailing factor that determines
the effective friction ζ t in a tilted periodic potential.

Figure 4 depicts a representative comparison between
BBO and Stokes beads for a large gap (d = 1

2λ), small gap
(d = 1

4λ), and no gap (d = 0), holding wavelength (λ = Lc)
and tilt (F0 = 1

5 Fc) fixed. Whereas all BBO beads are able to
escape, Stokes beads are trapped by the first gap, both large
and small [Fig. 4(a)]. Small gaps have a slight effect on a BBO
bead’s velocity, while large gaps noticeably impede motion,
at least initially [Fig. 4(b)]. Note that itinerant beads—all
BBO beads and the Stokes bead when there is no gap—have
effective driving forces Ft that do indeed approach 1

5 Fc at long
times [Fig. 4(c)]; the final value of Ft for trapped beads is
set by the final displacement after coming to rest [red and
blue dashed lines, Fig. 4(c)]. While the effective friction ζ t

measurably decreases over several hundred τB for the BBO
beads, ζ t diverges for the trapped Stokes beads since their
effective velocities drop to zero [Fig. 4(d)].

The results for a comparable tilted washboard potential are
also consistent with expectations [80]. Moreover, extending

FIG. 4. In a tilted potential, BBO beads (solid lines) can traverse
gaps that trap Stokes beads (dotted). Net displacement (a) and
effective velocity (b) determine, respectively, net energy and average
power input. The effective driving force (c) is constrained by the tilt
F0, so the effective friction (d) is dictated by the effective velocity.
Wavelength λ = Lc and tilt F0 = 1

5 Fc, so 	U0 = 1
5 kBT . Initial slope

Fmax = Fc
5 ( λ

λ−d ).

the analysis of the tilted gap potential over a wider parameter
space that spans different combinations of wavelength λ, tilt
F0, and gap size d confirms that a Stokes bead is always
trapped when a BBO bead is trapped [81]. Impeding the
motion of Stokes beads—through gaps or local minima and
barriers—markedly increases the effective friction; the effect
on BBO beads is comparatively minor and, moreover, dimin-
ishes in time. What is perhaps more striking is that even the
relatively smooth landscape of a critically tilted washboard
(where no trapping is possible) has a rather large effect on
a Stokes bead, more than doubling the effective friction in
comparison to a constant force.

Discussion. Overall, a Stokes bead in transport appears to
be remarkably sensitive to variations in the external driving
force. When fluid inertia is taken into account, however,
the Basset history force moderates momentum and energy
flow between bead and environment, smoothing the bead’s
response [Figs. 2(a) and 2(b)]. From a physical standpoint, a
BBO bead extends “into the bath” in the sense that the ambient
fluid can temporarily retain a portion of the total momentum
and energy, a consequence being that a BBO bead can, in
effect, transiently store and access “latent kinetic energy.”
This aspect of the history force is prominent when the external
force drops precipitously, as exemplified by the “long” square
pulse case [Fig. 1(c)]. In general, any input work that accel-
erates a bead beyond its (cycle-averaged) effective velocity
will be wasted as heat over the latter part of a cycle [after
F (t ) falls below the average F ]. However, the history force
redistributes some of the surplus work at later times as kinetic
energy; the remaining fluid momentum will be gradually lost
to vorticity diffusion, and yet it is decidedly less efficient if
all available momentum is carried entirely by a (Stokes) bead
itself—this increases (Stokes) dissipation [Fig. 1(d)], which
grows quadratically with the momentum.

That a Stokes bead dissipates excess (kinetic) energy more
quickly than a BBO bead reflects a key difference in the
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physical models: as a driving force becomes intermittent, or a
potential landscape rough, the effective friction increases; but,
if fluid inertia were erroneously neglected, a (Stokes) bead
would be driven unnaturally quickly toward a quasisteady
state [consistent with the value of F (t )], exacerbating the
apparent increase in the effective friction and hindering trans-
port. While pure Stokes dissipation (too) hastily sheds surplus
energy from a fluctuating energy source, the history force
assists a (BBO) bead in utilizing the available energy more
effectively, thereby enhancing transport efficiency. Indeed,
this effect does not depend so much on forcing frequency
itself as it does on the time rate of change of the driving
force Ḟ , which, when nonzero, drives a particle away from
quasisteady motion. It is also interesting to note that as long
as the driving force has a period larger than roughly τν , there
is a transitory period of momentum accumulation in the fluid
as it is continually agitated by a driven bead [82]. This is
evident from the continual decline of the effective friction over
hundreds of τB for both time-periodic driving [red, Fig. 2(d)]
and the tilted periodic potentials [red, Fig. 4(d) and Fig. 6(d)
in the Supplemental Material].

The aim of this Rapid Communication has been to eluci-
date the physical mechanism underlying hydrodynamic mem-
ory, examine the impact of the Basset history force on de-
terministic microparticle transport, and build a foundation
for investigating hydrodynamic Brownian motion at finite
temperature, where hydrodynamic memory drives the long-
time persistence of thermal fluctuations [11–15]. In the case
of purely time-dependent external forcing, thermal averages
should agree with the deterministic results. For periodic tilted
potentials like the tilted washboard, we anticipate qualitative
agreement with the present results, namely that an ensemble
of BBO beads may be able to attain a larger effective velocity
than a Stokes bead ensemble when initialized on a downhill
region (i.e., where the initial force is positive). In partic-
ular, hydrodynamic memory hedges against uncertainty in

fluctuating sources of energy, including both thermal and
external forces. Less trivially, however, we also anticipate
dynamical bistability, where individual beads may assume
either trapped (or locked) or itinerant (or running) states, un-
dergoing intermittent transitions between them. In particular,
the interplay between a periodic driving force and transition
rates can give rise to resonance phenomena, such as stochastic
resonance [83], which are sensitive to correlations in the noise
[84,85] as well as the damping terms [86]. These questions,
however, have yet to be explored in the context of the phys-
ically relevant case of hydrodynamic Brownian motion as
described by Eq. (1).

Other avenues of exploration include the generalization
and connection to the compressible flow case [8,32,87–89].
In view of Ref. [9], where it was shown that even tagged
fluid particles closely follow BBO dynamics, the present
results are also germane to temperature and pressure control
algorithms in molecular dynamics simulations, especially as
extended phase space approaches show promise in improv-
ing the kinetic consistency of thermostats [90,91], as well
as deriving dynamically consistent and computationally vi-
able coarse-graining schemes for complex atomistic systems
[92–95]. Indeed, such approaches can be brought to bear
on the question of stochastic transport efficiency of Brown-
ian motors [96], including linear molecular motors like ki-
nesin [97–99]; viscoelastic properties of the fluid environment
(e.g., the cytosolic medium) can also be modeled within the
extended phase space framework [70,100–102].
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