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Direct measurement of a beta function and an indirect check of the Schwinger effect near the
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The electric field inside typical conductors drops down exponentially with the screening length determined
by an intrinsic length scale of the system such as the density of mobile carriers. We show that in a classically
conformal system with boundaries, where the intrinsic length scale is absent, the screening of an external electric
field is governed by the quantum conformal anomaly associated with the renormalization of the electric charge.
The electric field decays algebraically with a fractional power determined by the beta function of the system.
We argue that this “anomalous conformal screening effect” is an indirect manifestation of the Schwinger pair
production in relativistic field theory. We discuss the experimental feasibility of the proposed phenomenon in
Dirac semimetals that would allow a direct experimental access to the beta function.
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Introduction. There is no electrostatic field in the bulk
of an ideal conductor. The screening of the electric field
occurs due to the presence of mobile charge carriers which,
under an external electric field, redistribute themselves inside
the conductor and generate an excess of the electric charge
density at its boundary. The redistributed charges create their
own electric field which compensates the external field inside
the conductor [1].

The static electric field falls down with an exponential
law, E (x) ∼ E (0)e−x/λ, as one moves from the conductor
boundary at x = 0 towards its bulk, x > 0. The screening
length λ determines the width of a layer of the redistributed
mobile charges near the boundary.

For example, at high enough temperature T the charge
carriers form a classical thermal plasma characterized by the
Debye screening length λD. At low temperature, the system
enters a quantum regime of a nonrelativistic Fermi gas char-
acterized by the Fermi-Thomas screening length λFT, which is
produced by density (rather than thermal) effects. Both length
scales are fixed by a dimensionful quantity, the density of the
charge carriers n in a solid,

λD =
√

ε0kBT

ne2
, λFT =

√
ε0π2h̄3

me2 pF
, (1)

where ε0 is the vacuum permittivity, kB is the Boltzmann
constant, and pF = (2π2n)1/3h̄ is the Fermi momentum of the
particles, which carry the electric charge e and mass m.

The exponential screening of a static electric field is
associated with a characteristic length scale such as the
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Thomas-Fermi wave vector [1]. In the examples given above,
the width of the surface layer of the displaced charge carriers
is given by the screening scales of the system in the bulk (1).
In the conformal limit of vanishing density and temperature,
the Fermi-liquid phenomenology cannot be used and these
expressions do not apply.

A physical system is conformal (or scale) invariant at
the classical level when all its parameters are dimensionless
quantities. The question of the electrostatic screening in a
classically conformal system is relevant to a wide class of
recently discovered Dirac and Weyl semimetals [2–7] whose
low-energy properties are described by relativistic massless
fermions [8,9]. High interest in these materials is motivated by
the fact that they exhibit a plethora of exotic quantum effects
restricted, until very recently, to fundamental high-energy
systems such as extremely hot quark-gluon plasmas [10]. In
particular, the Dirac and Weyl semimetals manifest a diversity
of quantum anomalies [11] which lead to various anomaly-
related transport phenomena [12]. The axial anomaly [13–16]
generates—via the chiral magnetic effect [17]—the experi-
mentally accessible electric current parallel to the axis of a
background magnetic field [18]. The mixed axial-gravitational
anomaly [19] leads to a positive magnetothermoelectric con-
ductance for collinear temperature gradients and magnetic
fields [20,21], while the conformal anomaly is suggested to
generate—via the scale magnetic effect [22]—an anomalous
thermoelectric current perpendicular to a temperature gradient
and the direction of a background magnetic field [23,24]. In
these material systems, as well as in massless QED, the pho-
ton polarization function that encodes the screening properties
acquires a logarithmic dependence on the renormalization
scale [25–29].

In this Rapid Communication we show that the screening
of the electrostatic field in a classically conformal conductor
with a boundary, such as a Dirac or Weyl semimetal, may
occur via the quantum conformal anomaly. The screening may
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be understood as a boundary effect, with the external elec-
trostatic field screened in the interior of a spatially bounded
semimetal. To get rid of potentially nonconformal contri-
butions from thermal and density effects we will consider
a system at zero temperature and zero chemical potential.
Notice that a flat boundary does not introduce, by itself, any
dimensionful parameter, and therefore it does not affect the
screening length in the bulk.

Conformal electromagnetic edge effects. About 30 years
ago, McAvity and Osborn showed [30] that a classical elec-
tromagnetic field Fμν = ∂μAν − ∂νAμ, acting on a bounded
quantum system of charged particles, generates a singular
electric current near the boundary,

Jμ = −2cβe

eh̄

Fμνnν

x
, (2)

where nμ = (0, n) is the inner normal vector to the edge of the
system, and x > 0 is the spatial distance to the boundary along
n. In Refs. [31,32] it was found that the prefactor in Eq. (2) is
given precisely by the beta function,

βe ≡ βe(e) = μ
de(μ)

dμ
, (3)

which describes the renormalization of the electric charge
e = e(μ) at the energy scale μ. The presence of the beta
function shows that the effect (2) is undoubtedly associ-
ated with the conformal anomaly in the interacting sys-
tem [33]. Remarkably, the current (2) does not depend on
the particular choice of the reflective boundary conditions
[32].

It is instructive to rewrite Eq. (2) in the components Jμ =
(cρ, J). The background magnetic field B induces the electric
current

J = −2cβe

eh̄

1

x
n × B, (4)

which is normal to the axis of the magnetic field and tangential
to the edge of the system. The emergence of the quantum
current (4) may be interpreted as a result of skipping orbits of
particles and antiparticles created by the quantum fluctuations
near the edge of the system in the background magnetic field
[31,32]. Although the presence of a divergent 1/x current
might seem unlikely, the existence of the “conformal magnetic
edge effect” (4) was recently demonstrated in first-principles
numerical simulations of scalar quantum electrodynamics
[34].

In the presence of a static electric field E, the conformal
anomaly (2) leads to the accumulation of the electric charge
density at the boundary [31],

ρ = −2βe

eh̄c

nE
x

. (5)

Similarly to the scale electromagnetic effects [22], the con-
formal magnetic (4) and electric (5) edge effects arise at zero
temperature and vanishing chemical potentials.

Conformal electric edge effect (5) and the Schwinger
pair production. We suggest that the charge accumulation
near the boundary (5) may qualitatively be understood as
a consequence of the Schwinger pair production near a
reflective boundary, as shown schematically in Fig. 1. In

FIG. 1. Interpretation of the conformal electric edge effect (4)
as an accumulation of electric charge due to the Schwinger pair
production near the reflective boundary (placed at x = 0).

field theory language, the background electric field leads to
the quantum production of particle-antiparticle pairs. The
analogous effect in Weyl semimetals (WSMs), the creation
of electron-hole pairs in the presence of a uniform electric
field (the Zener effect) has been described in a different
context in Refs. [35–37]. Since the charge carriers are mass-
less, the process of pair production in semimetals proceeds
without the prohibitive energy barrier of the usual massive
QED where the Schwinger pair production is exponentially
suppressed by the electron mass.

As a pair is created near the boundary, the background
electric field accelerates one of the particles towards the
boundary and pushes the antiparticle towards the bulk. When
the first particle reaches the reflective boundary, it scatters
back into the bulk. A certain part of the reflected particles is
subsequently annihilated with particles of an opposite charge
that are created in the bulk in later times. Another part of
the reflected particles comes back to the reflective bound-
ary which scatters them again into the bulk. As a result of
this repetitive process, the boundary accumulates electrically
charged particles of a certain sign which depends on the sign
of the product nE in agreement with Eq. (5). An opposite
boundary will accumulate charges of the other sign. The
system reaches an equilibrium when the produced particles
form a charged layer which partially screens the external
electric field, thus stabilizing the vacuum in the bulk. This is
the mechanism which unifies the Schwinger pair production
and the screening of the electrostatic field by the conformal
anomaly.

The particle creation near the boundary lies also in the
origin of the conformal magnetic edge effect (4) which gen-
erates the electric current near the boundary in the magnetic
field background. This anomalous current originates from
the skipping particle-antiparticle orbits in thermal equilibrium
[32]. The physical picture of the conformal electric edge
effect (5), proposed in our work in Fig. 1, is based on the
out-of-equilibrium Schwinger process. Thus, although both
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processes involve a similar particle-creation effect near the
boundary, the physical pictures behind them are very different.

Anomalous conformal screening effect. As an example,
consider first the massless QED with Nf species of the Dirac
fermions described by the Lagrangian,

L = −1

4
FμνFμν +

Nf∑
a=1

ψ̄aiγ μDμψa, (6)

where Dμ = ∂μ − ieAμ is the covariant derivative expressed
via the gauge field Aμ = (φ/c, A). Since in our stationary
problem the magnetic field is absent, B = 0, we may safely
set A = 0 and use the electrostatic potential φ to describe the
electric field E = −∇φ.

In order to illustrate the screening effect, let us consider the
system (6) with a single boundary at x = 0 in a semi-infinite
space x > 0. We apply the background electric field normal to
the boundary, E = (Ex, 0, 0), and do not restrict the system in
the yz plane. Due to the translational invariance in the y and
z directions, the problem becomes one dimensional with all
quantities dependent on the x coordinate only. The relevant
Maxwell equation, div E = ρ, in one spatial dimension is as
follows,

∂xEx(x) = 1

ε0
ρ(x), (7)

where

ε0 = e2

4πch̄ αQED
(8)

is the vacuum permittivity (we use SI units) related to the fine-
structure constant αQED � 1/137.

In a linear-response regime, the electric charge density is
determined by the anomalous contribution only (5),

ρ(x) = −2βe

ech̄

Ex(x)

x
, x > 0. (9)

In addition to the anomalous term (9), we may also expect
the appearance of the thermodynamic contribution to the local
charge density,

ρtherm = Nf

3π2
μ3 + Nf

3
T 2μ. (10)

Here, we assumed that the system resides in a thermodynamic
equilibrium with the effective local chemical potential μ(x) =
φ(x) related, via the electrostatic potential φ(x), to the electric
field,

Ex(x) = −∂xφ(x). (11)

However, the first term in Eq. (10) is vanishing in the linear
order while the second term is strictly zero at zero tempera-
ture. Therefore we omit the thermodynamic contribution and
concentrate on the conformal part (9) only.

The solutions of Eqs. (7), (9), and (11) for the electrostatic
potential φ, the electric field E , and the charge density ρ are,
respectively, as follows,

φ(x) = φ0 − Cx1−ν

1 − ν
, (12a)

Ex(x) = C

xν
, (12b)

ρ(x) = −Cε0ν

x1+ν
, (12c)

where C and φ0 are the integration constants and x > 0.
The conformal anomaly screens the electrostatic field in the
interior of the semimetal as a polynomial 1/xν with the
“conformal screening exponent,”

ν = 2βe

ech̄ε0
, (13)

determined by the beta function of the electric charge (3). The
polynomial screening of the electric field (12b) is natural in
the classically conformal regime because the theory has no
length parameter to appear in the role of a width of the charge
layer at the boundary.

The one-loop beta function of the massless QED (6),

βe = Nf e3

12π2
, (14)

implies that the conformal screening exponent (13) is pro-
portional to the fine-structure constant of QED, αQED =
e2/(4πε0 h̄c), a small quantity, ν � 1.55Nf × 10−3.

Anomalous conformal screening in semimetals. The low-
energy physics of a chiral relativistic quasiparticle in Dirac
and Weyl semimetals is well captured by the Lagrangian (we
restore the constants h̄ and c),

L = −1

4
FμνFμν +

Nf∑
a=1

ψ̄a

[
γ 0

(
ih̄

∂

∂t
+ eφ

)

+ vF γ (ih̄∇ − eA)

]
ψa, (15)

which is similar to the multispecies massless QED (6) albeit
the appearance of the Fermi velocity vF in the place of the
speed of light in a spatial part of Eq. (6).

The derivation of the exponent (13) for the semimetal
Lagrangian (15) follows the same steps. Due to the anisotropic
dispersion relation originated by the Fermi velocity in (15),
both the Fermi velocity and the velocity of light (permittivity)
are renormalized [25,28,29,38].

The final expression for the conformal screening exponent
ν amounts to replacing αQED → αWSM,

ν = e2

6π2h̄vF εε0
, (16)

where we also put Nf = 1. Since the Fermi velocity of typical
WSMs is approximately vF ∼ 10−3c and ε ∼ 10, the confor-
mal screening exponent in WSMs is approximately a hundred
times bigger than that in the vacuum.

Consider now the semimetal in the form of a slab of
a finite length L in the x direction (0 � x � L). We apply
the electrostatic potential �φ ≡ φ(x = L) − φ(x = 0) to the
opposite boundaries x = 0, L of the slab. Without loss of
generality we take

φ(x) =
{

0, x = 0,

�φ, x = L.
(17)

The charge density induced by the conformal anomaly (5) in
between the two boundaries is as follows,

ρ(x) = −2βe

ech̄

(
1

x
− 1

L − x

)
Ex(x), 0 < x < L. (18)
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FIG. 2. The anomalous conformal screening inside a semimetal
slab of length L, characterized by a large (ν = 1/5) conformal
screening exponent (13). The electrostatic potential φ, the electro-
magnetic field E , and the electric charge density ρ are given in
Eq. (19) and shown above in units of potential difference �φ applied
to the opposite boundaries (17).

The solutions of Eqs. (7), (11), and (18), consistent with
the boundary conditions (17) on the segment 0 < x < L, are

φ(x) = �φ h(ν)B

(
x

L
; 1 − ν, 1 − ν

)
, (19a)

Ex(x) = −�φ

L
h(ν)

[
x

L

(
1 − x

L

)]−ν

, (19b)

ρ(x) = �φ

L2
ε0νh(ν)

(
1 − 2x

L

)[
x

L

(
1 − x

L

)]−1−ν

, (19c)

where

B(z; a, b) =
∫ z

0

t a−1dt

(1 − t )b−1
(20)

is the Euler incomplete beta function and

h(ν) = �(2 − 2ν)

�2(1 − ν)
≡ 1

B(1 − ν, 1 − ν)
(21)

is the normalization coefficient expressed via the gamma
function �(x) and the beta function B(a, b) ≡ B(1; a, b). The
coefficient (21) has an infinite series of poles at ν = 1/2 + n
with n = 1, 2, . . . which limits the applicability of the linear-
response approximation (19) to |ν| � 3/2, consistent with
phenomenological estimations for ν.

The screening of a static electric field inside the bulk of the
semimetal is determined the conformal screening exponent
ν in Eq. (16) which is proportional to the beta function.
Near the boundaries, x → 0, L, the bulk fields (19) reproduce
the polynomial screening behavior (12). We illustrate the
conformal screening solutions (19) in Fig. 2.

Experimental accessibility of the conformal screening. The
anomalous conformal screening effect may be subjected to
a direct experimental test. The proposed setup is depicted in
Fig. 3. We consider a Dirac semimetal at zero temperature and
zero chemical potential with a clean surface. It is sufficient
to apply a potential difference to the opposite boundaries
of the semimetal slab and to measure the spatial profile
of the electrostatic potential difference φ(x) with respect to
one of the boundaries as shown in Fig. 3. The predicted

FIG. 3. The experimental setup to probe the anomalous confor-
mal screening. The DC voltage source creates the difference �φ =
φ+ − φ− in the electrostatic potentials at the opposite boundaries
of the semimetal crystal. The behavior of the local potential (19)
inside the bulk, V ≡ φ(x), is determined by the conformal screening
exponent (16).

near-boundary polynomial screening behavior (12) associated
with the conformal anomaly is shown in Fig. 4. In real
materials the effect can be affected by standard screening
due to a finite density of states at the Fermi energy coming
from impurities, a departure of the Fermi surface from the
Dirac cone tip, or finite-temperature effects. Moreover, the
continuum conformal model ceases to be valid at energies
where the band bending is not negligible or when other
bands cross the Fermi energy. A finite temperature or density
induces an exponential screening characterized by a Debye
or Thomas-Fermi length λD. The algebraic decay proposed in
this work will be observable at distances from the edge smaller
than λD that in a Dirac semimetal is given by [39]

λD =
√

π

2αWSMk2
F

. (22)

Moreover, there is a minimal distance below which the
high-energy effects of the band bending will make the model
invalid. The optimal experimental conditions will then be
low temperatures and materials with robust linear bands and
a Fermi surface close to the Dirac crossing. Among the
symmetry-protected Dirac semimetals available at present, the
best candidate should be Cd3As2 [3,4]. Its band remains linear
up to 500 meV, which gives a lower bound of 0.4 μm. The
Fermi energy is often pinned at the Dirac cone tip and can be

FIG. 4. The log-log plot of the expected electrostatic potential
(19a) due to the conformal screening near the border of the crystal for
a set of the conformal screening exponents (13) ν = 0, 0.1, . . . , 0.9
running from the bottom to the top.
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easily tuned to match it otherwise [3]. Its high Fermi velocity
vF ∼ 1, 5 × 106 m/s and high dielectric constant (ε ∼ 36
[40]) gives a value of αWSM ∼ 0.05 and the density below
50 K is n ∼ 2 × 1016 cm−3 [41], which gives a large screening
length at low temperatures. Band-structure calculations show
other potential candidates with even better characteristics as
RhSb3. Details on the band structure of topological materials
can be found in Refs. [42,43].

The surface of a real crystal may host static immobile
electric charges. These built-in electrostatic defects could
induce a local, spatially alternating electric field in the bulk
of the crystal which could interfere with the effect of the
conformal screening. We expect that the influence of the
surface impurities may be statistically depreciated by multiple
measuring of the electrostatic potential at different bulk points
located at a fixed distance to the crystal edge.

We expect that the proposed experiment may shed light
on the polynomial screening mechanism associated with the
conformal anomaly and, indirectly, with the Schwinger pair
production of the quasiparticles. In addition, the experiment
may provide us with direct experimental access to the value
of the beta function associated with the renormalization of the
fine-structure constant of the fermionic quasiparticles.
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